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Abstract 15 

Optically Stimulated Luminescence (OSL) is a well-established Quaternary dating method, 16 

which has recently been adapted to application in low-temperature thermochronometry. The 17 

Infra-Red Stimulated Luminescence (IRSL) of feldspar, which so far is the most promising 18 

target signal in thermochronometry, is unfortunately prone to anomalous fading. The fading of 19 

feldspar IRSL is at times not only challenging to measure, but also laborious to incorporate 20 

within luminescence growth models. Quantification of IRSL fading is therefore a crucial step 21 

in OSL thermochronometry, raising questions regarding (i) reproducibility and reliability of 22 

laboratory measurements of fading, as well as (ii) the applicability of existing fading models to 23 

quantitatively predict the level of IRSL field saturation in nature. Here we investigate the 24 

natural luminescence signal and anomalous fading of IRSL measured at 50 °C (IRSL50) in 32 25 

bedrock samples collected from a variety of lithologies and exhumation settings (Alaska and 26 

Norway). We report a large span of IRSL50 fading rates between samples (g2days ranging from 27 

~0.5 to ~45 %/decade), which further demonstrates (i) a good reproducibility between two 28 

common fading measurement protocols, and (ii) the ability of tunnelling models to predict the 29 

level of feldspar IRSL50 field saturation in nature. We observe higher IRSL50 fading in feldspar 30 

with increasing Ca content, although other factors cannot be dismissed at present. Finally, our 31 

dataset confirms that the applicability of feldspar IRSL50 in OSL thermochronometry is limited 32 

to rapidly-exhuming settings or warm subsurface environments. 33 

 34 
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 36 

1. Introduction 37 

1.1 OSL thermochronometry 38 

Understanding the processes operating at the Earth’s surface requires quantitative methods 39 

to measure erosion and sedimentation rates. In that context, low-temperature 40 

thermochronometric methods (see Reiners and Brandon, 2006 for a review) have been 41 

increasingly used over the past decades to quantify bedrock cooling histories within the top ~2-42 

8 km of the upper crust, and subsequently to interpret them into exhumation histories (e.g. 43 

Braun et al., 2006; 2012). However, linking long-term exhumation rates (105-108 year 44 

timescales) to short-term erosion measurements (100-103 year timescales) remains challenging, 45 

because different spatial scales and processes are involved. An ongoing debate (Herman and 46 

Champagnac, 2016; Willenbring and Jerolmack, 2016), regarding the impact of Quaternary 47 

climate and glacial/interglacial oscillations on global-scale erosion rates, highlights the current 48 

shortage of quantitative estimates of bedrock erosion and relief evolution over Quaternary to 49 

sub-Quaternary timescales (e.g. Herman et al., 2013; Champagnac et al., 2014). Recent 50 

methodological developments of low-temperature thermochronometers, such as 4He/3He 51 

(Shuster and Farley, 2005) and Optically Stimulated Luminescence (OSL) (Guralnik et al., 52 

2015a; King et al., 2016), offer an unprecedented resolution to constrain rock cooling histories 53 

within the upper ~1-3 km of the Earth’s crust, and thus to potentially reconstruct erosion 54 

histories and/or topographic relief changes over sub-Quaternary timescales (e.g. Shuster et al., 55 

2005; 2011; Valla et al., 2011a; King et al., 2016). 56 

 57 

OSL dating (e.g. Aitken, 1998) has recently been adapted for low-temperature 58 

thermochronometry by considering the competing effects of filling and emptying of naturally-59 

occurring electron traps (linked to the OSL signal) in crystal lattices due to environmental 60 

radiation and temperature, respectively (Herman et al., 2010; Li and Li, 2012; Guralnik et al., 61 

2013; King et al., 2016). While other "trapped charge dating" methods (e.g. Grün, 2001) have 62 

been proposed and tested, including thermoluminescence (TL; e.g. Prokein and Wagner, 1994; 63 

Tang and Li, 2015) and electron-spin resonance (ESR; Koshchug and Solovyov, 1998; Grün et 64 

al., 1999), the advantage of OSL techniques in thermochronometry lies in their rapid 65 

methodological development and expanding use in Quaternary science (see reviews by Wintle, 66 

2008 and Rhodes, 2011). One major intrinsic limitation in trapped charge dating, common to 67 

OSL, ESR and TL alike, is signal saturation (i.e. when all available electron traps become 68 
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filled). If the target luminescence signal for dating is close to its saturation limit, only minimum 69 

ages may be provided. Consequently, when luminescence is used to decipher rock cooling 70 

rates, near-saturation signals can only characterise maximum (upper-bound) rates of cooling 71 

and exhumation (e.g. Guralnik et al., 2013). Fortunately, the first OSL-thermochronometry 72 

applications (Herman et al., 2010; Wu et al., 2012; De Sarkar et al., 2013; Wu et al., 2015) 73 

addressed settings of extremely rapid exhumation (where signal saturation should not be a 74 

problem), and quantified bedrock cooling histories below ~100 °C and over sub-Quaternary 75 

timescales. Despite the fact that a standard mineral/signal pair was chosen (quartz “fast OSL 76 

component"; Wintle and Murray, 2006), the low sensitivity (Herman et al., 2010; Jeong and 77 

Choi, 2012), anomalous characteristics (Li and Li, 2006; Preusser et al., 2009), and the 78 

ubiquitous lack of the “fast component” in bedrock quartz of different petrology/mineralogy 79 

(Guralnik et al., 2015b), appeared to narrow the use of bedrock quartz for OSL-80 

thermochronometry, and stimulated the continued search for alternative mineral/signal 81 

combinations (Guralnik et al., 2015b). 82 

 83 

Infra-Red Stimulated Luminescence (IRSL) from feldspar is advantageous over quartz in 84 

several ways (e.g. Huntley and Lamothe, 2001), with (i) a higher luminescence sensitivity in 85 

both sediment and bedrock samples (e.g. King et al., 2014), (ii) in general, a higher charge 86 

storage capacity (i.e. later saturation) offering a wider dating range (e.g. Buylaert et al., 2012), 87 

and (iii) a negligible signal contamination from quartz OSL, if present (e.g. Sohbati et al., 88 

2013). Recently, OSL thermochronometry using bedrock Na-feldspar was investigated in a 89 

deep continental drillhole (Guralnik et al., 2015a), where IRSL signals measured at 50 °C 90 

(hereafter IRSL50) were successfully characterised in the laboratory and translated into 91 

environmental palaeotemperatures in the ~40-70 °C range over a ~50 ka timescale (Guralnik et 92 

al., 2015a). Moreover, the recently-introduced protocol of multiple elevated temperature post-93 

IR (MET-pIRIR) measurement of feldspar (Li and Li, 2011a,b) conceptually offers access to 94 

multiple thermochronometric subsystems within a single mineral, as the different subsignals 95 

display higher thermal stabilities with increasing stimulation temperatures (Li and Li, 2011b; 96 

King et al., 2016).  97 

 98 

1.2. Anomalous fading in feldspar IRSL 99 

Although feldspar IRSL appears in many ways preferable to quartz OSL for 100 

thermochronometry, one of the drawbacks of feldspar IRSL is its anomalous fading (e.g. 101 

Spooner, 1994; Huntley and Lamothe, 2001), an athermal loss of trapped electrons via quantum 102 
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mechanical tunnelling to their nearest recombination centres (Visocekas, 2002; Huntley, 2006). 103 

Since anomalous fading is ubiquitous in feldspar IRSL50 (Huntley and Lamothe, 2001; Huntley 104 

and Lian, 2006), recent efforts have mainly focused on extracting a more stable feldspar signal 105 

using pIRIR protocols (e.g. Thomsen et al., 2008; 2011; Li and Li, 2011a; Buylaert et al., 106 

2012). Although the latter protocols exhibit a reduced, perhaps even negligible, anomalous 107 

fading, it is generally at the expense of a higher thermal stability of the target electron trap (Li 108 

and Li, 2011a,b; Guralnik et al., 2015c; King et al., 2016). This in turn leads to higher residual 109 

doses in sediment dating (e.g. Wintle, 2008), and higher closure temperatures in 110 

thermochronometry (e.g. Guralnik et al., 2015c), which may once again limit the benefit of 111 

non-fading IRSL signals in low-temperature thermochronometry (e.g. Qin et al., 2015). 112 

Moreover, the MET-pIRIR protocol often exhibits progressively lower IRSL sensitivity with 113 

increasing stimulation temperature (Li and Li, 2011b; King et al., 2016), which can hinder 114 

signal extraction for some bedrock samples with low luminescence sensitivity. Despite the 115 

presence of anomalous fading in feldspar IRSL50, and in light of recent success in avoiding it 116 

via pulsed stimulation at low temperature (Tsukamoto et al., 2006; Jain et al., 2015a), IRSL50 117 

remains highly relevant for OSL thermochronometric investigations. 118 

 119 

Over the years, several protocols have been proposed to quantify the anomalous fading of 120 

feldspar over laboratory timescales (Huntley and Lamothe, 2001; Auclair et al., 2003) and to 121 

correct for fading in the linear dose response range (e.g. Lamothe and Auclair, 1999; Huntley 122 

and Lamothe, 2001; Lamothe et al., 2003). More recently, Huntley (2006) formulated a 123 

physical description of electron tunnelling that further enabled the application of fading 124 

corrections within the entire dose response range (Kars et al., 2008; Li and Li, 2008). In 125 

particular, these models allow the prediction of luminescence intensities in “field saturation” 126 

(Huntley and Lian, 2006), in which the natural intensity of feldspar IRSL50 becomes insensitive 127 

to time, and is governed only by the counterbalancing effects of environmental radiation and 128 

anomalous fading (Kars et al., 2008). 129 

 130 

In the present study, we investigate anomalous fading of the IRSL50 signal in bedrock 131 

feldspar, and highlight its key implications for OSL thermochronometry. As described earlier, 132 

OSL thermochronometry exploits the thermal dependence of trapped electrons in minerals 133 

during their exhumation towards the Earth’s surface. Given zero fading, a non-saturated natural 134 

IRSL50 signal in bedrock feldspar should, in theory, reflect the sample’s cooling history. 135 

Anomalous fading of the signal would, however, lower the measured IRSL50 level in a given 136 
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bedrock sample, preventing full saturation of the signal and influencing the determination of a 137 

cooling rate (if not accounted for). While the incorporation of the effects of IRSL50 fading in 138 

OSL-thermochronometric interpretation has been demonstrated as important (Guralnik et al., 139 

2015a; King et al., 2016), there is a lack of consensus at present, as to whether laboratory 140 

measurements of IRSL fading are reproducible and/or reliable (see Li et al., 2014 for a review), 141 

and thus whether the use of fading models (and their associated age correction schemes) is 142 

appropriate. Moreover, the recent notion that all luminescence processes in feldspars are 143 

intrinsically related to fading (Jain et al., 2012; 2015b) raises a renewed interest in the fading 144 

model of Huntley (2006) and its later derivatives. More specifically, it raises the need for 145 

validation studies, where a laboratory measurement of fading rate can be related to its natural 146 

fading rate in nature. To date, only a handful of studies (Huntley and Lian, 2006; Kars et al., 147 

2008; Guralnik et al., 2015a) have quantitatively evaluated the effects of natural versus 148 

laboratory fading rates. It is therefore necessary to assess (i) whether anomalous fading of the 149 

feldspar IRSL50 signal can be accurately measured, and (ii) for a given fading rate, whether the 150 

field saturation of the IRSL50 signal can be quantitatively predicted. To this aim, we extracted a 151 

wide range of K- and Ca-/Na-feldspars from 32 bedrock samples in different lithologies and 152 

exhumation environments, and measured their natural feldspar IRSL50 intensities alongside the 153 

anomalous fading of the laboratory-regenerated signals. A large geochemical dataset, including 154 

whole-rock major and trace elements as well as selected feldspar mineralogy, enables us to 155 

discuss potential causes for the wide range of IRSL50 anomalous fading observed. Finally, we 156 

use this dataset to test the theoretical ability of tunnelling models (Huntley 2006; Kars et al., 157 

2008; Guralnik et al., 2015a,c) to predict IRSL50 field saturation levels, and to discuss the 158 

implications for OSL thermochronometry. 159 

 160 

2. Samples and methods 161 

2.1. Sampling strategy and sample preparation 162 

Bedrock samples from old crystalline or metamorphic basements have been collected in 163 

different exhumation settings in Norway and Alaska to explore the applicability of feldspar 164 

IRSL50 thermochronometry over a wide range of long-term (i.e. 105-108 years) exhumation 165 

rates. All sample locations and lithological descriptions are given in Table 1. Eight samples are 166 

distributed along the Sognefjord and its vicinity (SOG samples; western Norway) where 167 

exhumation rates are ~0.01-0.05 km Ma-1 (e.g. Hendriks et al., 2007; Nielsen et al., 2009). The 168 

SOG samples were collected at varying elevations, from sea-level towards ~1000-m a.s.l. low-169 

relief surfaces (e.g. Steer et al., 2012). Fifteen samples have been collected in the Granite 170 
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Range (GRA samples; southern Alaska) where low-temperature thermochronometric data 171 

indicates long-term exhumation rates of 0.1-0.5 km Ma-1 (e.g. Spotila et al., 2004; Berger et al., 172 

2008). In the Granite Range, our sampling strategy was to collect bedrock samples across 173 

elevation profiles (Wagner and Reimer, 1972; Valla et al., 2011b). Finally, nine samples have 174 

been collected in the Yakutat terrain (YAK samples; southern Alaska), all locations at sea-level 175 

along the Disenchantment Bay - Russel Fjord. This area is tectonically active with reported 176 

long-term exhumation rates of ~1-3 km Ma-1 (e.g. McAleer et al., 2009; Enkelmann et al., 177 

2015). Our sampling strategy thus covers two orders of magnitude of long-term bedrock 178 

exhumation rates, from 0.01 km Ma-1 (SOG) up to 1-3 km Ma-1 (YAK). Moreover, we targeted 179 

different lithologies (sandstone, gneiss and granite/diorite samples), probing a large diversity in 180 

bedrock geochemistry and consequently also in feldspar mineralogy. Finally, we restricted our 181 

study to cold environments (mean annual surface temperatures <10 °C, Table 1) to exclude 182 

potential luminescence signal loss at surface temperature conditions in tropical to sub-tropical 183 

regions (Wu et al., 2015). 184 

 185 

Bedrock samples were prepared under subdued orange light to ensure the extraction of 186 

feldspar minerals from the interior of the sample, where the luminescence signal is unaffected 187 

by surface bleaching. Initial sample dimensions were at least 10 cm (length/width/thickness) to 188 

allow the removal of the light-exposed sample surface (at least 2-3 cm) using a water-cooled 189 

diamond saw. The light-safe internal part was then gently hand crushed to 180-212 µm grain 190 

size using a mortar and pestle to avoid mineral grinding and potential luminescence resetting 191 

via triboluminescence (e.g. Bateman et al., 2012). All 180-212 µm grains were treated with 192 

32% hydrochloric acid to remove potential surface carbonates and with 30% hydrogen 193 

peroxide to remove any organic component. After chemical treatment, mineral fractions were 194 

rinsed thoroughly with water to remove dust particles. Feldspar and quartz fractions were 195 

isolated by density separation using LST Fastfloat (sodium heteropolytungstate). Densities of 196 

2.58 g cm-3 and 2.70 g cm-3 were used in order to isolate potassium-rich feldspars (K-feldspars, 197 

<2.58 g cm-3) from quartz and other feldspars (2.58-2.70 g cm-3), and from remaining heavy 198 

minerals (>2.70 g cm-3). For SOG samples (except SOG-22) we selected K-feldspars for 199 

analysis.  200 

For GRA, YAK and SOG-22 samples, density separation at 2.58 g cm-3 yielded no light 201 

fraction, suggesting the dominance of calcium/sodium-plagioclases (Ca-/Na-feldspars), which 202 

were thus taken for further analysis. Further mineral purification was deemed unnecessary, as 203 

the contribution from quartz to IRSL50 is negligible (Sohbati et al., 2013 and references 204 
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therein). Feldspar extracts were not etched before luminescence measurements (Duller, 1992), 205 

and feldspar grains were directly mounted on stainless steel discs to produce large aliquots (4 to 206 

6 mm diameter, ~500-1500 grains per disc). 207 

 208 

2.2. Luminescence equipment and protocols 209 

All IRSL50 measurements were made on automated Risø TL/OSL DA-20 readers (Institute 210 

of Geological Sciences, University of Bern), each possessing a 90Sr/90Y beta source (~0.1-0.2 211 

Gy s-1) and a heater plate (20-700 °C), with systematic instrumental uncertainties of  ~1.5% for 212 

single-aliquot measurements (Bøtter-Jensen et al., 2010). Luminescence stimulation was 213 

performed with infrared (870 ±40 nm) light-emitting diodes at 90% power (delivering ∼130 214 

mW cm-2 at the aliquot position); the emitted luminescence signal was detected through a 410-215 

nm interference and a 2-mm Schott BG-39 filters by an EMI 9235QA photomultiplier tube. All 216 

luminescence protocols described below (adapted from Guralnik, 2015a) are fully detailed in 217 

Table 2. 218 

 219 

Feldspar natural IRSL50 signals, and their subsequent laboratory dose-response curves, were 220 

measured using the Single-Aliquot Regenerative-dose (SAR) protocol (Wallinga et al., 2000). 221 

For each sample, at least three individual aliquots were measured using a preheat at 250 °C for 222 

60 s (to empty unstable electron traps), followed by IRSL50 for 200 s (Table 2). We used 223 

laboratory beta irradiation doses from 0 up to ~2800 Gy to fully characterize the dose response 224 

curve, a test dose of 44 Gy to monitor sensitivity changes throughout the protocol, and a high-225 

temperature optical wash (IRSL at 290 °C) between measurement cycles (Buylaert et al., 226 

2009). Given the recent interest in and the research into “test dose plateaus” (Yi et al., in press), 227 

we believe that a test dose of 44 Gy is readily applicable to obtain equivalent doses in the ~4.4-228 

440 Gy range (cf. Yi et al., in press), and likely even beyond. While small variations in the 229 

laboratory saturation level as a function of test dose have also been documented (Yi et al., in 230 

press), these effects are demonstrably minor and were hence considered beyond the scope of 231 

the present study.  232 

All analysed aliquots fulfilled the standard performance criteria for recuperation (<5%), 233 

recycling ratio (<10%) and maximum test dose error (<10%). To test the efficacy of the SAR 234 

protocol parameters, a dose recovery experiment was conducted for each sample 235 

(Supplementary Table S5). To this end, two to three fresh aliquots per sample were optically 236 

bleached using IRSL50 for 300 s, and were subsequently given a 200-Gy laboratory dose which 237 
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was then treated as an unknown and recovered using the same SAR protocol as the natural 238 

doses. 239 

 240 

To explore the fading variability of IRSL50 signals in individual bedrock samples, we 241 

conducted fading experiments on two sensitised aliquots from the dose response experiments. 242 

We used two different approaches to measure feldspar IRSL50 fading (Table 2), namely a SAR-243 

based long-shine method (modified from Huntley and Lamothe, 2001), and a non-SAR short-244 

shine method (modified from Auclair et al., 2003), with the objective to test the agreement 245 

between the two protocols. In the long-shine protocol, after a given dose of 200 Gy, the 246 

luminescence signal was measured following variable delays, each lasting between 0.3 and 48 247 

hours (Table 2). In the short-shine protocol, a dose of 72 Gy was given only once, and followed 248 

by a series of consecutive short-shine (0.1 s) measurements, separated from each other by 249 

pauses lasting between 0.1 and 55 hours. To account for signal loss due to the short optical 250 

excitation, the delayed short-shine measurements were normalized to an otherwise identical 251 

series of prompt (undelayed) measurements, done once before and once after the delayed 252 

experiment (Table 2).  253 

 254 

2.3. Geochemistry and environmental dose rate determination 255 

We obtained the whole-rock geochemistry (major and trace elements) of all 32 samples 256 

using inductively-coupled plasma mass spectrometry (Supplementary Tables S2-S3) to 257 

measure the dominant radionuclide content used for the environmental dose rate estimate (U, 258 

Th and K, Table 1). For a subset of 12 samples (GRA and YAK), we used the X-ray 259 

fluorescence (XRF) attachment to the Risø TL/OSL reader (Kook et al., 2012; Guralnik et al., 260 

2015a) to determine feldspar mineralogical composition (Supplementary Table S4) and infer 261 

the internal potassium content (Kint, Tables 1 and S4). XRF data confirms that, in GRA and 262 

YAK samples, the aliquot mineralogy is dominated by Ca-/Na-feldspars (with up to 50% wt. 263 

quartz content), translating to an internal potassium content Kint between 0.2 and 4% 264 

(Supplementary Table S4). Based on these measurements, we assumed for the other GRA and 265 

YAK samples (incl. SOG-22) an averaged Kint of 1.9 ±1.4% (Table 1), in agreement with 266 

previous estimates reported in the literature for Ca-/Na-feldspars (Barré and Lamothe, 2010; 267 

Sohbati et al., 2013; Guralnik et al., 2015a). For SOG samples (except SOG-22), we used Kint 268 

of 12.5 ±1% for K-feldspars following standard literature values (Huntley and Baril, 1997; 269 

Barré and Lamothe, 2010). 270 

 271 
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 For each sample, the whole-rock radionuclide content (U, Th and K) and feldspar Kint have 272 

been converted into environmental dose rates using the conversion factors of Guérin et al. 273 

(2012), beta and gamma attenuation factors of Guérin et al. (2012) and Guérin and Mercier 274 

(2012), and alpha attenuation factors of Bell (1980) and Brennan et al. (1991). For alpha 275 

attenuation, an a-value of 0.15 ±0.05 was used after Balescu and Lamothe (1994). The average 276 

water content in our bedrock samples was estimated at 2 ±2% (e.g. Aitken and Xie, 1990). 277 

Cosmic dose rate was treated as negligible, being comparable in magnitude to uncertainty on 278 

the total environmental dose rate (King et al., 2016). Based on thin-section observations, and 279 

because the original grain size has been affected by rock crushing and sieving during feldspar 280 

extraction, we used a 180-2500 µm grain size range for SOG and GRA samples and a 180-1000 281 

µm grain size range for YAK samples. 282 

 283 

To address the two entangled uncertainties regarding (i) the grain size of the target feldspar, 284 

and (ii) the feldspar phase which is actually contributing to the IRSL50 signal (e.g. Sohbati et 285 

al., 2013), we considered several (2 or 4, Supplementary Table S1) dose rate scenarios 286 

following the approach of Guralnik et al. (2015a). Specifically, for all feldspars, we calculated 287 

dose rates for two end-member grain sizes (180 and 2500 µm for GRA and SOG, and 180 and 288 

1000 µm for YAK), assuming a homogeneous distribution of internal potassium (Kint, Table 1) 289 

and IRSL50 signal contribution from the entire feldspar crystal. For Na-/Ca feldspars (GRA, 290 

YAK and SOG-22), we calculated two additional scenarios, in which all the IRSL50 signal 291 

originates only from K-feldspar inclusions (1 and 100 µm, Kint ~12.5%) within the Na-/Ca-292 

feldspar host crystal (e.g. Sohbati et al., 2013). We then averaged these end-member scenarios 293 

to obtain representative environmental dose rates, which ranged across more than an order of 294 

magnitude between samples, from 0.3 to 9 Gy ka-1 (Table 1). This range, and the associated 295 

conservative errors, reflect the variability between K-rich and K-poor feldspar phases, and the 296 

averaging across the diverse dose-rate scenarios as listed above (Supplementary Table S1). 297 

 298 

3. Results 299 

3.1. Dose response and fading measurements 300 

Dose response and fading measurements are illustrated for four representative GRA, SOG 301 

and YAK samples (Figure 1), and are fully documented for all samples in the Supplementary 302 

Information (Supplementary Table S6). Analysed aliquots (4- to 6-mm diameter) usually 303 

yielded bright signals with typical IRSL50 decay curves. Laboratory dose-response curves (left 304 

panels in Figure 1) have been fitted using the General-Order Kinetics (GOK) growth function 305 
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(Eq. (10) in Guralnik et al., 2015c). The characteristic dose (D0), the electron-trapping order 306 

(α), as well as the equivalent dose (De), are reported in Tables 3 and S5. For each aliquot, we 307 

also derived the natural IRSL50 signal Ln/Tn (Figure 1) and calculated the natural trap filling 308 

level (n/N)nat by multiplying the apparent IRSL50 intensity relative to its laboratory maximum 309 

(open stars in Figure 1) by the predicted number of occupiable traps in the laboratory (Eq. (3) 310 

in Guralnik et al., 2015a). The majority of best-fit D0 and α values are well-constrained with 311 

typical relative uncertainties of <10% and <4%, respectively (Table 3). Natural trap filling 312 

levels (n/N)nat exhibit varying uncertainties (1-70%; clearly anticorrelated with (n/N)nat itself), 313 

and cover almost three orders of magnitude (i.e. 0.003-0.85; Table 3), thus offering a robust 314 

dataset for evaluating the net effects of environmental radiation, anomalous fading and possibly 315 

long-term cooling on the natural IRSL50 intensity of bedrock feldspar.  316 

 317 

Fading results obtained using both the long-shine (central panels in Figure 1) and short-318 

shine (right panels in Figure 1) methods are also summarised in Table 3. Two aliquots were 319 

measured individually and averaged to calculate sample-specific g-values and standard 320 

deviations (g2days in %/decade; Huntley and Lamothe, 2001). Fitting the same datasets using 321 

Eq. (5) in Kars et al. (2008), we obtained an alternative measure of fading - the nearest-322 

neighbouring hole-centre density ρ’ as defined in Huntley (2006) - which we later used in the 323 

kinetic model to predict the IRSL50 field saturation levels (Guralnik et al., 2015a). Inter-aliquot 324 

variability is small, confirming the good reproducibility of the fading measurement protocols, 325 

with more robust estimates for the long-shine method as explained below (Table 3). Although 326 

the short-shine protocol is less time-consuming (approximately half the time), the integrated 327 

IRSL50 signal at each short-shine measurement is considerably lower, and therefore associated 328 

with larger uncertainties propagated into the resulting g-value (Table 3 and Figure 1). For 329 

feldspars with intermediate to low luminescence sensitivity (roughly one third of our dataset), 330 

the short-shine protocol yielded signals with a very low signal-to-background ratio that could 331 

not be used to derive meaningful g-values (Table 3). Figure 2 shows that, on average, fading 332 

rate estimates are in excellent agreement between the long- and the short-shine protocols. Thus, 333 

to further reduce experimental noise, in the subsequent modelling we used averaged g-values 334 

(wherever possible) from both protocols. Sample-specific IRSL50 g2days values reveal a wide 335 

range from ~0.5 to ~45 %/decade (Table 3). K-feldspars from SOG samples exhibit g2days 336 

values between 3 and 11 %/decade, which is typical for K-feldspars from both bedrock and 337 

sediment origin (Huntley and Lamothe, 2001; Huntley and Lian, 2006). Na-/Ca-feldspars show 338 
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a higher variability in measured g2days values between samples (Figures 2 and 3), especially for 339 

GRA samples (from 0.5 to >45 %/decade). 340 

 341 

3.2. Predictions of feldspar IRSL50 field saturation 342 

To evaluate whether fading variability in our dataset is the main controlling factor for the 343 

natural IRSL50 intensities, we first examined the relationship of the laboratory-derived g2days 344 

values with the measured (n/N)nat values (Figure 3). Our results show a clear inverse correlation 345 

between g2days and (n/N)nat values, in agreement with previous observations (Huntley and Lian, 346 

2006) but over a considerably wider range of fading rates. Even prior to modelling, such an 347 

inverse correlation suggests that the measured (n/N)nat in most of our samples is mainly 348 

controlled by anomalous fading. Only some YAK samples appear to deviate from the overall 349 

trend, with their (n/N)nat values markedly below field saturation (Figure 3). However, the 350 

relation in Figure 3 is only qualitative, because this empirical relationship might be influenced 351 

not only by sample-specific kinetic parameters, but also by thermal loss (which cannot be 352 

accounted for in this figure). In the following section, we test our current dataset against a 353 

recently proposed physical model predicting feldspar IRSL50 field saturation under anomalous 354 

fading (Guralnik et al., 2015a, incorporating the tunnelling term of Huntley, 2006, and 355 

extending the dose response of Kars et al., 2008 to non-first order). 356 

 357 

Athermal IRSL signal loss in feldspars is caused by the quantum mechanical tunnelling of 358 

electrons from their traps towards electron holes (Huntley and Lamothe, 2001). Here we use 359 

the physical model of Huntley (2006) which is based on the assumptions that (i) the tunnelling 360 

of electrons is governed by the distance to their nearest recombination centre, and (ii) 361 

recombination centres within a feldspar crystal are randomly distributed with a given density. 362 

This model (Huntley 2006) can be used to estimate sample-specific field saturation values (e.g. 363 

Kars et al., 2008; Guralnik et al., 2015a; King et al., 2016). Following Guralnik et al. (2015a), 364 

we use a Monte-Carlo approach to numerically predict, on a sample to sample basis, the IRSL50 365 

trap filling saturation values in nature (n/N)ss (termed “field saturation”). In the simulation 366 

(1000 runs per sample), random instances of the kinetic parameters (D0 and α, Table 3), natural 367 

dose rates (Table 1), and �� (Table 3, averaged wherever possible between the long- and short-368 

shine experiments) are drawn from their normal distributions (as given by their best-fit values). 369 

The modelling results, reported as median (n/N)ss and associated 68% confidence interval, are 370 

given in Table 3 and visualised against measured natural trap filling (n/N)nat values in Figure 4.  371 

 372 
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Figure 4 highlights the quantitative agreement between predicted (n/N)ss and measured 373 

(n/N)nat values, confirming that most of our samples are either in full field saturation, or hardly 374 

discernible from it (<15%; Guralnik et al., 2015b). In other words, the natural feldspar IRSL50 375 

signal in the majority of our samples (n = 25) is controlled by electron tunnelling and does not 376 

include a detectable thermal signature of the rock exhumation history. However, more than half 377 

(66%) of YAK samples, representing the fastest-exhuming setting, exhibit (n/N)nat values that 378 

are considerably (more than 15%) below their predicted (n/N)ss values, suggesting field 379 

disequilibrium and thus high likelihood of a thermal signature that can be translated into a 380 

cooling history. The thermal signature of two additional samples (GRA-BR and SOG-17) 381 

remains in doubt, requiring further investigation that will either link them to exceptional 382 

thermal histories, or dismiss them as outliers (one in each locality). 383 

 384 

3.3. Dose recovery results 385 

Calculated dose recovery ratios (Supplementary Table S5) were typically within 10% of 386 

unity for all but four (GRA-13/-14/-17 and SOG-21) samples. Although imperfect, the 15-20% 387 

underestimation in the dose recovery of SOG-21 is within familiar values, even when working 388 

with a SOL2 solar simulator (e.g. Buylaert et al., 2012; King et al., 2016), and may relate to an 389 

irreversible trapping efficiency change (Kars et al., 2014). On the other hand, it is hard to 390 

blame the considerable dose recovery overestimates in GRA-13/-14/-17 (30 to 65%) on the test 391 

dose/given dose ratio (here 18%), which is in the 15-80% trust zone and certainly close to the 392 

recently recommended ~30% value (Yi et al., in press). To test whether the observed 393 

overestimation is due to a large residual dose, we measured the latter in GRA-13 and GRA-BR 394 

after an IRSL50 bleach for 300 s. Low residuals of ~5-8 Gy correspond to less than 2% of the 395 

equivalent doses, and to 2-3% of the recovered dose, and therefore cannot explain the observed 396 

overestimations. To test whether the problem lies in a thermal transfer (e.g. Huntley et al., 397 

1993), we extended the dose recovery experiments further by conducting the IRSL bleach at 398 

higher temperatures (100 and 200 °C). Bleaching at higher temperatures did not significantly 399 

improve dose recovery in GRA-13/-14/-17, and had no effect on a well-behaving sample 400 

(GRA-BR). Overall, unacceptable dose recovery affects only a minor subset (13%) of our 401 

dataset and might not necessarily imply that the obtained (n/N)nat values are not reliable 402 

(Buylaert et al., 2012). However, such dose recovery over- and underestimations do raise the 403 

question of what thermal/optical bleach is most appropriate for resetting the natural IRSL50 404 

intensity in feldspars that were never previously exposed to light. 405 

 406 
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4. Discussion 407 

4.1. IRSL50 and anomalous fading in bedrock feldspars 408 

Our results confirm that feldspar IRSL50 signals from bedrock extracts show consistent and 409 

reproducible luminescence characteristics using the SAR protocol. This is a clear advantage 410 

compared to OSL of bedrock quartz which, apart from a very few cases (e.g. Wu et al., 2015), 411 

is generally deemed dim and unsuitable (Jeong and Choi, 2012; Guralnik et al., 2015b). 412 

Moreover, the vast majority of our bedrock feldspars (87%, n = 28, Supplementary Table S5) 413 

also fulfilled the dose recovery test, which is a fundamental acceptance criterion for 414 

luminescence dating. Dose responses were successfully fitted with a General-Order Kinetics 415 

model, with a median order of 2.4±0.8, in agreement with Na-feldspars from the KTB borehole 416 

(Guralnik et al., 2015a), therefore capturing the non-linearity of the dose response curve in just 417 

a single parameter. 418 

 419 

Fading measurements exhibit a large variability in bedrock feldspars from ~0.5 to ~45 420 

%/decade, beyond the previously published value range (Huntley and Lamothe, 2001; Huntley 421 

and Lian, 2006). Moreover, we compared two established fading protocols in sediment dating 422 

(Huntley and Lamothe, 2001; Auclair et al., 2003) and demonstrated that both are applicable 423 

for bedrock feldspars, yielding comparable results between the two methods (Figure 2). Given 424 

the considerable experimental differences between the protocols (SAR-based and non-SAR), 425 

the agreement of the obtained results is striking. The dependence of the fading rate on the given 426 

laboratory dose (Huntley and Lian, 2006; Li and Li, 2008; Kars and Wallinga, 2009) is not 427 

evident from our dataset, although the administered laboratory doses (200 and 72 Gy for the 428 

long-shine and short-shine protocols, respectively) may be too close to detect any systematic 429 

deviation. 430 

 431 

In our suite of bedrock feldspars, (n/N)nat values are mostly inversely correlated with 432 

laboratory-measured fading rates (Figure 3), qualitatively suggesting field saturation in the 433 

majority of samples. Quantitatively, we have demonstrated that field saturation can be 434 

successfully predicted across almost three orders of magnitude of IRSL50 electron trap 435 

occupancy (Figure 4), using a recent extension (Guralnik et al., 2015c) of familiar electron 436 

tunnelling models (Huntley, 2006; Kars et al., 2008). Despite successful prediction of field 437 

saturation in both sedimentary feldspars (Kars et al., 2008; Kars and Wallinga, 2009) and 438 

bedrock feldspars (Guralnik et al., 2015a; King et al., 2016), the underlying model(s) and the 439 

ability to accurately measure the g-value in the laboratory remains a debateable subject (Li et 440 
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al., 2014). Here, we exploited the large variability in measured fading rates to provide a 441 

quantitative validation of our predictive model over a large range of dose rates, trap 442 

occupancies, and fading rates (Figure 4). 443 

 444 

We also used the wide range of observed IRSL50 fading rates to discuss potential 445 

geochemical control, starting with the whole-rock geochemistry (Supplementary Tables S2-3) 446 

as a first-order proxy. However, we found no convincing relationship between the whole-rock 447 

trace element content (Supplementary Table S3) and feldspar IRSL50 fading rate. Figure 5A 448 

illustrates the lithological variability within our dataset as shown by representative major 449 

oxides (SiO2 and Fe2O3), suggesting that, at first order, the fading rate would increase with 450 

decreasing SiO2 content or increasing Fe2O3 (or CaO) content. Felsic lithologies (i.e. >63% wt. 451 

SiO2 content) all show relatively low feldspar fading rates (less than 10 %/decade) regardless 452 

of the feldspar type. However, for intermediate (i.e. 52-63% wt. SiO2 content) and mafic (i.e. 453 

<52% wt. SiO2 content) lithologies, a large spread in fading rates is observed (Figure 5A). For 454 

a representative subset of GRA and YAK feldspar separates, we also performed XRF 455 

mineralogical determination (Supplementary Table S4). Figure 5B shows that the feldspar 456 

fading rate increases with Ca content, in agreement with previous observations (Huntley and 457 

Lian, 2006; Huntley et al., 2007). In summary, neither the whole-rock geochemistry, nor the 458 

trace elements, seem to be a good proxy for feldspar anomalous fading (although we did not 459 

apply multivariate analysis); however, our results show that the feldspar internal chemistry (i.e. 460 

Ca content, Figure 5B) may be a first-order proxy for the IRSL50 fading rate. Further 461 

investigations are required to better understand the potential causes of fading rate variability in 462 

bedrock feldspars; these include both internal factors (e.g. the origin of the IRSL50 signal in Ca-463 

/Na-feldspars; e.g. Sohbati et al., 2013) as well as external drivers, such as the metamorphic 464 

grade or terrain age (Huntley and Lamothe, 2001), or weathering processes (Parish, 1992; 465 

Huntley, 2011). 466 

 467 

4.2. Implications for OSL thermochronometry  468 

Our extensive bedrock dataset offers an opportunity to discuss the applicability of feldspar 469 

IRSL50 in OSL thermochronometry. First, the variability of the fading rates measured for both 470 

K- and Ca-/Na-feldspars is significantly broader than those reported in previous OSL 471 

thermochronometric studies (Guralnik et al., 2015a, King et al., 2016). This reinforces the 472 

notion that anomalous fading in feldspar should be measured for each sample, as it can strongly 473 

affect the natural IRSL50 signal (Figure 3). Moreover, one further complexity in OSL 474 
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thermochronometry is that a sample’s thermal history can be inverted only from the natural trap 475 

filling (n/N)nat, and not from the equivalent dose alone (De) as in OSL sediment dating. This 476 

prevents the application of classical fading correction schemes (e.g. Huntley and Lamothe, 477 

2001) and requires the quantitative prediction of the field saturation level of the luminescence 478 

signal (e.g. Kars et al., 2008; Li and Li, 2008) in order to screen for a potential "thermal 479 

signature" in a given sample. For most of our samples, and within a wide range of fading rates, 480 

the quantitative agreement of observed field saturation levels of the IRSL50 signal with 481 

numerical results from the standard tunnelling model (Huntley, 2006), coupled with a General-482 

Order Kinetics dose response (Guralnik et al., 2015c), confirms the need to include fading 483 

measurements in preliminary screening of samples before any thermochronometric applications 484 

using feldspar IRSL50. This first-step investigation of the feldspar athermal stability would 485 

ultimately be combined with the experimental characterisation of each sample’s thermal 486 

stability (Guralnik et al., 2015a; King et al., 2016), which can vary greatly between K- and Na-487 

/Ca-feldspars (e.g. Tso et al., 1996; Li et al., 1997) and thus significantly influence 488 

thermochronometric interpretation.  489 

 490 

Our sampling strategy, covering a wide range of exhumation rates (from 0.01 to 3 km Ma-1), 491 

provides further information regarding the range of applicability of feldspar IRSL50 to OSL 492 

thermochronometry in diverse natural settings. All GRA and SOG samples appear in field 493 

saturation (Figure 4), with just one outlier per locality (GRA-BR and SOG-17). SOG-17 was a 494 

translucent bedrock sample, which may immediately be suspected of suffering optical resetting 495 

(in nature and/or during sample preparation), that may have biased the observed luminescence 496 

signal to below the predicted field saturation level. GRA-BR is a spatial outlier within the GRA 497 

dataset, situated at low-elevation within a very wide and deeply-carved valley. Pending 498 

additional experimental confirmation (beyond the scope of this study), its deviation from field 499 

saturation could potentially reflect recent accelerated exhumation by efficient glacial processes. 500 

Finally, more than half of the YAK samples exhibit a thermal signature in their measured 501 

natural IRSL50 signal (Table 3 and Figure 4). Samples YAK-17/-18/-50 (all with a “thermal 502 

signature”) are located along a deeply-carved fjord with very high long-term exhumation rates 503 

(2-3 km Ma-1; Enkelmann et al., 2015). Interestingly, the field-saturated YAK-09/-13/-15/-19 504 

also belong to this area but are located ~20 km eastwards along another smaller fjord 505 

(Enkelmann et al., 2015). These spatial differences in IRSL50 intensities would suggest spatial 506 

variations in the late-Quaternary exhumation history of this area that were not detected by 507 

higher-temperature thermochronometers (McAleer et al., 2009; Enkelmann et al., 2015) but 508 
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may be evidenced in our dataset. Finally, YAK-03/-07 exhibit exceptionally low natural trap 509 

filling levels (Figure 4), which may have been caused by hydrothermal reheating from crustal 510 

fluid circulations in a highly-fractured area (Fairweather Fault; McAleer et al., 2009), rather 511 

than by extremely rapid bedrock cooling. Further work beyond the scope of the present study 512 

will focus on constraining thermal kinetic parameters for these samples to derive their thermal 513 

histories.  514 

 515 

In summary, our dataset confirms that feldspar IRSL50 would be applicable only in very 516 

rapidly-exhuming settings (>1 km Ma-1; e.g. King et al., 2016) or in high-temperature 517 

environments such as boreholes or tunnels (>35 °C; Guralnik et al., 2015a). Feldspar 518 

anomalous fading, even if correctly accounted for, ultimately reduces the trapped charge 519 

capacity in a given crystal because of athermal instability, and thus initiates a faster arrival at 520 

field saturation. This might preclude the applicability of feldspar IRSL50 in OSL 521 

thermochronometry. MET-pIRIR protocols (Li and Li, 2011a,b) offer the advantage of multi-522 

thermochronometric systems in a single mineral (Qin et al., 2015), with promising outcomes in 523 

providing robust constraints on bedrock cooling rates over sub-Quaternary timescales (King et 524 

al., 2016). Other feldspar protocols such as thermally-transferred IRSL (Reimann et al., 2015) 525 

or pulsed IRSL50 (although the thermal stability of pulsed IRSL50 remains to be experimentally 526 

constrained; Tsukamoto et al., 2006; Roskosch et al., 2015; Jain et al., 2015b) may also be 527 

interesting to explore for thermochronometric application, providing that these protocols show 528 

good luminescence characteristics as well as low thermal stability for bedrock feldspar extracts. 529 

Alternatively, quartz protocols based on thermally-transferred OSL (Duller and Wintle, 2012), 530 

Violet Stimulated Luminescence (VSL, Ankjærgaard et al., 2013; 2015) or (red-531 

)thermoluminescence (TL or red TL, Schmidt et al., 2015; Tang and Li, 2015) could allow for 532 

later saturation and thus a wider dating range in thermochronometry. 533 

 534 

5. Conclusions 535 

We report feldspar IRSL50 luminescence characteristics, natural signal and anomalous 536 

fading for 32 bedrock samples collected from a large variety of lithologies and exhumation 537 

settings. Our results show that feldspar IRSL50 signals from bedrock extracts are bright and 538 

reproducible using established protocols in OSL dating. We measured a large variability in 539 

IRSL50 fading rates between samples. Our results show that it is essential to measure 540 

anomalous fading and account for it on a sample-to-sample basis for OSL thermochronometry, 541 

as it may otherwise obscure any thermochronometric information. Furthermore, we exploited 542 
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the wide range of observed fading rates to demonstrate the ability of electron tunnelling models 543 

in quantitatively predicting the feldspar IRSL50 level in field saturation for rather diverse 544 

environmental conditions. While the potential causes for feldspar IRSL50 fading still require 545 

further investigation, our observations point towards a significant influence of Ca content in 546 

feldspar on its anomalous fading rate. Finally, our results suggest that the applicability of 547 

feldspar IRSL50 in OSL thermochronometry would be limited to rapidly-exhuming settings (i.e. 548 

>1 km Ma-1) or warm subsurface environments (i.e. >35 °C). 549 

 550 
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Appendix A. Supplementary material 808 

Supplementary material, including details about the dose rate scenarios (Table S1), full 809 

geochemical reports (Tables S2-S4), supplementary experimental results (Table S5) and all 810 

sample raw data (Table S6) related to this article can be found on-line at ...  811 

 812 

 813 

Figure captions 814 

Figure 1. IRSL50 dose-response curves (left panels) and fading experiments (central and right 815 

panels) for representative samples GRA-08 (A-B-C), GRA-12 (D-E-F), SOG-06 (G-H-I) and 816 

YAK-09 (J-K-L). See Tables 2 and 3 for experimental details and results, respectively. The 817 

dose-response curves  (left panels) have been obtained following the single aliquot 818 

regenerative-dose (SAR) protocol for 3 individual aliquots. The natural luminescence signal 819 

(white stars) and each regenerative dose (black circles) are normalised to a given test dose, and 820 

used to build the dose-response curve (fitted by the GOK approach, black line and grey 821 

envelope; α: electron-trapping order, D0: characteristic dose) and to calculate the sample 822 

natural luminescence level (Ln/Tn) and natural trap filling (n/N)nat (Guralnik et al., 2015a). 823 

Fading experiments, following the long-shine (central panels) and short-shine (right panels) 824 

protocols, were used to derive the sample fading rate (sample-specific g2days are given by the 825 

slope of the black lines normalized to 2 days; Huntley and Lamothe, 2001).  826 

 827 

Figure 2. Comparison of fading rate measurements (g2days) using the short-shine and long-shine 828 

methods (Table 3). The symbols represent individual GRA (black circles), YAK (grey squares) 829 

and SOG (open triangles) samples. The dashed line defines the 1:1 relationship. The inset 830 

shows a zoom-in to the low-fading rate region (dashed box in main panel).   831 

 832 

Figure 3. Natural trap filling (n/N)nat and g2days values (long-shine method, Table 3) for GRA 833 

(black circles), YAK (grey squares) and SOG (open triangles) samples. Samples in field 834 

saturation define a well-characterised inverse relationship between laboratory-measured fading 835 

rates (g2days) and the natural trap filling (n/N)nat values over a wide range of fading rates (from 836 

~0.5 to ~45 %/decade).  837 

 838 

Figure 4. Predicted field saturation (n/N)ss vs. measured natural trap filling (n/N)nat for GRA 839 

(circles), YAK (squares) and SOG (triangles) samples (A: lineal plot; B: logarithmic plot). 840 

Symbols are coloured according to the individual sample g2days values (see legend). Most of 841 
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analysed samples plot along the 1:1 relationship (dashed line), validating the approach of 842 

Guralnik et al. (2015a) to numerically predict sample field saturation (after Huntley, 2006 and 843 

Kars et al., 2008). Some samples have (n/N)nat below 0.85(n/N)ss (dotted line), bearing potential 844 

thermochronometric information. See text for details and discussion. 845 

 846 

Figure 5. Feldspar geochemistry and laboratory-measured fading rate. (A) Whole-rock 847 

representative oxides showing the lithological variability between analysed samples 848 

(Supplementary Table S2). (B) Feldspar mineralogical compositions for a subset of samples 849 

(Ab: albite; An: anorthite; Or: orthoclase; Supplementary Table S4). GRA: circles; YAK: 850 

squares; SOG: triangles. Symbols are coloured according to the respective sample’s g2days value 851 

(see legend). See text for discussion. 852 
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Table 1. Overview of sample locations, lithology and climate, alongside measured radionuclides and calculated natural dose rate. 
 

Sample Latitude/ 
Longitude 

Elevation Lithology Mean Annual 
Temperature1 

Whole-rock geochemistry2 Feldspar 
minimum Kint

3 
Natural dose rate 

Drate
4  

 (°N)/(°W) (m)  (°C) U (ppm) Th (ppm) K (wt. %) (%) (Gy ka-1) 

Granite Range ( southern Alaska)       
GRA-03 60.853/ 141.451 1419 Diorite -5.8 0.4 1.1 0.79 0.7 a 1.12 (±0.24) 
GRA-04 60.832/141.467 1761 Diorite -4.5 0.2 0.6 0.82 1.7 a 1.22 (±0.23) 
GRA-05 60.835/141.469 1995 Diorite -6.3 0.4 1.1 0.86 1.4 a 1.31 (±0.14) 
GRA-06 60.841/141.501 2388 Diorite -6.8 0.3 0.5 0.76 1.0 a 1.06 (±0.14) 
GRA-08 60.905/141.970 2188 Diorite -7.3 0.3 0.8 0.97 1.4 a 1.34 (±0.13) 
GRA-09 60.901/141.954 1691 Diorite -5.7 0.1 0.1 0.50 0.8 a 0.70 (±0.15) 
GRA-10 60.900/141.934 1412 Diorite -4.2 0.3 1.1 2.02 3.9 a 2.72 (±0.53) 
GRA-11 60.908/141.919 970 Diorite -3 0.6 1.1 0.81 1.4 a 1.33 (±0.16) 
GRA-12 60.991/142.763 1554 Schist -2.5 0.3 0.5 1.03 1.9 b 1.46 (±0.22) 
GRA-13 61.003/142.741 1253 Granitoïde -1.5 1.2 9.4 0.72 1.9 b 2.37 (±0.61) 
GRA-14 60.991/142.782 1979 Granitoïde -4.2 0.9 1.3 1.09 1.9 b 1.79 (±0.20) 
GRA-17 60.943/142.475 1818 Granitoïde -6.1 0.3 0.5 0.61 1.9 b 1.11 (±0.35) 
GRA-18 60.957/142.378 1395 Schist -4.1 0.1 0.3 0.61 1.9 b 1.02 (±0.39) 
GRA-19 61.008/142.362 720 Granitoïde -1.4 1.6 3.6 0.73 1.9 b 1.95 (±0.39) 
GRA-BR 61.109/142.420 392 Monzogranite -0.2 1.6 3.9 2.17 4.2 a 3.62 (±0.49) 

Sognefjord (western Norway)      

SOG-02 61.096/-5.681 33 Granitic gneiss 7.4 1.8 10.4 4.18 12.5 c 8.45 (±3.44) 
SOG-06 61.155/-6.461 883 Granitic gneiss 2.4 2.2 8.3 5.13 12.5 c 9.01 (±3.01) 
SOG-10 61.146/-6.542 47 Granitic gneiss 6.5 1.1 10.3 4.76 12.5 c 8.68 (±3.24) 
SOG-17 61.233/-7.593 961 Granodiorite 1.1 0.2 0.2 4.13 12.5 c 7.51 (±3.94) 
SOG-21 61.239/-7.664 10 Anorthosite 3.5 0.7 10.5 5.15 12.5 c 8.87 (±3.10) 
SOG-22 61.263/-7.867 1274 Gabbro -0.9 0.1 0.8 0.52 1.9 b 1.00 (±0.40) 
SOG-25 61.272/-7.765 48 Anorthosite 4.8 0.6 5.5 5.30 12.5 c 8.65 (±3.19) 
SOG-38 61.151/-6.728 21 Granitic gneiss 7.0 0.4 3.7 5.13 12.5 c 8.40 (±3.34) 
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Yakutat terrane (southern Alaska)      
YAK-03 59.813/138.912 5 Diorite 0.3 0.1 0.3 0.18 0.2 a 0.34 (±0.17) 
YAK-07 59.843/139.162 2 Diorite 1.6 0.1 0.1 0.04 1.9 b 0.33 (±0.22) 
YAK-09 59.825/138.986 0 Diorite 2.3 2.5 4.4 1.72 2.2 a 3.24 (±0.70) 
YAK-13 59.647/139.296 2 Sandstone 3.5 1.7 6.3 1.37 1.9 b 2.80 (±0.63) 
YAK-15 59.851/139.313 1 Sandstone 3.0 2 4.8 1.53 1.9 b 2.90 (±0.63) 
YAK-17 59.974/139.450 2 Sandstone 2.2 1.4 3.9 0.62 1.9 b 1.74 (±0.39) 
YAK-18 59.967/139.531 1 Sandstone 2.9 1.2 3.5 1.87 1.9 b 2.80 (±0.44) 
YAK-19 59.597/139.342 2 Sandstone 3.2 1.6 3.2 1.89 4.2 a 3.12 (±0.37) 
YAK-50 59.946/139.620 0 Sandstone 2.6 1.2 3.5 1.11 1.9 b 2.08 (±0.37) 

 

Notes. 1 Derived from Worldclim database (Hijmans et al., 2005). 2 Measured on a Perkin Elmer Sciex ELAN 6100/9000 ICP-MS, with an estimated 
analytical precision of 2.3 (U), 3.4% (Th) and 1.2% (K). See Supplementary Tables S2-S3 for all elements and further details. 3 Measured or estimated 
as follows: a measured using the Risø XRF attachment (Kook et al., 2012); b assumed value for Na/Ca-feldspars (average of the Risø XRF data above) c 
assumed value for K-feldspars (Huntley and Baril, 1997; Barré and Lamothe, 2010) 4 For calculation of feldspar dose rates, we used conversion factors 
of Guérin et al. (2012), water content of 2(±2)%, and negligible cosmic radiation. The reported dose rates cover two (or four) end-member scenarios 
after Guralnik et al. 2015a (see Table S1). For K-feldspars, two end-member grain sizes were considered (180 and 1000 or 2500 µm); for Na/Ca-
feldspars, two additional scenarios, in which the entire luminescence signal originates from K-feldspar inclusions (1 or 100 µm) were further included 
(Table S1). 
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Table 2. Laboratory protocols for luminescence measurements of feldspar IRSL50. 
 

Dose response  Anomalous fading 
SAR protocola   SAR protocol, (Long-shine methodb) Short-shine methodc 

 
  1. IRSL at 290 °C (200 s)  1. IRSL at 290 °C (200 s) 

1. Give dose Dx   2. Give dose Dfading  2. Give dose Dfading 

2. Preheat (250 °C for 60 s)   3. Preheat (250 °C for 60 s)  3. Preheat (250 °C for 60 s) 

 
  4. Hold at room T °C for tx  s  4. Hold at room T °C for tx  s 

3. IRSL at 50 °C (200 s) → Lx   5. IRSL at 50 °C (200 s) → Lx  5. IRSL at 50 °C (0.1 s) → Lx 

 
  

 
 6. Return to step 4 

 
    7. IRSL at 290 °C (200 s) 

4. Give test dose Dtest   6. Give test dose Dtest  8. Give test dose Dtest 

5. Preheat (250 °C for 60 s)   7. Preheat (250 °C for 60 s)  9. Preheat (250 °C for 60 s) 

6. IRSL at 50 °C (200 s) → Tx   8. IRSL at 50 °C (200 s) → Tx 10. IRSL at 50 °C (0.1 s) → Tx 

7. IRSL at 290 °C (200 s)     
8. Return to step 1   9. Return to step 1 11. Return to step 10 

 

Protocols adapted from Guralnik et al. (2015a). a The irradiation doses of the SAR dose response protocol 
(Wallinga et al., 2000) were Dx = [0, 22, 44, 87, 175, 349, 698, 1396, 2792, 0, 87] Gy, and the test dose was Dtest = 
44 Gy. The first and the penultimate zero-doses (no irradiation) extract the natural dose and signal recuperation, 
respectively. b The irradiation and test doses of the long-shine fading experiment (Huntley and Lamothe, 2001) 
were Dfading = 240 Gy and Dtest = 44 Gy, respectively, and the holding times were tx ≈ [1200, 1200, 1200, 136660, 
1200, 7970, 1200, 143450, 1200, 1200 1200] s. c The short-shine fading experiment (Auclair et al., 2003) 
consisted of a single irradiation dose Dfading = 72 Gy which was given, followed by delay times of tx ≈ 102.34+0.37x s, 
where x = [1, 2, ..., 8]. The test dose was Dtest = 72 Gy. Lx and Tx in both SAR protocols (left and central column) 
were derived by integrating the first 15 s of the stimulation curve (signal) after subtraction of the last 100 s 
(background). Lx and Tx of the short-shine experiment (right column) were derived by integrating the entire 
stimulation period of 0.1 s, after subtraction of a 20 ms background (immediately following the IRSL stimulation). 
Note: All preheats were done with a linear heating rate of 5 °C s -1. 
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Table 3. Best-fit parameters and model results for feldspar IRSL50. 
 

Fitted kinetic parameters Interpretation 

Sample D0 
Electron-trapping 

order (α) 
Long-shine 

g2days 
Long-shine 

log10ρ' 
Short-shine 

g2days 
Short-shine 

log10ρ' 
Observed  
(n/N)nat 

Predicted 
(n/N)ss 

(Gy) (%/decade) (%/decade)   

GRA-03 1208 (±59) 4 41.3 (±1.2) -4.69 (±0.01) 47.7 (±4.5) -4.68 (±0.03) 0.003 (±0.003) 0.002 (±0.0002) 
GRA-04 1208 (±75) 4 28.5 (±0.7) -4.81 (±0.01) Low signal-to-noise ratio 0.007 (±0.005) 0.007 (±0.001) 
GRA-05 550 (±71) 2.56 (±0.82) 28.0 (±1.0) -4.82 (±0.01) 23.5 (±3.1) -4.89 (±0.04) 0.017 (±0.003) 0.017 (±0.004) 
GRA-06 612 (±29) 1.64 (±0.26) 36.2 (±1.4) -4.74 (±0.01) 23.3 (±3.2) -4.89 (±0.05) 0.008 (±0.002) 0.012 (±0.002) 
GRA-08 599 (±31) 1.60 (±0.28) 33.8 (±0.8) -4.75 (±0.01) 29.9 (±6.3) -4.82 (±0.07) 0.015 (±0.003) 0.009 (+0.002/-0.003) 
GRA-09 718 (±115) 2.11 (±0.86) 23.6 (±0.6) -4.88 (±0.01) 22.2 (±3.2) -4.92 (±0.05) 0.016 (±0.007) 0.022 (±0.006) 
GRA-10 519 (±36) 1.67 (±0.38) 12.9 (±0.3) -5.10 (±0.01) 14.3 (±1.7) -5.07 (±0.04) 0.120 (±0.027) 0.098 (+0.016/-0.012) 
GRA-11 606 (±73) 4 11.1 (±0.6) -5.16 (±0.02) Low signal-to-noise ratio 0.074 (±0.015) 0.113 (+0.011/-0.012) 
GRA-12 545 (±10) 2.92 (±0.12) 13.9 (±0.3) -5.08 (±0.01) 14.2 (±1.3) -5.07 (±0.03) 0.092 (±0.005) 0.074 (+0.009/-0.007) 
GRA-13 132 (±3) 1.62 (±0.08) 0.5 (±0.3) -6.50 (±0.26) Low signal-to-noise ratio 0.845 (±0.024) 0.903 (+0.054/-0.023) 
GRA-14 243 (±4) 1.76 (±0.07) 3.4 (±0.3) -5.65 (±0.04) 3.7 (±1.1) -5.60 (±0.13) 0.589 (±0.017) 0.512 (+0.078/-0.061) 
GRA-17 171 (±2) 3.02 (±0.11) 3.0 (±0.6) -5.70 (±0.09) Low signal-to-noise ratio 0.432 (±0.015) 0.567 (+0.041/-0.093) 
GRA-18 245 (±3) 1.99 (±0.07) 7.5 (±0.4) -5.32 (±0.02) Low signal-to-noise ratio 0.276 (±0.013) 0.260 (+0.013/-0.020) 
GRA-19 875 (±36) 4 9.1 (±2.0) -5.24 (±0.09) Low signal-to-noise ratio 0.097 (±0.014) 0.153 (+0.069/-0.037) 
GRA-BR 433 (±11) 4 5.0 (±0.5) -5.49 (±0.04) Low signal-to-noise ratio 0.234 (±0.036) 0.376 (+0.028/-0.037) 

    
SOG-02 688 (±16) 1.57 (±0.13) 8.6 (±0.2) -5.26 (±0.01) Low signal-to-noise ratio 0.172 (±0.010) 0.229 (+0.015/-0.017) 
SOG-06 613 (±8) 1.41 (±0.07) 4.3 (±0.1) -5.54 (±0.01) 5.1 (±1.0) -5.47 (±0.08) 0.409 (±0.044) 0.444 (+0.09/-0.019) 
SOG-10 588 (±10) 1.75 (±0.09) 4.6 (±0.1) -5.52 (±0.01) 4.6 (±0.7) -5.52 (±0.06) 0.403 (±0.050) 0.444 (+0.010/-0.013) 
SOG-17 384 (±6) 1.87 (±0.09) 3.7 (±0.1) -5.61 (±0.01) 5.2 (±0.3) -5.47 (±0.02) 0.294 (±0.019) 0.448 (+0.006/-0.005) 
SOG-21 717 (±10) 2.21 (±0.08) 8.5 (±0.1) -5.27 (±0.01) 11.1 (±0.5) -5.16 (±0.02) 0.164 (±0.009) 0.180 (+0.011/-0.010) 
SOG-22 236 (±5) 1.30 (±0.06) 4.0 (±0.3) -5.57 (±0.03) 3.2 (±0.4) -5.67 (±0.05) 0.519 (±0.022) 0.480 (+0.049/-0.023) 
SOG-25 567 (±12) 2.11 (±0.13) 5.2 (±1.3) -5.47 (±0.10) 4.8 (±2.1) -5.50 (±0.18) 0.359 (±0.016) 0.408 (+0.057/-0.108) 
SOG-38 552 (±9) 2.19 (±0.11) 3.9 (±1.1) -5.58 (±0.12) 4.5 (±0.5) -5.52 (±0.04) 0.439 (±0.020) 0.446 (+0.049/-0.027) 
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YAK-03 349 (±15) 1.72 (±0.23) 12.6 (±1.6) -5.12 (±0.05) Low signal-to-noise ratio 0.034 (±0.008) 0.094 (+0.039/-0.020) 
YAK-07 276 (±6) 1.51 (±0.08) 4.1 (±0.4) -5.56 (±0.04) 4.1 (±2.3) -5.56 (±0.24) 0.011 (±0.008) 0.443 (+0.112/-0.132) 
YAK-09 194 (±3) 1.70 (±0.06) 3.3 (±0.3) -5.65 (±0.04) 3.1 (±0.3) -5.67 (±0.05) 0.549 (±0.018) 0.577 (+0.022/-0.039) 
YAK-13 431 (±13) 2.44 (±0.21) 5.5 (±0.4) -5.44 (±0.03) 7.4 (±1.7) -5.32 (±0.09) 0.250 (±0.023) 0.289 (+0.046/-0.025) 
YAK-15 271 (±11) 2.32 (±0.29) 4.1 (±0.5) -5.56 (±0.05) Low signal-to-noise ratio 0.427 (±0.071) 0.447 (+0.045/-0.024) 
YAK-17 443 (±22) 4 6.8 (±0.5) -5.36 (±0.03) Low signal-to-noise ratio 0.125 (±0.036) 0.254 (+0.017/-0.020) 
YAK-18 405 (±7) 2.24 (±0.11) 8.1 (±0.4) -5.29 (±0.02) 5.5 (±1.0) -5.44 (±0.08) 0.204 (±0.007) 0.282 (+0.024/-0.020) 
YAK-19 905 (±13) 4 7.2 (±0.6) -5.33 (±0.03) Low signal-to-noise ratio 0.121 (±0.014) 0.233 (+0.019/-0.022) 
YAK-50 390 (±7) 2.36 (±0.12) 4.1 (±0.3) -5.57 (±0.03) 3.3 (±1.1) -5.66 (±0.15) 0.124 (±0.005) 0.476 (+0.090/-0.038) 

 
Notes. Dose response curves (with recycling ratio within 10% of unity) have been fitted using the General-Order Kinetics GOK function (Guralnik et al., 
2015a,c), to obtain the characteristic dose D0 and the kinetic order α (note: a limiting value of α = 4 was adopted for a few datasets which did not exhibit 
sufficient flattening off of the luminescence signal at high doses). Fading decay curves were fitted (a) following Huntley and Lamothe (2001) to obtain the g-
value (normalized to 2 days); (b) following Huntley (2006) to obtain the density of recombination centres ρ' (reported as log10ρ'), assuming an escape 
frequency factor of 3×1015 s-1 (Huntley, 2006). Results of the short-shine method were accepted only when there existed two replicates with acceptable signal 
to noise ratio (luminescence signal ten times higher than background). Natural trap filling (n/Nnat; reported as mean and std. dev.) and predicted field saturation 
(n/Nss; reported as median and 68% conf. int.) were derived following Guralnik et al. (2015a), the latter using a Monte-Carlo approach (1000 iterations, each 
with randomized input of the kinetic parameters and the dose rate; note that wherever possible, an average ρ' between the long- and short-shine experiments 
was used). Laboratory dose rates vary between 0.099 and 0.207 Gy s-1 for the different instruments used. 
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