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Abstract :  
 
The merger of two identical surface temperature vortices is studied in the surface quasi-geostrophic 
model. The motivation for this study is the observation of the merger of submesoscale vortices in the 
ocean. Firstly, the interaction between two point vortices, in the absence or in the presence of an 
external deformation field, is investigated. The rotation rate of the vortices, their stationary positions and 
the stability of these positions are determined. Then, a numerical model provides the steady states of 
two finite-area, constant-temperature, vortices. Such states are less deformed than their counterparts in 
two-dimensional incompressible flows. Finally, numerical simulations of the nonlinear surface quasi-
geostrophic equations are used to investigate the finite-time evolution of initially identical and 
symmetric, constant temperature vortices. The critical merger distance is obtained and the deformation 
of the vortices before or after merger is determined. The addition of external deformation is shown to 
favor or to oppose merger depending on the orientation of the vortex pair with respect to the strain axes. 
An explanation for this observation is proposed. Conclusions are drawn towards an application of this 
study to oceanic vortices. 
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1 Introduction

The intrinsic or forced instabilities of ocean currents and the turbulent atmospheric forcing
generate energetic motions at the mesoscale in the ocean; these motions have horizontal scales
of 20 to 200 km and advective timescales of a few days to a few weeks (though the lifetime of
these motions can range from a few months to sometimes years). These mesoscale motions
are often composed of vortices (horizontally recirculating motions) but also of meanders and
waves, and the whole oceanic mesoscale circulation is at least as energetic as (and often more
energetic than) the large scale circulation (Zhang et al., 2014).

Once formed, vortices in the ocean can interact if they are locally numerous enough or
close enough. This occurs for instance for Gulf Stream rings, or for Mediterranean Water
eddies near the Iberian coast (Carton et al., 2010; L'Hegaret et al., 2014). These Mediter-
ranean water eddies were shown to interact as a result of their advection by cyclonic partner
vortices. Such collisions of baroclinic cyclone-anticyclone vortex pairs (called "hetons") have
been widely studied in the literature, and shown to be e�cient to lead to the merger of two
vortices (see for instance Sokolovskiy and Verron, 2000a,b; Sokolovskiy and Carton, 2010).
When two like-signed vortices come in close contact, they can merge to form a vortex which
is often larger. Vortex merger has been studied in two-dimensional or quasi-geostrophic mod-
els, relevant to the mesoscale dynamics in the ocean interior (Overman and Zabusky, 1982;
Dritschel, 1985, 1986; Gri�ths and Hop�nger, 1987: Melanderet al., 1987, 1988; Pavia
and Cushman-Roisin, 1990; Carnevale et al. 1991; Carton, 1992; Bertrand and Carton,
1993; Valcke and Verron, 1993; Verron and Valcke, 1994; Yasuda, 1995; Yasuda and Flierl,
1995; Valcke and Verron, 1996, 1997; Yasuda and Flierl, 1997; von Hardenberg et al., 2000;
Dritschel, 2002; Reinaud and Dritschel, 2002; Meunier et al., 2002; Bambrey et al. 2007;
Ozugurlu et al., 2008). Depending on the initial conditions, the merging process can �nally
form one large vortex or two asymmetric vortices. Vortex merger also produces smaller scale
features such as small eddies and �laments. These smaller features compose (in part) the
oceanic submesoscale. It has recently been shown that submesoscale eddies can also merge
and thus form mesoscale vortices (Barbosa Aguiar et al., 2013).

A simple model apt to represent the oceanic submesoscale is the surface quasi-geostrophy
(hereafter SQG). In particular, it is able to represent the dynamics of thermal fronts at the
ocean surface (such fronts are observed daily in the coastal zone for instance, or near intense
jets such as the Gulf Stream). Associated with these fronts are intense upward and down-
ward velocities, which have been proved to be better represented by SQG dynamics than
by 3D QG models (Klein and Lapeyre, 2009). Based on this property, an "e�ective" SQG
method was designed to reconstruct low-frequency, 3D motions, above the thermocline using
high-resolution surface data only (Klein et al., 2009).
Indeed, though the SQG model was originally designed to study the atmospheric motions
at the tropopause (Blumen, 1978; Juckes, 1994; Held et al., 1995), it has been used later to
investigate oceanic submesoscale dynamics, essentially from the point of view of turbulence
(Lapeyre and Klein, 2006). The energy spectra in SQG simulations of turbulence are close
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to those of primitive equation1 simulations, but noticeably di�erent from those of 3D QG
turbulence. One limitation of SQG models for ocean turbulence simulations, though, is the
absence of ageostrophic processes able to transfer energy to small scales (Capet et al., 2008).
Nevertheless, SQG models have proven their ability to represent fairly accurately complex
real situations.

A few studies of single vortex or of vortex pair dynamics have been conducted in SQG,
often concentrating on vortex stability (Juckes, 1995; Muraki and Snyder, 2007; Carton,
2009; Harvey and Ambaum, 2010, 2011; Harvey et al., 2011). Like signed vortex interaction
at di�erent levels (the so-called vortex alignment) was studied in a 3D quasi-geostrophic
model coupled to SQG dynamics (Perrot et al., 2010).
To assess the importance of vortex merger for the growth of submesoscale eddies, we inves-
tigate here the merger of two patches of surface temperature in the SQG model.

The outline of the paper is the following. We will �rst recall the SQG model and physical
con�guration, we will briey analyse the deformation of two �nite-area vortices in a co-
rotating con�guration. Then, using numerical simulations of a SQG model, we will survey
the nonlinear regimes for two such interacting vortices and analyse these regimes. Finally,
conclusions will be provided.

2 Model and parameters

Surface quasi-geostrophy is the geostrophic dynamics of potential temperature anomalies at
the surface of a strati�ed, rotating uid with zero internal potential vorticity.
When the buoyancy frequency is constant,N 2(z0) = N 2

0 , the vertical coordinate can be
rescaled asz = N0z0=f0 where z0 is the physical vertical coordinate; potential vorticity is
then

Q = 0 = [@2
x + @2

y + @2
z ] 

where (x; y; z; t) is the streamfunction.

At the surface of the uid, potential temperature is related to streamfunction in dimen-
sionless form, via� (x; y; t) = @z (x; y; z = 0; t) (the normalization of all variables is given
in Muraki et al., 1999). Potential temperature is advected by the horizontal velocity at the
surface according to

@t � + J ( (z = 0) ; � ) = 0 (1)

with u = � @y  (z = 0) ; v = @x  (z = 0).

Note that this equation can be generalized to accomodate an external (strain or rotation)
�eld, or a mean temperature gradient

@t � + J ( (z = 0) + � (x; y; z = 0) ; � + �� (y)) = 0 (2)
1Primitive equations are Boussinesq, hydrostatic Navier-Stokes equations on a rotating planet
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For instance, � (x; y; z = 0) = (
 =2) (x2 + y2) � (S=2) (x2 � y2) or �� (y) = ��y=L , where

 the rotation rate and S is the strain rate. In this paper, we will assume that there is no
mean temperature gradient�� .
Since potential vorticity is null in the uid interior, a relation holds between temperature
and streamfunction in spectral space

 ̂ (k; l; z; t) =
1
K

�̂ (k; l; t )eKz

wherek and l are the zonal and meridional wavenumbers, andK =
p

k2 + l2. The positive
exponent in the termeKz is related to the application to the ocean wherez < 0 (the surface
lies at z = 0); for atmospheric applications, this term should bee� Kz (for z > 0).

3 Analytical theory of co-rotating surface vortices

3.1 Point vortex approach: co-rotation and steady states

The motion of two surface point vortices, possibly in an external deformation �eld, is driven
by their mutual inuence and by the external velocity �eld (see �gure 1). Calling S the
external strain rate, and 
 the external rotation, the total streamfunction is at point ( x; y)
in the plane,

 (x; y) =  v(x; y) +
S
2

(y2 � x2) +


2

(x2 + y2):

Using polar coordinates (r; � ), the streamfunction reads

 (r; � ) =  v(r; � ) �
Sr2 cos(2� )

2
+


 r 2

2
:

We call (rp(t); � p(t)) and (rp(t); � p(t)+ � ) the instantaneous vortex positions (see again �gure
1). Both vortices have the same strength (equal to the surface integral of temperature, if
the vortices had a �nite area)

� =
Z Z

�dxdy

Initially (and thus at all times), the point vortices and the external �eld are symmetric with
respect to the center of the domain. Therefore, we can study the motion of one vortex only.

The streamfunction created by these point vortices can be calculated from their temperature
distribution (a sum of Dirac's delta functions) via a convolution with a Green's function.
The Green's function for SQG vortices isG(r 0) = 1 =(2�r 0) so that

 v(r; � ) = �= (2�d 1) + �= (2�d 2)

with d2
1 = r 2 + r 2

p � 2rr p cos(� � � p) and d2
2 = r 2 + r 2

p + 2rr p cos(� � � p).

5

Page 5 of 28

URL: http:/mc.manuscriptcentral.com/ggaf  Email: andrew.soward@newcastle.ac.uk

Geophysical & Astrophysical Fluid Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review O
nly

Figure 1: Sketch of the two surface temperature point vortices in the external strain and
rotation �elds.
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Knowing that no point vortex induces velocity on itself, we can use theformula above to
calculate the motion of the point vortex in (rp; (t)� p(t)). The equations for the radial and
orthoradial velocities, are

vr (rp; � p) = _rp(t) = �
1
r

@ 
@�

jr = r p (t );� = � p (t ) = � Srp sin(2� p) (3a)

v� (rp; � p) = rp(t) _� p(t) =
@ 
@r0

jr = r p (t );� = � p (t ) =
� �

8� r 2
p

+ rp
 � Srp cos(2� p) (3b)

where _X denotes the time derivative ofX .

For these equations, we have two sets of steady solutions:
1) If S = 0, then r 3

p = �= (8� 
) is a solution for all � p if this ratio is �nite, and positive.
2) If S 6= 0, then sin(2� p) = 0 (the solution rp = 0 is physically excluded), which leads to a
discrete number of solutions� p = `� n = n�= 2, (n = 0; 1). Then, the corresponding radius
for steady evolution is given by

r 3
p = r 3

n =
�

8� (
 + ( � 1)n+1 S)

if S 6=� 
 and if this ratio is positive.

We linearize the equations of motion around the equilibria and investigate the fate of in-
�nitesimal disturbances r 0 in radius and � 0 in angle.
If S = 0, then the perturbation in radius is invariant and the perturbation in angle varies
linearly. If S 6= 0, the equations are

_r 0 = ( � 1)n+1 2Srn � 0

_� 0 =
3�r 0

8� r 4
n

The stability analysis proceeds by combining these two equations into one forr 0 (or for � 0)
which reads

•r 0+ Ar 0 = 0

whereA = 3(� 1)n S�
4� r 3

n
. If A > 0 then the con�guration is stable. Forn = 0, this implies that

� � S be positive and conversely forn = 1.

In the 2D Euler dynamics, the equations are very similar, but the Green's function is
ln(r )=(2� ) and vorticity replaces temperature anomaly. In 2D dynamics, the stability of
two point vortices in a stationary external ow, is governed by the value ofA = (� 1)n +1 � �S

�r 2
n

,
where � is the circulation (area integral of relative vorticity) in 2D incompressible dynamics
(Perrot and Carton, 2010).
In this case, for stability, � � S has to be negative forn = 0 and conversely forn = 1.
Physically, this is identical to the SQG result. Indeed, positive vorticity corresponds to
negative temperature anomaly, so that� has an opposite sign to �.
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Figure 2: Sketch of the �nite-area surface temperature vortex under the inuence of a distant
point (temperature) vortex.

3.2 Analytical theory of the mutual deformation of �nite-area sur-
face temperature vortices

Next, we study the evolution of two like-signed, �nite core vortices. First, we consider the
vortex pair in the absence of external strain. In this case the two vortices rotate around the
origin. Each vortex can be deformed by its companion's sheared velocity �eld.
If the separation distance between the two vortices is large, the shear induced by a vortex
(of radius R and of uniform temperature� 0) onto another can be represented asymptotically
by that induced by a singularity placed at its centre and of same strength� = �R 2� 0 (see
�gure 2). The point vortex is located at a distanced from the patch (or �nite-area vortex)
and we assume thatR=d = � � 1.

The streamfunction created by the distant point vortex on the �nite-area vortex, at any
point ( r; � ) in the reference frame relative toC2 (see �gure 2), is

 = �= (2�s ) =
�

2� d
(1 + 2( r=d) cos(� ) + r 2=d2)(� 1=2)

From this expression of streamfunction, one can compute the radial and orthoradial velocities

8
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in the same framework

upv
r =

� sin(� )
2� d2

(1 + 2( r=d) cos(� ) + r 2=d2)(� 3=2) (1 + 4( r=d) cos(� ) + 4( r=d)2)1=2

upv
� =

� � [cos(� ) + r=d]
2� d2

(1 + 2( r=d) cos(� ) + r 2=d2)(� 3=2)

Note that C2 rotates aroundO at the rate


 2 = � � 2� 0=d= � �= (�d 3)

In the expressions for the velocity, we now setr = R and use a Taylor expansion in� to �nd

upv
r =

� 0

2
(� 2 sin(� ) �

1
2

� 3 sin(2� ))

The mode 1 component (in sin(� )) corresponds to a displacement. Thus we will compute
the e�ect of the mode 2 component which leads to an elliptical deformation of the �nite-area
vortex.

To �nd the �nite-area vortex contour deformation, one can use the kinematic equation
for the vortex boundary. This equation decribes the motion of any point on this contour in
the rotating frame of reference. The kinematic equation is

@t � + ( u� =R) @� � = ur + upv
r

where ur is the radial velocity of the �nite-area vortex, due to its contour perturbation � .
It can be computed following the formulae provided in Harvey and Ambaum (2010). We
can also replace@t � = � 
 @� � and expand the contour perturbation in Fourier modes of the
angle

� =
X

n

� nexp(in� ):

The kinematic equation can be reordered as

� 
 @� � � upv
r = lim r ! R (ur � (u� =R) @� � )

From this, and setting n = 2, one can �nd the amplitude of the elliptical deformation of the
contour � 2 via

� 2i 
 � 2 + ( i=4) � 0� 3 = (2 i� 0=R) � 2 lim r ! R [E2(r=R) � E1(r=R)]

where

En (r=R) =
Z 1

0
Jn (k)Jn (kr=R)dk

(see Harvey et al., 2011), andJn is the Bessel function of the �rst kind and of ordern. Using
lim r ! R [E2(r=R) � E1(r=R)] = � 2=(3� ) (see again Harvey et al., 2011), we obtain

� 2

R
=

� 3� � 3

16(1 + 3� � 3=4)
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Figure 3: Steady states of two co-rotating surface temperaturevortices, for decreasing inner
abscissa, (a) in the absence of external ow, (b) with a pure strainS = 0:5. The vortices
are con�ned betweenx = a and x = 1; for both cases (without or with external ow), the
steady states fora = 0:9; 0:75; 0:6; 0:45; 0:3; 0:15; 0:1; 0:05; 0:025 are superimposed (hence the
presence of 9 di�erent contours).
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Therefore, the elliptical deformation of the vortices varies as (R=d)3 at large distances. Note
that this deformation is weaker than that due to a companion vortex in 2D incompressible
ows, which varies as (R=d)2 at large distances. Note also that this asymptotic theory cannot
predict deformations for close vortices, hence close co-rotating steady states. To determine
these steady states, we resort to a numerical procedure.

3.3 Numerical determination of steady states of two co-rotating,
�nite area, surface temperature vortices

The steady states of two co-rotating surface vortices are determined using an iterative
method. The �rst guess for the vortex contour is either circular, or the stretched previ-
ous equilibrium. The vortex boundary is con�ned betweenx = a and x = 1. The value of
a is decreased from one case to the next. The method uses the Overman- Zabusky (1982)
desingularized procedure.
It is implemented �rstly in the absence of external deformation �eld. The steady vortex con-
tours are shown on �gure 3, for decreasing values of the innermost edgea of the vortex. In
an equivalent manner, this corresponds to a decreasing distance between the vortex centers.
The various steady states (for various values ofa) are superimposed to show the increas-
ing deformation of the contours as the vortices get closer. As anticipated by the analytical
calculation above, the �rst and dominant deformation of the vortices is the elliptical mode
(azimuthal mode 2; see �gure 3a). Higher modes (like the triangular mode 3) set in when
the vortices are very close.

In the presence of an external deformation �eld (here a strain �eld), the steady states
are more elongated along theOx direction (more squeezed in the transverse direction), and
more elliptical, as expected for a deformation �eld varying quadratically withx and y (see
�gure 3b).

4 Nonlinear regimes of two interacting surface vor-
tices, and their analysis

A numerical model of the SQG equations is used here. This model is based on a projec-
tion/truncation of the equations on Fourier modes (implying periodicity in both horizontal
directions). The domain size is 2� � 2� with 256 or 512 grid points in each direction. Minimal
biharmonic viscosity is used to remove spurious features, resulting from enstrophy accumu-
lation, at small scales: equation (1) is integrated with a right-hand side equal to� 4r 4

h � . In
dimensionless terms, biharmonic viscosity is� 4 = 10� 9 for the 512 x 512 resolution.

The initial condition consists of two patches of uniform potential temperature� 0, of radius
R (R = 0:5 in the numerical model), and lying at a distanced. In the numerical model, the
edges of the vortices are slightly smoothed to avoid the numerical instability (Gibbs' e�ect)
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associated with a discontinuity of temperature anomaly.

4.1 Two-vortex evolution in the absence of external ow

Here, the pseudo-spectral code of the SQG equations is run for two symmetric, initially cir-
cular vortices (with radius R). The initial distance d between the vortex centers is varied.
We note that the self-rotation period, or turn-over period, of a vortex isTv = 2� (in model
time units). The nonlinear evolution of the vortices is described and analysed. We recall that
in 2D (incompressible) dynamics, the critical distance below which the two eddies merge is
about d = (3 :25� 0:05) R. For 3D QG vortex merger (with vortices at the same depth), the
critical merger distance isd = 2:55R (for complete merger; it isd = 2:6R for partial merger;
see Reinaud and Dritschel, 2005, �gure 24).

In the absence of external deformation �eld, the SQG evolutions are the following:
For d=R = 3:5, the two vortices wobble in co-rotation around the center. Their mutual
inuence results in a mode 2 and a mode 4 deformation on their contours. No �lamentation
occurs (see �gure 4a). This is an elastic interaction (see Dritschel, 2002 or Reinaud and
Drischel, 2002).
For d=R = 3:2, the two vortices oscillate in co-rotation, do not touch each other, and adopt
a mostly elliptical shape. Again, this is an elastic interaction.
For d=R = 3:1, the two vortices co-rotate but can temporarily touch at the center of the
plane; once separated they develop elliptical and asymmetric deformations (see �gure 4b).
This evolution can be characterized as a weak exchange.
For d=R = 3:0, the two vortices join at the center, then separate, and this process is repeated
at least four times during the stage of non-viscous evolution. The vortices form a rotating
�gure 8 structure (see �gure 4c).

The time evolution of two steady states (witha = 0:1 and with a = 0:025) in the spectral
code, is shown in appendix. In general, the time evolutions of steady states show vacillations;
these perturbations can be related to the initial interpolation and smoothing of the steady
states in the spectral code2.
We can note (visually) that the evolution of the vortex pair with d=R = 3:1 presents some
similarity with the evolution of the steady state with a = 0:1; to a lesser degree, the evolution
of the vortex pair with d=R = 3:0 resembles that of the steady state witha = 0:025.

For d=R = 2:9, the two vortices merge, separate and then irreversibly merge to form a
vortex with a strong contour deformation, mainly on modes 2 and 4. After a long adjust-
ment period of this merged vortex, asymmetric modes (1 and 3) grow, forming a cusp on the
vortex contour. This asymmetry ampli�es to split the vortex into two vortices of di�erent
sizes which �nally interact again (see �gure 5). This evolution is a partial merger.

For d=R = 2:8, the two vortices merge immediately and irreversibly; they eject �laments

2As mentioned above, smoothing is necessary to avoid the Gibbs' numerical instability
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a)

b)

c)
. t = 20 t = 70 t = 120 t = 170

Figure 4: Time evolution of two surface temperature vortices for row (a)d=R = 3:5; row
(b) d=R = 3:1; row (c) d=R = 3:0 initially. Temperature contour interval is 0.1 (from zero
to unity). Frames are shown every �fty model time units (starting at 20 model time units,
and advancing from left to right). We recall that the self-rotation period of a single vortex
is Tv = 2� model time units.
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. t = 20 t = 40 t = 60

. t = 80 t = 100 t = 120

. t = 140 t = 160 t = 180

Figure 5: Time evolution of the surface temperature vortices ford=R = 2:9 initially (time
advancing from left to right, then from top to bottom); temperature contour interval is 0.1
(from zero to unity). Frames are shown every twenty model time units (starting at 20 model
time units). The self-rotation period of a vortex isTv = 2� model time units.
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a)

b)
. t = 5 t = 35 t = 65 t = 95

Figure 6: Time evolution of the surface temperature vortices for (a)d=R = 2:8, (b) d=R = 2:5
initially. Time advances from left to right. Temperature contour interval is 0.1 (from zero
to unity). Frames are shown every thirty model time units (starting at 5 model time units).
We recall that the self-rotation period of a single vortex isTv = 2� model time units.

which roll up into peripheral vortices. The �nal central vortex is elliptical with a superim-
posed, oscillatory mode 4 deformation; it remains very elongated (see �gure 6a). Again, this
evolution is a partial merger.
For d=R = 2:5, the same process occurs, but the peripheral vortices are �nally absorbed
by the central vortex; the �nal state of this vortex is elliptical (mode 4 is weak); it is less
elongated than ford=R = 2:8, but it does not axisymmetrize (see �gure 6b). This evolution
is a complete merger.

Four main conclusions can be drawn from these simulations:
1) the regime separation between co-rotation and merger is less clear cut than for 2D incom-
pressible ows. But the �nal asymmetric evolution observed ford=R = 2:9 is characteristic
of partial merger, often achieved in QG vortex merger.
2) Near the merging threshold (ind=R), asymmetric (and high) modes of deformation de-
velop on each vortex. They correspond to the tip, or cusp, near the center of the plane.
Merger starts when the two vortices get in contact, on the side of this tip.
3) The critical merger distance for SQG vortices is smaller than for their 2D counterparts.
Considering thed=R = 3:0 and d=R = 2:9 cases as marginal, the merger process without
further breaking is observed only ford=R = 2:8 which is noticeably below the 3:2� 3:3 value
for 2D vortices. This is attributed to the shorter ranged Green's function in SQG dynamics.
4) In SQG dynamics, �laments more easily roll up into small eddies than in 2D dynamics
(as previously observed).
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To support remark (2), we performed a Fourier analysis of the deformation of the co-
rotating vortex contours for d=R = 3:5 and for d=R = 3:1. The initial circular state of the
vortices was substracted from the instantaneous state in the co-rotating frame of reference
and the disturbance was decomposed into azimuthal modes 1 to 4. The amplitude of the
modes of deformation on the vortex contours, versus time, is shown on �gure 7a-b.

In the cased=R = 3:5, mode 2 (of contour deformation) grows the most and the fastest,
followed by mode 4 which is fed by the self interaction of mode 2 (see �gure 7a). The
asymmetric modes remain weaker. Nevertheless, the �nal state is not axisymmetric. Fur-
thermore, viscosity is kept to a minimum which thus prevents a fast damping of smaller-scale
perturbations.
In the cased=R = 3:0, more deformation of the vortices is observed and in particular the
asymmetric modes are stronger than in the previous case, and stronger than mode 4 (see
�gure 7b). This corresponds to the rotating �gure-8 structure. In this structure, each vortex
contour is deformed on modes 2 and 3. The periodic growth and decay of mode 1 correspond
to the radial motion of the vortices towards the center of the plane and to their further re-
traction.

The following analysis quanti�es the modal components of the ow, now computed from
the center of the plane. This analysis focuses therefore more on the �nal product of the ow,
the merged vortex, but it is also able to characterize a ow asymmetry during the unsteady
evolution. The results are shown on �gure 8 ford=R = 2:9 and for d=R = 2:8.
Clearly, in the �rst case, many asymmetric modes grow after about 100 model time units,
corresponding to the breaking up of the merged vortex into two asymmetric fragments. On
the contrary, only modes 2 and 4 are present in the second case, both during vortex merger
and during the pulsation of the merged vortex.
These analyses clearly indicate the importance of the asymmetric modes near the threshold
for merger (in vortex separation). Away from this threshold, the vortex oscillation and co-
rotation, or merger and further pulsation imply mostly the elliptical and square modes of
deformation.

4.2 Vortex pair evolution in the presence of external deformation

The global rotation 
 is chosen positive and equal toj2Sj. The strain S can be positive
or negative. This choice is motivated by the existence of equilibria for the equivalent point
vortices; it is also motivated by a similar choice for the study of 2D vortex merger in the
presence of strain and rotation (Perrot and Carton, 2010).
The vortex centers are initially located along thex-axis. Point vortex theory states that,
under such conditions, there are two possible steady states (along thex-axis or along the
y-axis). The vortex pair is oriented initially along thex-axis (note that orienting them along
the y-axis will give the same results if the sign of the strain is changed).

A series of simulations with the nonlinear model is conducted in the presence of shear
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Figure 7: Time evolution of the modal disturbance (modes 1 to 4) on the vortex contours for
(a) d=R = 3:5 and (b) d=R = 3:1 initially. The modal amplitudes are normalized by their
initial value and are plotted in semilog scale.
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Figure 8: Time evolution of the modal disturbance (modes 1 to 4) computed from the center
of the plane ford=R = 2:9 (top) and d=R = 2:8 (bottom) initially.
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Figure 9: Regime diagram in the (2s; d=R) plane with 
 = j2sj obtained from nonlinear
simulations of two vortex evolution. M denotes vortex merger, MA denotes vortex merger
with �nal asymmetry, CR denotes co-rotation, AS indicates asymmetric evolution into a
large vortex and a smaller one, after merger, OS denotes vortex oscillation around the steady
states, DC denotes an alternation of divergence and convergence of the vortices; �nally, DVM
represents an initial divergence of the vortices followed by a convergence and merger.
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a)

b)
. t = 25 t = 125 t = 225 t = 325

Figure 10: Time evolution of the surface temperature vortices for (a)d=R = 3:0, 
 = 2 S =
0:05 (OS regime); (b)d=R = 4:2, 
 = 2 S = 0:02 (DC regime). Time advances from left
to right. Temperature contour interval is 0.1 (from zero to unity). Frames are shown every
hundred model time units (starting at 25 model time units). We recall that the self-rotation
period of a single vortex isTv = 2� model time units.

and strain. Seven main regimes are observed : (1) symmetric merger, (2) merger followed
by a (weakly) asymmetric evolution, (3) vortex interaction, without complete merger, and
immediately after, asymmetric breaking into a large and a small vortex, (4) co-rotation, (5)
oscillation around the steady states, (6) an alternation of divergence and convergence of the
vortices, (7) an initial divergence of the vortices followed by their convergence and merger
(see �gure 9).
Note that the time evolution of surface temperature maps is shown in �gure 4 for co-rotation
and merger (regimes "CR" and "M") and in �gure 5 for the �nal asymmetric breaking of
the merged vortex (regime "AS"). The other regimes are illustrated in this section.

The asymmetry in vortex evolutions between positive and negative strain is related to
the signs ofS and 
.
For positive strain, there exists a steady state along thex-axis (the distance between the
vortex centers being approximatelyd = 4r0, where r0 is the radius of the �rst steady state
for point vortices (see section 3.1 the formula forrn with n = 0). If the vortices are initially
closer thand, their mutual interaction and deformation should be intense enough to lead
to their merger (though this is not an exact rule, due to the �nite size e�ects). Close to
the steady state distance, the �nite-area vortices oscillate around the equilibrium position
("OS" regime). When the vortices are more distant, the external strain �rst pulls the vor-
tices further apart, as they are aligned with the dilatation axis of the straining �eld. Later,
the vortices are pushed back together as they rotate with respect to the strain axes ("DC"
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