Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs

Abstract : The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).
Type de document :
Article dans une revue
International Journal of Geometric Methods in Modern Physics, World Scientific Publishing, 2016, 13 (02), pp.1650021. 〈10.1142/S0219887816500213〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal-insu.archives-ouvertes.fr/insu-01352533
Contributeur : Nathalie Pothier <>
Soumis le : lundi 29 mai 2017 - 15:24:54
Dernière modification le : jeudi 7 février 2019 - 17:22:44
Document(s) archivé(s) le : mercredi 6 septembre 2017 - 11:10:54

Fichier

1511.04252.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Citation

P. Ritter, S. Aoudia, Alessandro D.A.M. Spallicci, Stéphane Cordier. Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs. International Journal of Geometric Methods in Modern Physics, World Scientific Publishing, 2016, 13 (02), pp.1650021. 〈10.1142/S0219887816500213〉. 〈insu-01352533〉

Partager

Métriques

Consultations de la notice

329

Téléchargements de fichiers

35