M. Jain, B. Guralnik, and M. T. Andersen, Stimulated luminescence emission arising from 674 localized recombination within randomly distributed defects, Journal of Physics Condensed, vol.675, 2012.

M. Jain, R. Sohbati, B. Guralnik, A. S. Murray, M. Kook et al., Kinetics of infrared stimulated luminescence from feldspars, Radiation Measurements, vol.81, p.678, 2015.
DOI : 10.1016/j.radmeas.2015.02.006

M. Jain, J. P. Buylaert, K. J. Thomsen, and A. S. Murray, Further investigations on ???non-fading??? in K-Feldspar, Quaternary International, vol.362, pp.3-7, 2015.
DOI : 10.1016/j.quaint.2014.11.018

R. H. Kars, J. Wallinga, and K. M. Cohen, A new approach towards anomalous fading 682 correction for feldspar IRSL dating -tests on samples in field saturation, pp.786-790, 2008.

R. H. Kars and J. Wallinga, IRSL dating of K-feldspars: Modelling natural dose response curves to deal with anomalous fading and trap competition, Radiation Measurements, vol.44, issue.5-6, pp.594-599, 2009.
DOI : 10.1016/j.radmeas.2009.03.032

R. H. Kars, T. Reimann, and J. Wallinga, Are feldspar SAR protocols appropriate for, p.688, 2014.

G. E. King, F. Herman, R. Lambert, P. G. Valla, and B. Guralnik, Multi-OSL-thermochronometry of feldspar, Quaternary Geochronology, vol.33, pp.76-87, 2016.
DOI : 10.1016/j.quageo.2016.01.004

G. E. King, R. A. Robinson, and A. A. Finch, Towards successful OSL sampling strategies in glacial environments: deciphering the influence of depositional processes on bleaching of modern glacial sediments from Jostedalen, Southern Norway, Quaternary Science Reviews, vol.89, pp.94-107, 2014.
DOI : 10.1016/j.quascirev.2014.02.001

M. H. Kook, T. Lapp, A. S. Murray, and C. Thiel, A Risø XRF attachment for major 695 element analysis of aliquots of quartz and feldspar separates, UK Luminescence and ESR, p.696, 2012.

D. G. Koshchug and Y. P. Solovyov, Accumulation of structural radiation defects in quartz in cooling systems: basis for dating, Physics and Chemistry of Minerals, vol.25, issue.3, pp.242-248, 1998.
DOI : 10.1007/s002690050110

M. Lamothe and M. Auclair, A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals, Earth and Planetary Science Letters, vol.171, issue.3, pp.319-323, 1999.
DOI : 10.1016/S0012-821X(99)00180-6

B. Li and S. Li, Investigations of the dose-dependent anomalous fading rate of feldspar from sediments, Journal of Physics D: Applied Physics, vol.41, issue.22, pp.225502-709, 2008.
DOI : 10.1088/0022-3727/41/22/225502

B. Li and S. Li, Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction, Quaternary Geochronology, vol.6, issue.5, pp.468-479, 2011.
DOI : 10.1016/j.quageo.2011.05.001

B. Li and S. Li, Thermal stability of infrared stimulated luminescence of sedimentary K-feldspar, Radiation Measurements, vol.46, issue.1, pp.29-36, 2011.
DOI : 10.1016/j.radmeas.2010.10.002

B. Li and S. Li, Determining the cooling age using luminescence-thermochronology, Tectonophysics, vol.580, 2012.
DOI : 10.1016/j.tecto.2012.09.023

B. Li, Z. Jacobs, R. G. Roberts, and S. H. Li, Review and assessment of the potential of 716 post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar 717 luminescence, Geochronometria, vol.41, pp.178-201, 2014.

H. Lykke-andersen, The evolution of western Scandinavian topography, p.725, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00531892

R. Parish, The application of sedimentological analysis and luminescence dating to 728 waterlain deposits from archaeological sites, 1992.

G. J. Wintle and A. G. , Quartz as a natural luminescence dosimeter, Earth Science 731 Reviews, vol.97, pp.184-214, 2009.

J. Prokein and G. A. Wagner, Analysis of thermoluminescent glow peaks in quartz derived from the KTB-drill hole, Radiation Measurements, vol.23, issue.1, pp.85-94, 1994.
DOI : 10.1016/1350-4487(94)90026-4

J. Qin, J. Chen, P. G. Valla, F. Herman, K. Li et al., Estimating rock cooling rates by using Optically stimulated luminescence dating of sediments over the past 741 200,000 years, Annual Review of Earth and Planetary Sciences, vol.39, pp.461-488, 2011.

W. A. Bartholomäus, D. Henningsen, and M. Frechen, Luminescence dating of ice- 744 marginal deposits in northern Germany: evidence for repeated glaciations during the Middle 745, 2015.

C. Schmidt, J. Friedrich, and L. Zöller, Thermochronometry using red TL of quartz, p.747, 2015.

N. A. Spooner, The anomalous fading of infrared-stimulated luminescence from feldspars, Radiation Measurements, vol.23, issue.2-3, pp.625-632, 1994.
DOI : 10.1016/1350-4487(94)90111-2

J. A. Spotila, J. T. Buscher, A. J. Meigs, and P. W. Reiners, Long-term glacial erosion of active mountain belts: Example of the Chugach???St. Elias Range, Alaska, Geology, vol.32, issue.6, pp.501-762, 2004.
DOI : 10.1130/G20343.1

S. L. Tang and S. Li, Low temperature thermochronology using thermoluminescence signals from quartz, Radiation Measurements, vol.81, pp.92-97, 2015.
DOI : 10.1016/j.radmeas.2015.04.011

. Protocols-adapted and . Guralnik, ] Gy, and the test dose was Dtest = 44 Gy. The first and the penultimate zero-doses (no irradiation) extract the natural dose and signal recuperation, respectively. b The irradiation and test doses of the long-shine fading experiment (Huntley and Lamothe, 2001) were Dfading = 240 Gy and Dtest = 44 Gy, respectively, and the holding times were tx ?] s. c The short-shine fading experiment (Auclair et al., 2003) consisted of a single irradiation dose Dfading = 72 Gy which was given, followed by delay times of tx ? 10 2.34+0.37x s, where x = [1 The test dose was Dtest = 72 Gy. Lx and Tx in both SAR protocols (left and central column) were derived by integrating the first 15 s of the stimulation curve (signal) after subtraction of the last 100 s (background), Lx and Tx of the short-shine experiment (right column) were derived by integrating the entire stimulation period of 0.1 s, after subtraction of a 20 ms background (immediately following the IRSL stimulation), 1200.