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Abstract. Three-dimensional simulations of turbulence in collision less plasmas are presented, using a 
uid
model that extends the anisotropic MHD to scales of the order o f the ion gyroradius and below in direc-
tions perpendicular to the ambient magnetic �eld. This mode l, which includes linear Landau damping and
�nite Larmor radius corrections to all the retained moments , provides an e�cient tool to describe Alfv�enic
turbulence in the absence of cyclotron resonance. When su�ciently small scales are retained, no arti�cial
damping nor collisonal e�ects is required. Simulations with large-scale Alfvenic driving show the develop-
ment of power-law spectra with an exponent close to -2.8 for the perpendicular magnetic �eld at scales
smaller than the ion inertial length. The electric �eld spec trum displays a break at intermediate scales be-
yond which it approaches a -1/3 power-law, consistent with S olar Wind observations. These spectra appear
in a quasi-stationary state after early-formed sheet-like density and current structures have evolved into
�laments. In the presence of temperature anisotropy, the no nlinear development of the mirror instability
leads to pressure-balanced magnetic structures surrounded by signi�cant ion velocity �elds perpendicular
to the ambient �eld. At later time, the system becomes turbule nt, with the disruption of the magnetic
structures into parallel �laments.

PACS. 5 2.25.Xz, 52.35.Ra, 52.65.Kj, 94.05.Lk, 96.50.Tf

1 Introduction

In many instances, space plasmas are collisionless or weakly
collisional and turbulent, a regime that can hardly be
studied with the usual magnetohydrodynamics (MHD) or
its extension including the Hall e�ect (Hall-MHD), even
when permitting ion and electron temperature anisotropies,
in part due to a lack of appropriate form of wave damp-
ing. A fully kinetic description requiring huge computa-
tional ressources, 
uid approaches including a modeling of
low-frequency kinetic e�ects such as Landau damping and
�nite Larmor radius (FLR) corrections at the ion scales,
thus appear of special interest to study turbulence in space
plasmas.

Landau damping was �rst retained within a 
uid de-
scription of a magnetized plasma in [1], where a large-
scale Landau 
uid model was constructed by performing
a closure of the moment hierarchy derived from the drift
kinetic equation. The fourth-rank cumulants or, in a sim-
pli�ed version, the heat 
uxes, are expressed in terms of
lower rank moments in a way consistent with the low-
frequency linear kinetic theory, up to the possible replace-
ment of the plasma dispersion function by suitable Pad�e
approximants. Another step was made by supplementing

FLR corrections. This can be performed in two ways. A
�rst approach consists in solving the equations for the
non-gyrotropic parts of the pressure or heat 
ux tensors
perturbatively with respect to a small parameter measur-
ing the scale separation between the considered phenom-
ena and the ion gyromotion, both in space and time [2{
4]. Another approach consists in expressing all the non-
gyrotropic terms directly from the low-frequency kinetic
theory, by proceeding as in the closure of the hierarchy [5,
6]. In this description, the FLR terms are calculated in a
linear approximation within the gyrokinetic scaling, thus
retaining quasi-transverse small scales. Concentrating on
ion scales, we neglect here the inertia of the electrons,
together with their Larmor radius. In the following, we
report on this approach and refer to the corresponding
model as the FLR-Landau 
uid.

The FLR-Landau 
uid model includes all the hydro-
dynamic nonlinearities and is thus suitable for describing
the large-scale energy cascade. It also permits the develop-
ment of temperature anisotropy and the resulting micro-
instabilities such as the mirror instability, whose growth
rate and spectral extension range are accuately repro-
duced thanks to a precise modeling of the linear Landau
damping and FLR corrections to all the retained 
uid mo-
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ments. This model accurately reproduces the linear prop-
erties of kinetic Alfv�en waves (KAWs) such as their dis-
persion, damping and polarization, in the absence of cy-
clotron resonance.

The paper is organized as follows. Section 2 brie
y de-
scribes the main features of the FLR-Landau 
uid model
and discusses in particular the importance of retaining the
magnetic �eld line distortion in the modeling of Landau
damping and FLR corrections in fully nonlinear multi-
dimensional simulations. Section 3 reports on the �rst
three-dimensional numerical simulations using the FLR-
Landau 
uid model, both in the regime of Alfvenic turbu-
lence and in the presence of temperature anisotropy where
the mirror instability can occur, leading to the formation
of mirror structures and, after their �lamentation, to a
mirror turbulence regime displaying speci�c spectral prop-
erties. Section 4 summarizes our �ndings and discusses
further developments.

2 About the FLR-Landau 
uid model

The full system of equations constituting the FLR-Landau

uid model is too complex to be reproduced here due to
the lack of space. A few comments on the peculiarities
of this model as compared to more common extended-
MHD or gyro
uid systems will however be given. The
linear properties of the FLR Landau 
uid model have
been discussed at length in previous papers [5]-[8], showing
in particular that the properties of low-frequency modes
are accurately captured, except perhaps at intermediate
scales where, in some instances, the Pad�e approximants
used in the modelization are the least precise (i.e. when
� = !=k zvth = O(1)). In addition, and in contrast with
gyro
uids, this model does not �lter out the fast modes
which are in fact well described up to the scale where cy-
clotron resonance (a phenomenon not captured in 
uid
formulations) takes place. An interesting point concerns
the properties of highly oblique kinetic Alfv�en waves (KAW s),
which are believed to be the main component of the Alfv�en
wave cascade at small scales. Above a certain critical an-
gle that decreases as the� parameter increases, the KAW
polarization becomes right-handed [13{15]. Its frequency
can then exceed the ion gyrofrequency without enconter-
ing a resonance. It is remarkable that the FLR-Landau

uid model can capture KAW's dispersion relation with a
reasonable accuracy even though the frequency lies out-
side the range of the gyrokinetic approximation [6]. Linear
studies of this model also pointed out the importance of
taking into account a full description (i.e. in a form that
involve Bessel functions of the perpendicular wavenum-
ber) of the non-gyrotropic components of all the retained

uid moments in order to capture the correct KAW eigen-
vector, even at scales relatively large compared to the ion
inertial length. Another remark concerns the importance
of the electron Landau damping to account for the correct
dissipation of KAWs at scales only slightly smaller than
the ion Larmor radius, thus questioning the assumption
of isothermal electrons usually made in hybrid methods.

Before discussing �rst numerical simulations of the multi-
dimensional nonlinear regime, it is of interest to discuss
technical points concerning the modelization of the mag-
netic �eld line distortion within the kinetic e�ects.

2.1 Modeling Landau damping

We �rst mention that, as discussed in [1], a proper calcula-
tion of Landau damping would involve, at each point, the
evaluation of a convolution integral along the magnetic
�eld line attached to this point, a task which is unfeasible
on the present day computers. A drastic simpli�cation,
consistent with the linear description of the kinetic ef-
fects, consists in substituting the local magnetic �eld line
by the straight ambient magnetic �eld. The calculation of
the Landau damping then involves an operatorH z de�ned
as the negative of the Hilbert transform in the direction
of the ambient magnetic �eld (taken in the z direction),
which thus reduces in Fourier space to a mere multipli-
cation by isgn(kz ). As seen below, this procedure is con-
venient when the nonlinear problem is considered in one
space dimension, but turns out to be inappropriate for the
multi-dimensional framework. The dynamical equations
for the gyrotropic heat 
uxes qk and q? indeed involve
terms of the form r � (er ?k

bb) and r � (er kk
bb). Here bb denotes

the unit vector in the direction of the local magnetic �eld
and er ?k and er kk two components of the deviation of the gy-
rotropic fourth order cumulant from their bi-Maxwellian
value. Within the present closure, this fourth-order ten-
sor er includes a contribution proportional to H zq (here
the absence of indices generically stands for the? or k
directions). Rewriting

r � (erbb) = bb� r er + er r � bb; (1)

one sees that it is of interest to examine the well-posedness
of the simpler equation (after neglecting all the terms that
do not contribute in the linear regime as well as the non-
homogenous ones)

@t q � bb� rH zq = 0 : (2)

Let us �rst show that the one-dimensional case along a
prescribed direction making an angle� with the ambi-
ent �eld and parametrized by the abscissa coordinate� , is
well-behaved. One has, in the plane de�ned by the direc-
tion of propagation and the ambient �eld,

bb�r = ( bbx sin � + bbz cos� )@� =
1

jB j
(Bx sin � + Bz cos� )@� :

(3)
Furthermore, the zero divergence condition rewrites

@� (sin �B x + cos �B z ) = 0 (4)

or
sin �B x + cos �B z = B0 cos�: (5)

As a consequence

bb� r =
B0

jB j
cos�@� : (6)
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Furthermore, H z = H � , so

bb� rH z =
B0

jB j
cos�@� H � ; (7)

where in Fourier space the operator@� H � reduces to the
factor �j kj, where k is the Fourier variable conjugate to
� . In this special case, the operator thus also rewrites

bb� rH z =
B0

jB j
@zH z : (8)

Apart from the positive prefactor B0=jB j, Eq. (2) has
the same form as in the purely linear case (i.e.@t q =
�j kz jq) and is thus well behaved, as could be tested in
one-dimensional numerical simulations [10].

Di�erently, in several dimensions, the term bb � rH zq
can lead to a spurious secondary instability in the pres-
ence of magnetic �eld distortion. To analyze the e�ect of a
magnetic �eld perturbation, it will be more convenient for
the sake of simplicity to assume thatbb is constant, making
an angle� with the z-direction (which in reality can only
be true locally). Considering the problem in two space di-
mensions, one has after making a Fourier transform of Eq.
(2)

@t q + ( bbx kx + bbzkz )
kz

jkz j
q = 0 : (9)

It is easily seen that when� � bbx kx kz=jkz j + bbz jkz j < 0,
the corresponding Fourier modes are unstable. The growth
rate can indeed be rewritten� = ( k2=jkz j) cos� cos(� � � ).
Assuming that the angle � is such that cos� > 0, the con-
dition for instability rewrites ( t � 1)(t + 1)( t2 � 2T t �
1) < 0, where t = tan( �= 2) and T = tan � . It is seen
that for small and positive � , all wavenumbers for which
t 2 [� 1; T �

p
T2 + 1] or t 2 [1; T +

p
T2 + 1] are un-

stable. This instability can be exempli�ed numerically by
taking an ambient �eld making a large-scale sinusoidal os-
cillation along the z-direction, with numerical noise on the
density �eld, constant pressures, and zero velocities and
heat 
uxes. During the growth phase of the instability,
the various �elds display small-scale oscillations in direc-
tions nearly perpendicular to the local magnetic �eld, in
regions where the latter is the most distorted. The above
instability, which points out the necessity to accurately
compute the direction of the heat 
ux, could be related to
the one found when solving anisotropic di�usion using �-
nite di�erence schemes that do not preserve monotonicity
[11].

The above discussion sugests a subdominant correction
of the linear Landau damping terms that ensures well-
posedness of the equations. From the previous analysis,
it appears important to have a formulation that does not
refer to a prescribed direction. The point is that when, in
the nonlinear model, the distortion of the ambient �eld
is retained in evaluating the directional derivative bb � r ,
it should be so in the negative Hilbert transform (i.e. the
operator H that should also be evaluated along the actual
magnetic �eld lines). In the very special case where the
perturbation consists in a global rotation of the ambient

�eld which remains uniform, one has (in Fourier space)
H = ibb � k=jbb � k j, while in the general caseH should be
evaluated in the physical space as an integral operator,
which, as already mentioned, is presently hardly feasible.
At this point, some heuristic modeling is to be used. In
order to retain the magnetic line distortion, the procedure
used in [17] consists in replacing the denominator of the
above formula by a typical (and thus �xed) wavenumber,
which up to a multiplicative constant reduces the operator
H to the directional derivative, thus changing the order of
the operator and making the Landau damping essentially
similar to a collisional dissipation along the magnetic �eld
lines. We suggest an alternative description that preserves
the zeroth order of the operator and is exact in the special
case of a uniform �eld, whatever its direction. For this
purpose, we write

H =
FT (bb� r� )

(k � h� i � k )1=2
: (10)

where FT refers to the Fourier transform and the brakets
denote spatial averaging over the whole domain, a descrip-
tion that ensures that the denominator in Eq. (10) is local
in Fourier space. Here we denote� ij = bbi

bbj and we shall
also usen ij = � ij � bbi

bbj .

2.2 The non-gyrotropic pressure tensor

In a similar way, it is also necessary to take into account
the magnetic �eld lines distortion in all the kinetic ef-
fects that are evaluated from the linear kinetic theory and
retained in the FLR Landau 
uid model, in order to pre-
vent the possible development of spurious instabilities in
the multi-dimensional nonlinear regime. As an example,
we shall explain the procedure that has been adopted for
the non-gyrotropic pressure tensor, all the other FLR cor-
rections being treated in a similar way.

The idea is to replace the quantities evaluated from the
linear kinetic theory by expressions that remain intrinsic
whatever the direction of the magnetic �eld and reduce to
the primitive quantities in the linear asymptotics.

We are thus led to replace Eqs. (33) and (38) from [5]
by

r � � = r �
h

� A n � B � � bb+ bb
 � k + � k 
 bb
i

(11)

where � denotes the fundamental antisymetric 3rd-rank
tensor and

� k = � n � rC + � � bb� rD : (12)

It is then necessary to modify the \potentials" A , B, C,
D accordingly, writing intrinsic formulas which are equiv-
alent when neglecting the magnetic �eld line distortion.
As obvious examples, one is led to replace@z by bb� r and,
for a vector �eld V that does not include a mean value of
order unity, r ? � V ? by n : r V .

Note that there is no unique way of writing an \in-
trinsic" formulation starting from linear kinetic formula s.
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A comparison with the exact large-scale nonlinear asymp-
totic expressions ([4] and references therein) nevertheless
provides useful guidelines [18].

3 Numerical simulations

The FLR-Landau 
uid model is numerically integrated
using a Fourier spectral method in a 3D periodic domain
with a physical extension �ve times larger in the paral-
lel than in the perpendicular ones in order to focus on
the quasi-transverse dynamics. A resolution of 1283 grid
points is used, leading to resolve lenghts of the order of a
fraction of the ion gyroradius in the perpendicular direc-
tions. Dealiasing is performed by putting to zero all the
�elds Fourier components outside a cube of side 2kmax =3
for the Alfvenic turbulence runs (Section 3.1) andkmax =2
for the simulations of the mirror instability (Section 3.2) .
The time integration is performed with an explicit 3rd-
order Runge-Kutta scheme, which imposes strong stabil-
ity constraints on the timestep due to the presence of the
electron physics in the Landau damping that must be re-
solved. In all the simulations, no extra dissipation nor �l-
tering is used, the damping provided by the ion and elec-
tron Landau resonances being su�cient to absorb the en-
ergy transferred to small scales by the nonlinear cascade.

3.1 Alfv�en wave turbulence

A simple procedure to generate a turbulence of kinetic
Alfv�en waves (KAWs) is to drive the system by a random
forcing supplemented in the velocity equation, in the form

Fi (t; x) =
X

1<n<N

F 0
i;n cos(! KAW (k n )t � k n �x + � i;n ) (13)

for di�erent wavevectors k n , with F 0
i;n and � i;n being the

amplitude and phase of the nth mode forming the i th

component of the external driver Fi . When taking for
! KAW (k ) the KAW frequency at wavevector k , the sys-
tem will generate KAWs by resonance at this frequency.
KAW frequencies are calculated from the linearized FLR-
Landau 
uid system, using a symbolic mathematics soft-
ware. The dispersion relation is tabulated and used as an
input in the FLR-Landau 
uid code. Eight KAWs (four
forward and four backward propagating waves with an or-
thogonal polarization) making an angle of 80 degrees with
the ambient magnetic �eld are excited at the largest scale.
The driving is turned on (resp. o�) when the sum of the
kinetic and magnetic energies is below (resp. above) a cer-
tain threshold taken such that the typical magnetic �eld

uctuation does not exceed 20% of the ambient �eld mag-
nitude. Here we assume initially equal isotropic ion and
electron temperatures with � = 1.

Interestingly, for these parameters, electron Landau
damping plays an important role in the damping of Alfv�en
waves, even though the smallest considered scale in the
simulation is not smaller than a tenth of the ion gyrora-
dius. This conclusion is reached by comparing two freely
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Fig. 1. Angle-averaged energy spectra as functions of the per-
pendicular wavenumber (in units of d� 1

i ) for kz = 0, of the per-
pendicular magnetic �eld and ion velocity at t = 500 (black and
green lines respectively), together with their average (red and
blue lines respectively) over the time interval 600 < t < 700.
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Fig. 2. Angle-averaged energy spectra as functions of the per-
pendicular wavenumber (in units of d� 1

i ) for kz = 0, of the
number density (red line), of the parallel magnetic �eld 
uc tu-
ation (blue line) and of the perpendicular electric �eld (gr een
line) averaged over the interval 600 < t < 700.

decaying simulations, one with the full model and the
other one using a quasi-normal closure for the electron dy-
namics (zero fourth rank cumulants, and thus no Landau
damping), taking as initial condition a well-developed tur-
bulent state generated with the full model, using Alfv�en
wave forcing. While the former model continues to evolve
in a smooth way, the run where the electron Landau damp-
ing is turned o� rapidly generates a spurious accumulation
of energy at small scales and has to be stopped.

Another interesting point concerns the role of the nongy-
rotropic contributions. Simulations performed without th ese
terms (but still keeping the Hall electric �eld and Landau
dampings) showed some di�erences with the full model
that will not be discussed here, but clearly demonstrate
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that the no-FLR model can also be simulated without ex-
tra dissipation nor �ltering, beyond ion and electron Lan-
dau dampings.

We now discuss a few results of a run which was in-
tegrated in a box of parallel and transversal sizesL k =
196di (here di holds for the ion inertial length) and L ? =
34:6di , during 700 inverse ion cyclotron frequencies
 � 1

i
with a time step equal to �t = 2 � 10� 3
 � 1

i . After t =
600, the situation is statistically stationary. The angle-
averaged transverse magnetic and velocity �eld spectra,
are displayed in Fig. 1 as functions ofk? for kz = 0,
at time t = 500 and after averaging over time between
t = 600 and t = 700. While the parallel spectrum is very
steep (not shown), in agreement with the fact that the
KAW cascade should be anisotropic and mostly in the per-
pendicular directions, a clear power-law behavior with a
slope close to� 2:8 is observed in the transverse directions
at the late times, for a range of wavenumbers extending
from k? di = 2 to the end of the numerical zone (cutting o�
the range associated with dealiasing). In particular, in con-
trast with simulations involving Laplacian-type viscous ef-
fects, no dissipative zone is observed. In the purely per-
pendicular direction, dissipation is mediated by nonlinear
coupling which drains energy to oblique directions where
it can dissipate through Landau damping. Moreover, Lan-
dau damping cannot be viewed as working mostly within
a small-scale dissipation range. The existence of a proper
inertial range, free of injection and dissipation, can thusbe
questioned in this kind of systems. The fact that the simu-
lation does not show any spurious accumulation of energy
at small scales in fact indicates that, within this power-law
range, energy must be dissipated. Even though our model
does not contain a parametrization of the small scales, its
behavior is somewhat reminiscent of the so-called Large
Eddy Simulations [19] where power-law spectra also de-
velop until the smallest retained scale.

The slope of the perpendicular electric �eld spectrum
(shown in Fig. 2 as averaged on the time interval 600<
t < 700) displays, for k? di > 4, a clear power law with a
� 1=3 slope, associated with a� 7=3 range of the parallel
magnetic �eld spectrum. This shallower part is also visi-
ble on the density spectrum, but not on the perpendicular
magnetic �eld, as previously seen. Preliminary analysis
seems to link this part of the spectrum with sharp gra-
dients of Bz in transverse directions, possibly associated
with magnetosonic waves. The slopes of the perpendicular
magnetic spectrum are close to those observed in the So-
lar Wind [20,21] in the so-called dissipation range, where
the spectral exponents range from -2.5 to -2.8, separated
from the usual Kolmogorov inertial range by a transition
zone where the slope can be much steeper. The magnetic
and electric spectra observed in the present simulations
compare also very well with those observed in gyrokinetic
simulations [22].

The transition between the steeper spectrum observed
at t = 500 and the quasi-stationary spectra observed later
is associated with a clear change in the topology of the
typical density structures, from sheets (Fig. 3 left) to �la -
ments (Fig. 3 right) aligned with the local magnetic �eld.

These panels actually display data that have been �l-
tered by removing Fourier modes with k > k max =2, in
order to suppress a small-scale noise that does not a�ect
the dynamics but is associated to the existence of power-
law spectra extending down to the smallest scale. These
spectra are indeed the Fourier signature of physical �elds
which are either just continuous or for which only the
lowest order derivatives are �nite. This transition seems
nevertheless associated to a breakup of the sheets rather
than to a roll up, with a later pile up of the structures
(see Fig. 4 showing a density cut in a plane perpendicular
to the ambient �eld at times t = 500 and t = 600).

Such �lamentary structures are also observed at the
level of the electric current density in isotropic incompress-
ible Hall-MHD [23] and in electron MHD turbulence [24]
where they are shown to be due to the Hall term, standard
MHD rather leading to sheet-like structures. Magnetic
spectra close tok� 8=3 (thus signi�cantly steeper that the
usual k� 7=3 spectra obtained for KAW [25], whistler [26]
or Hall-MHD [27] turbulence on the base of phenomeno-
logical arguments, but which are somewhat closer to the
ones observed in our FLR-Landau 
uid simulations), are
observed in the electron MHD simulations of [24] and
also in simulations of a simple nonlinear 
uid model for
KAWs [28], where the density structures are nevertheless
observed to be sheets. Interestingly, the existence of �l-
aments or sheets in a KAW model has also been shown
to depend on the ratio of di�usive to resistive dampings
[29]. In the present simulations, resistive damping is ab-
sent. Further study is necessary to identify the physical
mechanisms at the origin of this transition between sheets
to �laments, and in particular the role of resistivity due
to collisional e�ects.

The current density also undergoes a transition to-
wards �lamentary structures. It is shown in Fig. 5 at time
t = 500 where sheets (in dark yellow) are still visible. Mag-
netic �eld lines (in green) are also plotted to illustrate
their typical distortion. A few isosurfaces of the density
�eld, taken close to their minimal (in blue) and maximal
(in red) values are also plotted to show that they take
the form of elongated �lamentary structures following the
�eld lines.

The ion velocity �eld is quasi two-dimensional, as shown
in Fig. 6 (top panel) which also shows density isosurfaces
at time t = 550, with a line of sight almost perpendic-
ular to the ambient magnetic �eld. In contrast, the elec-
tron velocity streamlines (Fig. 6, middle panel) have a
more prononced three-dimensional character, with large
parallel velocities in localized regions (right part of the
panel). The bottom panel of Fig. 6 displays the ion veloc-
ity streamlines together with density isosurfaces viewed at
a small angle from the direction of the ambient �eld. A
small density region (top right) is seen in the center of a
vortex, while a sheet-like structure (top left) appears to
be stretched between two co-rotating vortices.

A diagnosis that is often used in the analysis of satellite
data is the so-called magnetic compressibility spectrum,
given by the ratio of the longitudinal to the total magnetic
�eld spectra as a function of the transverse wavenumber.
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Fig. 3. Isosurfaces at 55% of the minimum (blue) and 55% of the maximum (orange) of the density �eld at t = 500 (left) and
t = 600 (right) together with color-scale plots in parallel an d transverse planes. Minimum and maximum values are indicated
on the color bars.

Fig. 4. Cross sections of the density �eld in the upper trans-
verse planes displayed in the left and right panels of Fig. 3

This quantity, averaged over the time interval 600 < t <
700, is shown for the above simulation in Fig. 7 (black
line). A clear signature of KAWs is observed, with a small
value at large scales that increases aroundkdi = 1 and
saturates at values of about 0:4 at small scales, consistent
with the linear kinetic theory [30].

3.2 Formation of mirror structures and development of
mirror turbulence

This FLR-Landau 
uid model can also be used to ad-
dress plasma dynamics in the presence of temperature

anisotropy. In this section, we illustrate this issue with
the development and the nonlinear saturation of the mir-
ror instability, taking � kp = 2, T? p=Tkp = 2, T? e=Tke = 1
and Tke=Tkp = 1. The size and aspect ratio of the sim-
ulation boxes is chosen so that the mode (1,1) is mirror
unstable, leading to the formation of 4 mirror structures.
In this simulation, L ? = 17:6di , L k = 35:1di and the
timestep is �t = 1 :25� 10� 3
 � 1

i .

The simulation is initiated with small random noise on
a uniform density, with zero velocity, uniform magnetic
�eld and pressures and zero heat 
uxes. After a phase
of linear growth, the mirror instability saturates, creati ng
magnetic �eld structures in the form of elongated cigar-
shaped maxima, and minima with a more complex topol-
ogy, in the form of saddles (see Fig. 8, left). As predicted
by the linear theory, anti-correlation between magnetic in-
tensity and perpendicular ion pressure is clearly observed
(not shown). Anti-correlation with density is also visible
in Fig. (8) (left), although in a less obvious way. Interest-
ingly, we observe the presence of quasi two-dimensional ion
velocity �elds (red-yellow lines) surrounding the magnetic
structures, with maximal velocities of the order of 0:2vA .
This regime contrasts with the ordering performed in theo-
retical developments near the mirror instability threshold,
where the velocity �eld is found to be subdominant in a
weakly nonlinear asymptotics [31]. In any realistic situ-
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Fig. 5. Isosurfaces at t = 500 of the current density at 50%
of its maximum value (dark yellow), together with those of
the density (restricted in a sub-domain) at � = 0 :98 (blue)
and at � = 1 :023 (red). Magnetic �elds lines (in green) are
superimposed, indicating that the structures tend to align with
the magnetic �eld.

ation, the deviation to threshold can hardly be so small
as to ensure a quasi-static evolution. It is thus of interest
to investigate the further evolution of these mirror struc-
tures. We show in Fig. 8 (right), a later view (using the
same angle of sight) of the density and magnetic �elds, to-
gether with two cross-sections of thez-component of the
vorticity. The density maxima have evolved in the form
of thin sheets in the strain �eld of two conter-rotating
vortices. The velocity �eld has also developed signi�cant
parallel components, as can be seen in the (red-yellow)
stream lines spiraling along a vortex. The isosurfaces of
the magnetic intensity for values close to its maximum
display ripples which ultimately lead to the formation of
�laments, elongated along the magnetic �eld, which has
relaxed to a much straighter form. The magnetic 
uctua-
tions are at this stage indeed mostly parallel, as can also be
seen from the magnetic compressibility spectrum (Fig. 7,
red line) averaged over the time interval 402:5 < t < 450.
The turbulence that develops in this simulation is thus
signi�cantly di�erent from that resulting from Alfvenic
driving and should be identi�able in space plasma obser-
vations in regions (e.g. behing a shock wave) where the
temperature anisotropy can exceed the threshold of the
mirror instability. The question arises whether the turbu-
lence regime displayed in this simulation is related to the

Fig. 6. Ion (top) and electron (middle) velocity �eld lines to-
gether with isosurfaces of large (red) and small (blue) density

uctuations at t = 550. The bottom panel displays in a view
from above the ion velocity showing vortical motions around
density minima and stretching of large density regions betw een
co-rotating vortices.
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Fig. 7. Magnetic compressibility spectrum as a function of
perpendicular wavenumber (in units of d� 1

i ) of the developed
regime of Alfvenic (black line) and mirror (red line) turbu-
lences.

turbulence seen in the terrestrail magnetosheath where
new power-law spectra, not predicted by the usual turbu-
lence theories, have been reported [32].

4 Conclusion

The preliminary results presented in this paper demon-
strate the capability of the FLR-Landau 
uid model, which
supplements a linear description of the low-frequency ki-
netic e�ects to the usual anisotropic Hall-MHD, to simu-
late turbulence in collisionless plasmas, in the close sub-
ionic range where important dynamical phenomena were
revealed by satellite observations in the Solar Wind or the
terrestrial magnetosheath. In the case of Alfvenic turbu-
lence, the magnetic 
uctuations display power-law spec-
tra with exponents consistent with Solar Wind observa-
tions [21] and gyrokinetic simulations [22], in spite of the
moderate resolution (1283) of the present simulations. In-
deed, retaining ion and electron Landau dampings turns
out to be su�cient to stabilize the numerical scheme and
to permit the extension of the self-similar spectral range
up to the largest retained wavenumber. It is in particular
not necessary to include an arti�cial damping which, for
a given resolution, signi�cantly reduces the extension of
the spectral range e�ectively simulated. Furthermore, in
the presence of temperature anisotropy, the accurate de-
scription of linear Landau damping and FLR corrections
enables the simulation of the mirror instability and of its
nonlinear saturation. On a longer time-scale, the previ-
ously formed pressure balanced structures around which
the existence of a signi�cant, mostly two-dimensional ion
velocity �eld was observed, get distorted, leading to the
development of a turbulence regime which strongly di�ers
from Alfvenic turbulence, in particular at the level of the
spectrum of magnetic compressibility. Another important
result concerns the role of the electron Landau damping
at the ion scale when� is of order unity, an observation

which may question the assumption of isothermal elec-
trons usually made in hybrid simulations.

When compared with fully kinetic simulations in sit-
uations where the distribution functions remain close to
bi-Maxwellian, 
uid models display some interesting as-
pects in spite of the involved approximations. They are
not only less demanding in computational power, but are
also much more 
exible, for example at the level of the
permitted initial conditions and driving processes. Fur-
thermore, as the various terms in the equations can easily
be switched o� and on, they often lead to easier phys-
ical interpretations, allowing for an easy estimate of the
various contributions to a given phenomenon. Another ad-
vantage of 
uid models compared to particle in cell (PIC)
or hybrid PIC methods concerns their low level of numer-
ical noise. Investigation of small-scale turbulence is only
possible if the noise level is su�ciently low compared to
the turbulence energy level, a situation that could require
a prohibitively large number of particles per cell in PIC
simulations.

As already mentioned, the present model retains the
FLR e�ects at the linear level only, as the result of an es-
timate of the nongyrotropic moments by a closure proce-
dure consistent with the low-frequency linear kinetic the-
ory. Di�erently, fully nonlinear expressions of these quan-
tities are available in the literature, at least to leading
order within a large-scale asymptotics. Further develop-
ments should include a mixed description of the FLR ef-
fects, involving a matching between the large-scale non-
linear description and the present kinetic-based closure at
smaller scale, an approach which may be of special interest
for example when addressing questions such as stochastic
the heating of the plasma.

The research leading to these results has received funding from
the European Commission's Seventh Framework Programme
(FP7/2007-2013) under the grant agreement SHOCK (project
number 284515). This work has been performed using the com-
puting facilities provided by the \Mesocentre SIGAMM" hosted
by Observatoire de la Côte d'Azur and using high-performanc e
computing resources from GENCI- IDRIS (Grant i2013047042).
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