S. Fig and . Sindelarova, 2014) relies on the MEGANv2.1 model for biogenic volatile organic compounds (BVOC) and is based on the MERRA reanalysis fields The emissions are provided at 0.5 ? × 0.5 ? resolution and on a monthly basis from 1980 through 2010. The GUESS-ES isoprene inventory is based on the physiological isoprene emission algorithm described by It is coupled to the dynamic global vegetation model LPJ-GUESS (Sitch et al., 2003) and is driven by the CRU (Climatic Research Unit) monthly meteorological fields (Mitchell and Jones, 2005) at 1 ? × 1 ? resolution between, Both inventories are available from the ECCAD data portal, 1969.

S. K. Akagi, R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid et al., Emission factors for open and domestic biomass burning for use in atmospheric models, Atmospheric Chemistry and Physics, vol.11, issue.9, pp.4039-407210, 2011.
DOI : 10.5194/acp-11-4039-2011-supplement

A. Alencar, G. P. Asner, D. Knapp, and D. Zarin, Temporal variability of forest fires in eastern Amazonia, Ecological Applications, vol.21, issue.7, pp.2397-2412, 2011.
DOI : 10.1088/1748-9326/3/1/014002

E. G. Alves, K. Jardine, J. Tota, A. Jardine, A. M. Yãnez-serrano et al., Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia, Atmos. Chem. Phys, vol.165194, pp.3903-392510, 2016.

N. Andela and G. R. Van-der-werf, Recent trends in African fires driven by cropland expansion and El Ni??o to La Ni??a transition, Nature Climate Change, vol.4, issue.9, pp.791-79510, 1038.
DOI : 10.1038/ngeo313

N. Andela, J. W. Kaiser, A. Heil, T. T. Van-leeuwen, G. R. Van-der-werf et al., Assessment of the Global Fire Assimilation System (GFASv1, MACC-II project (Monitoring Atmospheric Composition and Climate ? Interim Implementation, deliverable D31.2, ECMWF Technical Memorandum, 2013.

L. O. Anderson, L. E. Aragão, M. Gloor, E. Arai, M. Adami et al., Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought, Global Biogeochemical Cycles, vol.72, issue.3, pp.1739-175310, 1002.
DOI : 10.1119/1.1632486

M. Andreae, P. Artaxo, C. Brandao, F. Carswell, P. Ciccioli et al., Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments, Journal of Geophysical Research, vol.93, issue.X, p.806610, 1029.
DOI : 10.1029/2001JD000524

M. O. Andreae and P. Merlet, Emission of trace gases and aerosols from biomass burning, Global Biogeochemical Cycles, vol.34, issue.4, pp.955-96610, 2001.
DOI : 10.1029/2000GB001382

A. Arneth, Ü. Niinemets, S. Pressley, J. Bäck, P. Hari et al., Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO<sub>2</sub>-isoprene interaction, Atmospheric Chemistry and Physics, vol.7, issue.1, pp.31-5310, 2007.
DOI : 10.5194/acp-7-31-2007

A. Arneth, G. Schurgers, J. Lathiere, T. Duhl, D. J. Beerling et al., Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation, Atmos. Chem. Phys, vol.115194, pp.8037-805210, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00666050

U. Ballhorn, F. Siegert, M. Mason, and S. Limin, Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands, Proceedings of the National Academy of Sciences, vol.106, issue.50, pp.21213-2121810, 2009.
DOI : 10.1073/pnas.0906457106

M. P. Barkley, P. I. Palmer, U. Kuhn, J. Kesselmeier, K. Chance et al., Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns, Journal of Geophysical Research, vol.93, issue.D2, p.10, 1029.
DOI : 10.1029/2008JD009863

M. P. Barkley, P. I. Palmer, I. De-smedt, T. Karl, A. Guenther et al., Regulated large-scale annual shutdown of Amazonian isoprene emissions?, Geophysical Research Letters, vol.4, issue.18, pp.10-1029, 2009.
DOI : 10.1029/2008GL036843

M. Bauwens, Nine years of OMI-based hydrocarbon emissions Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns, J. Geophys. Res, vol.118, pp.6849-6868, 2013.

D. Barriopedro, E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-herrera, The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe, Science, vol.332, issue.6026, pp.220-224, 2011.
DOI : 10.1126/science.1201224

K. H. Bates, T. B. Nguyen, A. P. Teng, J. D. Crounse, H. G. Kjaergaard et al., Dihydroxycarbonyl Compounds from Isoprene Oxidation, The Journal of Physical Chemistry A, vol.120, issue.1, pp.106-117, 2016.
DOI : 10.1021/acs.jpca.5b10335

M. Bauwens, T. Stavrakou, J. Müller, I. De-smedt, V. Roozendael et al., Satellite-based isoprene emission estimates, ) from the GlobEmission project, Proccedings of ACCENT-Plus Symposium, 2007.

A. A. Bloom, J. Worden, Z. Jiang, H. Worden, T. Kurosu et al., Remote-sensing constraints on South America fire traits by Bayesian fusion of atmospheric and surface data, Geophysical Research Letters, vol.26, issue.7, pp.1268-127410, 2015.
DOI : 10.1029/2011GB004185

K. F. Boersma, H. J. Eskes, R. J. Dirksen, A. Van-der, R. J. Veefkind et al., An improved tropospheric NO 2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech, vol.45194, p.10, 1905.

K. Chance, P. I. Palmer, R. J. Spurr, R. V. Martin, T. Kurosu et al., Satellite observations of formaldehyde over North America from GOME, Geophysical Research Letters, vol.25, issue.21, pp.3461-3464, 2000.
DOI : 10.1029/2000GL011857

D. Chang and Y. Song, Estimates of biomass burning emissions in tropical Asia based on satellite-derived data, Atmos. Chem. Phys, vol.105194, issue.10, pp.2335-2351, 2010.

Y. Chen, D. C. Morton, Y. Jin, G. J. Collatz, P. S. Kasibhatla et al., Long-term trends and interannual variability of forest, savanna and agricultural fires in South America, Carbon Management, vol.115, issue.6, pp.617-638, 2013.
DOI : 10.1073/pnas.0910467107

F. Chevallier, A. Fortems, P. Bousquet, I. Pison, S. Szopa et al., African CO emissions between years 2000 and 2006 as estimated from MOPITT observations, Biogeosciences, vol.65194, pp.103-11110, 2009.

P. Ciccioli, E. Brancaleoni, M. Frattoni, U. Kuhn, J. Kesselmeier et al., Fluxes of isoprenoid compounds over the tropical rainforest near Manaus during the dry season and their implications in the ecosystem carbon budget and in the atmospheric chemistry processes, Integrated Land Ecosystem-Atmosphere Processes Study (ILEAPS) International Open Science Conference 2003 Finnish Association for Aerosol Research, pp.48-53, 2003.

D. Coumou and S. Rahmstorf, A decade of weather extremes, Nature Climate Change, vol.5, pp.491-49610, 1038.
DOI : 10.3390/w3041149

D. Smedt, I. Van-roozendael, and M. , Tropospheric Formaldehyde , Royal Belgian Institute for Space Aeronomy (BIRA- IASB), available at: http://h2co.aeronomie.be, last access, 2016.

D. Smedt, I. Stavrakou, T. Hendrick, F. Danckaert, T. Vlemmix et al., Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations, Atmospheric Chemistry and Physics, vol.15, issue.21, pp.12519-1254510, 2015.
DOI : 10.5194/acp-15-12519-2015

T. Fanin and G. R. Van-der-werf, Relationships between burned area, forest cover loss, and land cover change in the Brazilian Amazon based on satellite data, Biogeosciences, vol.12, issue.20, pp.6033-604310, 2015.
DOI : 10.5194/bg-12-6033-2015-supplement

D. Founda and C. Giannakopoulos, The exceptionally hot summer of 2007 in Athens, Greece ? A typical summer in the future climate?, Global Planet, Change, vol.67, pp.227-236, 2009.

M. A. Friedl, D. Sulla-menashe, B. Tan, A. Schneider, N. Ramankutty et al., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, vol.114, issue.1, 2001.
DOI : 10.1016/j.rse.2009.08.016

L. Giglio, J. T. Randerson, and G. R. Werf, Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4), Journal of Geophysical Research: Biogeosciences, vol.329, issue.21, pp.317-328, 2013.
DOI : 10.1126/science.1192666

J. P. Greenberg, A. B. Guenther, G. Pétron, C. Wiedinmyer, O. Vega et al., Biogenic VOC emissions from forested Amazonian landscapes, Biogenic VOC emissions from forested Amazonian landscapes, pp.651-662, 2004.
DOI : 10.1023/A:1006322701523

A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron et al., A global model of natural volatile organic compound emissions, Journal of Geophysical Research, vol.93, issue.3, pp.8873-8892, 1995.
DOI : 10.1029/94JD02950

A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer et al., Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys, vol.65194, issue.6, pp.3181-321010, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00295995

A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl et al., The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev, vol.55194, pp.1471-149210, 1471.

D. L. Hartmann, A. M. Klein-tank, M. Rusticucci, L. V. Alexander, S. Brönnimann et al., Observations: Atmosphere and Surface, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

D. Helmig, B. Balsley, K. Davis, L. R. Kuck, M. Jensen et al., Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon, Journal of Geophysical Research: Atmospheres, vol.93, issue.D19, pp.25519-25532, 1998.
DOI : 10.1029/98JD01023

X. Huang, Y. Song, M. Li, J. Li, and T. Zhu, Harvest season, high polluted season in East China, Environmental Research Letters, vol.7, issue.4, pp.10-1088, 2012.
DOI : 10.1088/1748-9326/7/4/044033

G. C. Hurtt, L. P. Chini, S. Frolking, R. A. Betts, J. Feddema et al., Harmonization of land-use scenarios for the period 1500???2100: 600??years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands, Climatic Change, vol.324, issue.D24, pp.117-16110, 1007.
DOI : 10.1007/s10584-011-0153-2

E. J. Hyer and J. S. Reid, Baseline uncertainties in biomass burning emission models resulting from spatial error in satellite active fire location data, Geophysical Research Letters, vol.100, issue.D2, pp.10-1029, 2009.
DOI : 10.1029/2008GL036767

L. Jaeglé, L. Steinberger, M. Randall, C. , and L. , Global Partitioning of NO x Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions Faraday Discuss, vol.130, pp.407-42310, 2005.

M. K. Jha, Natural and Anthropogenic Disasters: Vulnerability , Preparedness and Mitigation, 2010.
DOI : 10.1007/978-90-481-2498-5

J. Joiner, Y. Yoshida, L. Guanter, and E. M. Middleton, Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2 (http://avdc.gsfc.nasa.gov/index.php?site=1353468771&id=75&go=list&path=), Atmospheric Measurement Techniques, vol.9, issue.8, pp.10-5194, 2016.
DOI : 10.5194/amt-6-2803-2013

C. Justice, J. Townshend, E. Vermote, E. Masuoka, R. Wolfe et al., An overview of MODIS Land data processing and product status, Remote Sensing of Environment, vol.83, issue.1-2, pp.3-1510, 2002.
DOI : 10.1016/S0034-4257(02)00084-6

J. W. Kaiser, A. Heil, M. O. Andreae, A. Benedetti, N. Chubarova et al., Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, vol.95194, pp.527-55410, 2012.

S. Karki, Community involvement in and management of forest fires in South East Asia, 2002.

T. Karl, A. Guenther, R. J. Yokelson, J. Greenberg, M. Potosnak et al., The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia, Journal of Geophysical Research, vol.93, issue.D2, pp.1830210-1029, 2007.
DOI : 10.1029/2007JD008539

T. Karl, A. Guenther, A. Turnipseed, G. Tyndall, P. Artaxo et al., Rapid formation of isoprene photo-oxidation products observed in Amazonia, Atmos. Chem. Phys, vol.95194, pp.7753-776710, 2009.

S. K. Kharol, R. V. Martin, S. Philip, B. Boys, L. N. Lamsal et al., Assessment of the magnitude and recent trends in satellite-derived ground-level nitrogen dioxide over North America, Atmospheric Environment, vol.118, pp.236-245, 2015.
DOI : 10.1016/j.atmosenv.2015.08.011

I. B. Konovalov, M. Beekmann, I. N. Kuznetsova, A. Yurova, and A. M. Zvyagintsev, Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region, Atmos. Chem. Phys, vol.115194, pp.10031-1005610, 2011.

M. Kopacz, D. J. Jacob, J. A. Fisher, J. A. Logan, L. Zhang et al., Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets, Atmos. Chem. Phys, vol.105194, pp.855-87610, 2010.

M. Kramshøj, I. Vedel-petersen, M. Schollert, Å. Rinna, J. Nymand et al., Large increases in Arctic biogenic volatile emissions are a direct effect of warming, Nature Geoscience, vol.54, issue.5, pp.349-352, 2016.
DOI : 10.1038/ngeo2692

M. Krol, W. Peters, P. Hooghiemstra, M. George, C. Clerbaux et al., How much CO was emitted by the 2010 fires around Moscow?, Atmos. Chem. Phys, vol.135194, pp.4737-474710, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00748738

U. Kuhn, M. O. Andreae, C. Ammann, A. C. Araújo, E. Brancaleoni et al., Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from towerbased and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget, Atmos. Chem. Phys, vol.75194, pp.2855-287910, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00302425

J. Kurokawa, T. Ohara, T. Morikawa, S. Hanayama, G. Janssens-maenhout et al., Emissions of air pollutants and greenhouse gases over Asian regions during, Regional Emission inventory in ASia (REAS) version 2, pp.11019-1105810, 2000.

B. Langford, P. K. Misztal, E. Nemitz, B. Davison, C. Helfter et al., Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest, Atmos. Chem. Phys, vol.105194, pp.8391-841210, 2010.

B. I. Magi, S. Rabin, E. Shevliakova, and S. Pacala, Separating agricultural and non-agricultural fire seasonality at regional scales, Biogeosciences, vol.9, issue.8, pp.3003-301210, 2012.
DOI : 10.5194/bg-9-3003-2012

M. Bauwens, Nine years of OMI-based hydrocarbon emissions Marais, Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns, Atmos . Chem. Phys, vol.125194, pp.6219-623510, 2012.

E. A. Marais, D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu et al., Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter, Atmospheric Chemistry and Physics, vol.14, issue.15, pp.7693-770310, 2014.
DOI : 10.5194/acp-14-7693-2014

B. Mijling, A. Van-der, and R. J. , Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic scale, Journal of Geophysical Research: Atmospheres, vol.36, issue.D17, pp.10-1029, 2012.
DOI : 10.1029/2008GL037123

D. B. Millet, D. J. Jacob, K. F. Boersma, T. Fu, T. P. Kurosu et al., Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor, Journal of Geophysical Research, vol.57, issue.3???4, p.230710, 1029.
DOI : 10.1029/2007JD008950

T. D. Mitchell and P. D. Jones, An improved method of constructing a database of monthly climate observations and associated high-resolution grids, International Journal of Climatology, vol.78, issue.6, pp.693-712, 2005.
DOI : 10.1002/joc.1181

J. Müller and T. Stavrakou, Inversion of CO and NO<sub>x</sub> emissions using the adjoint of the IMAGES model, Atmospheric Chemistry and Physics, vol.5, issue.5, pp.1157-1186, 1157.
DOI : 10.5194/acp-5-1157-2005-supplement

J. Müller, T. Stavrakou, S. Wallens, I. De-smedt, M. Van-roozendael et al., Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model, Atmos. Chem. Phys, vol.85194, pp.1329-134110, 1329.

D. Nepstad, D. Mcgrath, C. Stickler, A. Alencar, A. Azevedo et al., Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains, Science, vol.344, issue.6188, pp.1118-1123, 2014.
DOI : 10.1126/science.1248525

Ü. Niinemets, J. Tenhunen, P. Harley, and R. Steinbrecher, A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus, Plant, Cell and Environment, vol.112, issue.11, pp.1319-1335, 1999.
DOI : 10.1104/pp.116.3.1111

P. I. Palmer, D. J. Jacob, A. Fiore, K. V. Chance, R. V. Martin et al., Mapping isoprene emissions over North America using formaldehyde column observations from space, Journal of Geophysical Research, vol.8, issue.D12, pp.418010-1029, 2003.
DOI : 10.1029/2002JD002153

P. I. Palmer, D. S. Abbot, T. Fu, D. J. Jacob, K. Chance et al., Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column, Journal of Geophysical Research, vol.5, issue.D12, p.10, 1029.
DOI : 10.1029/2005JD006689

J. Peeters, J. Müller, T. Stavrakou, and S. V. Nguyen, Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism, The Journal of Physical Chemistry A, vol.118, issue.38, pp.8625-864310, 2014.
DOI : 10.1021/jp5033146

G. Pétron, G. Granier, B. Khattotov, V. Yudin, J. Lamarque et al., Monthly CO surface sources inventory based on the, MOPITT satellite data, pp.10-1029, 2000.

M. J. Potosnak, B. M. Baker, L. Lestourgeon, S. M. Disher, K. L. Griffin et al., Isoprene emissions from a tundra ecosystem, Biogeosciences, vol.105194, pp.871-88910, 2013.

N. Ramankutty and J. A. Foley, Estimating historical changes in global land cover: Croplands from 1700 to 1992, Global Biogeochemical Cycles, vol.76, issue.1, pp.997-1027, 1999.
DOI : 10.1029/1999GB900046

J. T. Randerson, Y. Chen, G. R. Van-der-werf, B. M. Rogers, M. et al., Global burned area and biomass burning emissions from small fires, Journal of Geophysical Research: Biogeosciences, vol.112, issue.6, pp.401210-1029, 2012.
DOI : 10.1016/j.rse.2008.02.006

C. Reddington, M. Yoshioka, R. Balasubramanian, D. Ridley, Y. Toh et al., Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia, Environmental Research Letters, vol.9, issue.9, pp.10-1088, 2014.
DOI : 10.1088/1748-9326/9/9/094006

M. Reuter, M. Buchwitz, A. Hilboll, A. Richter, O. Schneising et al., Decreasing emissions of NOx relative to CO2 in East Asia inferred from satellite observations, Nature Geoscience, vol.116, issue.11, pp.792-795, 2014.
DOI : 10.1016/j.asr.2003.08.062

A. Richter, M. Begoin, A. Hilboll, and J. P. Burrows, An improved NO<sub>2</sub> retrieval for the GOME-2 satellite instrument, Atmospheric Measurement Techniques, vol.4, issue.6, pp.1147-1159, 2011.
DOI : 10.5194/amt-4-1147-2011

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister et al., MERRA: NASA???s Modern-Era Retrospective Analysis for Research and Applications, Journal of Climate, vol.24, issue.14, pp.3624-3648, 2011.
DOI : 10.1175/JCLI-D-11-00015.1

H. Rinne, A. Guenther, J. Greenberg, H. , and P. , Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature, Atmospheric Environment, vol.36, issue.14, pp.2421-242610, 2002.
DOI : 10.1016/S1352-2310(01)00523-4

L. V. Rizzo, P. Artaxo, T. Karl, A. B. Guenther, and J. Greenberg, Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia, Atmospheric Environment, vol.44, issue.4, pp.503-511, 2010.
DOI : 10.1016/j.atmosenv.2009.11.002

M. Romero-ruiz, A. Etter, A. Sarmiento, and K. Tansey, Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America, Global Change Biology, vol.6, issue.7, pp.2013-2023, 2010.
DOI : 10.1111/j.1365-2486.2009.02081.x

A. R. Russell, L. C. Valin, and R. C. Cohen, Trends in OMI NO<sub>2</sub> observations over the United States: effects of emission control technology and the economic recession, Atmospheric Chemistry and Physics, vol.12, issue.24, pp.12197-1220910, 2012.
DOI : 10.5194/acp-12-12197-2012

M. G. Schultz, L. Backman, and Y. Balkanski, REanalysis of the TROpospheric chemical composition over the past 40 years (RETRO): A long-term global modeling study of tropospheric chemistry, report on Earth System Science of the Max Planck Institute for Meteorology, 2007.

M. G. Schultz, A. Heil, J. J. Hoelzemann, A. Spessa, K. Thonicke et al., Global wildland fire emissions from, Global Biogeochem. Cy, vol.22, pp.200210-1029, 1960.

R. Seco, T. Karl, A. Guenther, K. P. Hosman, S. G. Pallardy et al., Ecosystem-scale volatile organic compound fluxes during??an extreme drought in a broadleaf temperate forest??of the Missouri Ozarks (central USA), Global Change Biology, vol.48, issue.150, pp.3657-3674, 2015.
DOI : 10.1111/gcb.12980

E. Simon, F. X. Meixner, U. Rummel, L. Ganzeveld, C. Ammann et al., Coupled carbon-water exchange of the Amazon rain forest, II. Comparison of predicted and observed seasonal exchange of energy, CO 2 , isoprene and ozone at a remote site in Rondônia, Biogeosciences, vol.5194, issue.22, pp.255-27510, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00297742

K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes et al., Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmospheric Chemistry and Physics, vol.14, issue.17, pp.9317-934110, 2014.
DOI : 10.5194/acp-14-9317-2014

URL : https://hal.archives-ouvertes.fr/hal-00985526

S. Sitch, . Smith, I. C. Prentice, A. Arneth, A. Bondeau et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, vol.87802, issue.5, pp.161-185, 2003.
DOI : 10.1046/j.1466-822x.2001.00175.x

J. Soares, M. Sofiev, and J. Hakkalainen, Uncertainties of wild-land fires emission in AQMEII phase 2 case study, Atmospheric Environment, vol.115, pp.361-370, 2015.
DOI : 10.1016/j.atmosenv.2015.01.068

M. Sofiev, R. Vankevich, T. Ermakova, and J. Hakkarainen, Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions, Atmospheric Chemistry and Physics, vol.13, issue.14, pp.7039-7052, 2013.
DOI : 10.5194/acp-13-7039-2013

T. Stavrakou, J. Müller, K. F. Boersma, I. De-smedt, A. Van-der et al., Assessing the distribution and growth rates of NO x emission sources by inverting a 10-year record of NO 2 satellite columns, Geophys. Res. Lett, pp.10-1029, 2008.

T. Stavrakou, J. Müller, I. De-smedt, M. Van-roozendael, G. R. Van-der-werf et al., Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns, Atmos . Chem. Phys, vol.95194, pp.1037-106010, 1037.

T. Stavrakou, J. Müller, I. De-smedt, M. Van-roozendael, G. R. Van-der-werf et al., Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through, Atmos. Chem. Phys, vol.95194, pp.3663-367910, 2003.

T. Stavrakou, J. Peeters, and J. Müller, Improved global modelling of HO x recycling in isoprene oxidation: evaluation against the GABRIEL and INTEX-A aircraft campaign measurements, Atmos. Chem. Phys, vol.105194, pp.9863-987810, 2010.

T. Stavrakou, J. Müller, K. F. Boersma, A. Van-der, R. J. Kurokawa et al., Key chemical NO x sink uncertainties and how they influence top-down emissions of nitrogen oxides, Atmos. Chem. Phys, vol.135194, pp.9057-908210, 2013.

T. Stavrakou, J. Müller, M. Bauwens, I. De-smedt, M. Van-roozendael et al., Isoprene emissions over Asia 1979?2012: impact of climate and land-use changes, Atmos. Chem. Phys, vol.145194, pp.4587-460510, 2014.

T. Stavrakou, J. Müller, M. Bauwens, I. De-smedt, M. Van-roozendael et al., How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?, Atmos. Chem. Phys, vol.155194, pp.11861-1188410, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01145238

T. Stavrakou, J. Müller, M. Bauwens, D. Smedt, C. Lerot et al., Substantial underestimation of postharvest burning emissions in the North China Plain revealed by multi-species space observations, Sci. Rep, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01361432

T. Stavrakou, M. Bauwens, and J. Müller, Satellite-derived isoprene and fire emissions based on OMI HCHO observations, Royal Belgian Institute for Space Aeronomy, 2016.

T. Stavrakou, M. Bauwens, and J. Müller, Bottom-up and satellite-derived inventories, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), available at, 2016.

W. Steffen, L. Hughes, P. , and A. , The heat is on: climate change, extreme heat and bushfires in Western Australia, 2015.

A. Stohl, T. Berg, J. F. Burkhart, A. M. Fjáeraafj´fjáeraa, C. Forster et al., Arctic smoke ? record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring, Atmos. Chem. Phys, vol.75194, pp.511-53410, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00296130

W. Tang, D. S. Cohan, L. N. Lamsal, X. Xiao, and W. Zhou, Inverse modeling of Texas NO x emissions using space-based and ground-based NO2 observations, Atmos. Chem. Phys, vol.135194, pp.11005-1101810, 2013.

S. Turquety, D. Hurtmans, J. Hadji-lazaro, P. Coheur, C. Clerbaux et al., Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: analysis of the summer 2007 Greek fires The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia, Atmos. Chem. Phys. Hydrol. Earth Syst. Sci, vol.951945194, issue.20, pp.4897-4913, 2009.

. Www, atmos-chem-phys.net/16, Atmos. Chem. Phys, vol.16, pp.10133-10158, 2016.

M. Bauwens, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires Spatial and temporal variability in the ratio of trace gases emitted from biomass burning Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios, Biomass burning fuel consumption rates: a field measurement database, pp.11707-11735, 1997.

G. P. Weedon, G. Balsano, N. Bellouin, S. Gomes, M. J. Best et al., The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resources Research, vol.12, issue.D20, pp.7505-7514, 2014.
DOI : 10.1002/2014WR015638

C. Wiedinmyer, S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-saadi et al., The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev, vol.45194, pp.625-64110, 2011.

G. M. Wolfe, J. Kaiser, T. F. Hanisco, F. N. Keutsch, J. A. De-gouw et al., Formaldehyde production from isoprene oxidation across NOx regimes, Atmos. Chem. Phys, vol.165194, pp.2597-261010, 2016.

H. M. Worden, Y. Cheng, G. Pfister, G. R. Carmichael, Q. Zhang et al., Satellite-based estimates of reduced CO and CO 2 emissions due to traffic restrictions during the, Geophys. Res. Lett, p.10, 1029.

J. Worden, Z. Jiang, D. Jones, M. Alvarado, K. Bowman et al., El Ni??o, the 2006 Indonesian peat fires, and the distribution of atmospheric methane, El Niño, the 2006 Indonesian peat fires, and the distribution of atmospheric methane, pp.4938-4943, 2013.
DOI : 10.5194/acp-13-3679-2013

X. Yue, N. Unger, and Y. Zheng, Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades, Atmos. Chem. Phys, vol.155194, pp.11931-1194810, 2015.

L. Yurganov, W. Mcmillan, E. Grechko, and A. Dzhola, Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers, Atmos. Chem. Phys, vol.105194, pp.3479-349410, 2010.

P. Zimmerman, J. Greenberg, and C. Westberg, Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon Boundary layer, Journal of Geophysical Research, vol.218, issue.D2, pp.1407-141610, 1988.
DOI : 10.1029/JD093iD02p01407

L. Zhu, D. J. Jacob, L. J. Mickley, E. A. Marais, D. S. Cohan et al., Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns, Environmental Research Letters, vol.9, issue.11, pp.10-1088, 2014.
DOI : 10.1088/1748-9326/9/11/114004