I. T. Baker, Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America, Agricultural and Forest Meteorology, vol.182, issue.183, pp.182-183, 2013.
DOI : 10.1016/j.agrformet.2012.11.015

M. P. Barkley, P. I. Palmer, C. D. Boone, P. F. Bernath, and P. Suntharalingam, Global distributions of carbonyl sulfide in the upper troposphere and stratosphere, Geophysical Research Letters, vol.34, issue.D22, pp.10-1029, 2008.
DOI : 10.1029/2008GL034270

J. Berry, : A possible new window on the carbon cycle, Journal of Geophysical Research: Biogeosciences, vol.112, issue.4, pp.842-852, 2013.
DOI : 10.1029/2006JD008048

N. J. Blake, Carbonyl sulfide (COS): Large-scale distributions over North America during INTEX-NA and relationship to CO 2, J. Geophys. Res, pp.10-1029, 2008.

J. M. Blonquist, S. A. Jr, J. W. Montzka, D. Munger, A. R. Yakir et al., The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites, Journal of Geophysical Research, vol.14, issue.18, p.401910, 1029.
DOI : 10.1029/2011JG001723

S. Bloom, A. Da-silva, D. Dee, M. Bosilovich, and J. Chern, Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system, version 4, Tech. Rep. Ser. on Global Model. and Data Assimilation, vol.26, 2005.

C. Brühl, J. Lelieveld, P. J. Crutzen, and H. Tost, The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys, vol.125194, pp.1239-125310, 2012.

A. B. Burgess, R. G. Grainger, and A. Dudhia, Progress in the retrieval of sulphur species from MIPAS, Proceedings of the 2004 Envisat and ERS Symposium (ESA SP-572), pp.6-10, 2004.

J. E. Campbell, Photosynthetic Control of Atmospheric Carbonyl Sulfide During the Growing Season, Science, vol.322, issue.5904, pp.322-1085, 2008.
DOI : 10.1126/science.1164015

J. E. Campbell, M. E. Whelan, U. Seibt, S. J. Smith, J. A. Berry et al., Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints, Geophysical Research Letters, vol.477, issue.7366, pp.3004-301010, 1002.
DOI : 10.1029/12008GL034332

P. J. Crutzen, The possible importance of CSO for the sulfate layer of the stratosphere, Geophysical Research Letters, vol.82, issue.2, pp.73-76, 1976.
DOI : 10.1029/GL003i002p00073

D. P. Dee, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, vol.91, issue.656, pp.553-597, 2011.
DOI : 10.1002/qj.828

C. B. Farmer, O. F. Raper, and F. G. O-'callaghan, Final Report on the First Flight of the ATMOS Instrument During the Spacelab 3 Mission, California Inst. of Technol, pp.87-119, 1985.

H. Fischer, MIPAS: an instrument for atmospheric and climate research, Atmospheric Chemistry and Physics, vol.8, issue.8, pp.2151-2188, 2008.
DOI : 10.5194/acp-8-2151-2008

URL : https://hal.archives-ouvertes.fr/hal-00328581

H. E. Fuelberg, D. L. Harrigan, and W. Sessions, A meteorological overview of the ARCTAS 2008 mission, Atmospheric Chemistry and Physics, vol.10, issue.2, pp.817-842, 2010.
DOI : 10.5194/acp-10-817-2010

S. R. Kawa, D. J. Erickson, I. , S. Pawson, and Z. Zhu, Global CO 2 transport simulations using meteorological data from the NASA data assimilation system, J. Geophys. Res, vol.109, pp.1831210-1029, 2004.

A. Kerkweg, R. Sander, H. Tost, and P. Jöckel, Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys, vol.65194, pp.3603-360910, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00296016

A. J. Kettle, U. Kuhn, M. Von-hobe, J. Kesselmeier, and M. O. Andreae, Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks, Journal of Geophysical Research, vol.93, issue.3, pp.465810-1029, 2002.
DOI : 10.1029/2002JD002187

L. Kuai, J. Worden, S. S. Kulawik, S. A. Montzka, and J. Liu, Characterization of Aura TES carbonyl sulfide retrievals over ocean, Atmospheric Measurement Techniques, vol.7, issue.1, pp.163-17210, 2014.
DOI : 10.5194/amt-7-163-2014

P. Jöckel, The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere, Atmos. Chem. Phys, vol.65194, pp.5067-510410, 2006.

T. Launois, S. Belviso, L. Bopp, and C. G. Fichot, A new model for the global biogeochemical cycle of carbonyl sulfide – Part 1: Assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model, Atmospheric Chemistry and Physics, vol.15, issue.5, pp.2295-231210, 2015.
DOI : 10.5194/acp-15-2295-2015-supplement

J. E. Lee, Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence, Proceedings of the Royal Society B: Biological Sciences, vol.329, issue.5993, 2013.
DOI : 10.1126/science.1184984

N. C. Parazoo, and chlorophyll fluorescence from GOSAT, Geophysical Research Letters, vol.4, issue.4, pp.2829-2833, 2013.
DOI : 10.5194/amt-4-717-2011

P. K. Patra, TransCom model simulations of CH 4 and related species: Linking transport, surface flux and chemical loss with CH 4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys, vol.118375194, issue.12, pp.813-1210, 2011.

P. K. Patra, Observational evidence for interhemispheric hydroxyl-radical parity, Nature, vol.14, issue.7517, pp.219-22310, 1038.
DOI : 10.1038/nature13721

E. Roeckner, Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model, Journal of Climate, vol.19, issue.16, pp.3771-3791, 2006.
DOI : 10.1175/JCLI3824.1

L. Sandoval-soto, M. Stanimirov, M. Von-hobe, V. Schmitt, J. Valdes et al., Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO<sub>2</sub>), Biogeosciences, vol.2, issue.2, pp.125-132, 2005.
DOI : 10.5194/bg-2-125-2005

C. M. Spivakovsky, Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, Journal of Geophysical Research: Atmospheres, vol.93, issue.11, pp.8931-898010, 2000.
DOI : 10.1029/1999JD901006

P. Suntharalingam, A. J. Kettle, S. M. Montzka, and D. J. Jacob, Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake, Geophysical Research Letters, vol.2, issue.3, pp.10-1029, 2008.
DOI : 10.1029/2008GL034332

M. Takigawa, M. Takahashi, and H. Akiyoshi, Simulation of ozone and other chemical species using a Center for Climate System Research/National Institute for Environmental Studies atmospheric GCM with coupled stratospheric chemistry, Journal of Geophysical Research: Atmospheres, vol.48, issue.D11, pp.3-1401810, 1029.
DOI : 10.1029/1998JD100105

A. Tikhonov, On the solution of incorrectly stated problems and a method of regularization, Dokl. Akad. Nauk SSSR, vol.151, p.501, 1963.

T. Von-clarmann, Retrieval of temperature and tangent altitude pointing from limb emission spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Journal of Geophysical Research, vol.78, issue.3???4, pp.473610-1029, 2003.
DOI : 10.1029/2003JD003602

S. F. Watts, The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide, Atmospheric Environment, vol.34, issue.5, pp.761-779, 2000.
DOI : 10.1016/S1352-2310(99)00342-8

S. C. Wofsy, Carbon Dioxide Inf, HIPPO NOAA Flask Sample GHG, Halocarbon, and Hydrocarbon Data (R_20121129), 2012.