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Abstract In this paper, we model the production and acceleration of thermal runaway electrons during
negative corona flash stages of stepping lightning leaders and the corresponding terrestrial gamma ray
flashes (TGFs) or negative cloud-to-ground (−CG) lightning-produced X-ray bursts in a unified fashion. We
show how the source photon spectrum and fluence depend on the potential drop formed in the lightning
leader tip region during corona flash and how the X-ray burst spectrum progressively converges toward
typical TGF spectrum as the potential drop increases. Additionally, we show that the number of streamers
produced in a negative corona flash, the source electron energy distribution function, the corresponding
number of photons, and the photon energy distribution and transport through the atmosphere up
to low-orbit satellite altitudes exhibit a very strong dependence on this potential drop. This leads to a
threshold effect causing X-rays produced by leaders with potentials lower than those producing typical
TGFs extremely unlikely to be detected by low-orbit satellites. Moreover, from the number of photons in
X-ray bursts produced by −CGs estimated from ground observations, we show that the proportionality
between the number of thermal runaway electrons and the square of the potential drop in the leader
tip region during negative corona flash proposed earlier leads to typical photon fluences on the order
of 1 ph/cm2 at an altitude of 500 km and a radial distance of 200 km for intracloud lightning discharges
producing 300 MV potential drops, which is consistent with observations of TGF fluences and spectra
from satellites.

1. Introduction

X-ray and gamma ray bursts associated with triggered and natural cloud-to-ground lightning discharges have
been observed from the ground [e.g., Moore et al., 2001; Dwyer et al., 2003, 2005]. The energy of individual
photons in these events varies from a few tens of keV to a few MeV [e.g., Schaal et al., 2012]. Moreover, terres-
trial gamma ray flashes (TGFs) detected by satellites involve individual photon energies of a few tens of MeV
[Fishman et al., 1994; Smith et al., 2005; Marisaldi et al., 2010a; Briggs et al., 2010], and there is a growing body of
evidence that TGFs are correlated with the initial stages of intracloud lightning discharges that transport neg-
ative charge upward (intracloud (+IC)) [e.g., Stanley et al., 2006; Shao et al., 2010; Lu et al., 2011; Connaughton
et al., 2010, 2013; Cummer et al., 2011, 2015; Østgaard et al., 2013].

These high-energy phenomena are believed to be caused by the production of runaway electrons. Runaway
electrons are energetic electrons with decreased probability of collision as a result of their high energy, so
that they gain more energy from a given external electric field than the energy they deposit through collisions
[e.g., Dwyer et al., 2012]. As a result, these electrons accelerate on average as long as they propagate under
a sufficiently strong electric field. For electrons propagating in neutral air at ground level, electron collisions
result in a specific dynamic friction with a maximum of ∼260 keV/cm corresponding to an energy of ∼130 eV
[e.g., see Moss et al., 2006, Figure 2]. Beyond that energy, the friction decreases with increasing electron energy
up to the MeV domain. This maximum in the dynamic friction makes it possible to produce a large number of
runaway electrons if the applied field is strong enough. This process is usually named “thermal runaway” and
was described by Gurevich [1961].

The dynamic friction in air also presents a minimum for electrons with an energy of ∼1.3 MeV. In air at ground
level, this minimum is approximately 2.1 keV/cm. As a result, electrons with sufficiently high energy prop-
agating in a field greater than the minimum friction are runaway electrons [Wilson, 1925]. In fact, mostly
due to elastic scattering, the runaway threshold electric field is Erun ≃ 2.8 kV/cm in air at ground level
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[e.g., Dwyer et al., 2012]. While most of ionizing collisions produced by runaway electrons result in low-energy
secondary electrons that are not runaway electrons, there is a probability that a secondary runaway electron
be produced. This situation occurs if the electric field extends over a region that is larger than the correspond-
ing mean-free path of such an ionizing collision. This avalanche mechanism was first reported by Gurevich
et al. [1992] and is now termed relativistic runaway electron avalanche (RREA) [see Dwyer et al., 2012, and
references therein].

Average TGF spectra are very well reproduced by RREA models involving acceleration of runaway electrons in
large-scale (on the order of kilometers) ambient electric fields produced by thunderstorms with amplitudes
greater than the abovementioned runaway threshold field Erun ≃ 2.8 × N∕N0 kV/cm, where N0 is the ground
level air density and N is the air density at a given altitude [Dwyer and Smith, 2005]. It has been theoretically
shown that photon spectra produced by RREAs in large-scale homogeneous electric fields exhibit a robust
characteristic exponential high-energy cutoff (∼7 MeV) in the high-energy part of electron energy distribution
function [see Dwyer et al., 2012, and references therein]. This property weakly depends on the production
altitude and the magnitude of the large-scale homogeneous electric field that sustains the RREA [e.g., Babich
et al., 2004; Dwyer and Smith, 2005]. This signature should therefore be present in the bremsstrahlung photon
spectra produced by RREAs and observed from low-orbit satellites [Dwyer and Smith, 2005]. The fluence of
TGFs is believed to be too high to be produced by RREAs seeded by natural background radiation or cosmic
ray air showers alone, and as a consequence, relativistic feedback mechanisms have been introduced [Dwyer,
2008]. If the ambient field is sufficiently strong, different kinds of large-scale discharges driven by relativistic
particles have been predicted to be produced in thunderstorms using numerical models [Liu and Dwyer, 2013].

X-ray bursts have been observed to be produced during the formation of new leader steps in negative
cloud-to-ground lightning [Dwyer et al., 2005]. Although the energy of these X-ray bursts was found to be
insufficient for the RREA mechanism to be involved [Dwyer et al., 2005], they can be explained by the produc-
tion and acceleration of thermal runaway electrons in the vicinity of the leader tip during negative corona
flash stages of stepping lightning leaders and the subsequent production of bremsstrahlung [Celestin and
Pasko, 2011; Xu et al., 2014]. The same phenomenon could be at the origin of the production of TGFs under the
assumption that high-potential intracloud leaders are involved [Celestin and Pasko, 2011]. Indeed, a very good
agreement between theoretical predictions and the average TGF spectrum measured by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI) satellite has been obtained for lightning discharges forming
potential drops in the leader tip region greater than 100 MV [Xu et al., 2012]. In these high-potential condi-
tions, multiplication of high-energy electrons is present in the electron acceleration region, which therefore
leads to similar spectra as those resulting from RREA models involving acceleration of runaway electrons in
large-scale ambient electric fields. In fact, for lower potential drops, the photon spectrum depends strongly
on the potential drop in the lightning leader tip region, and for potential drops below 100 MV, the high-energy
part of the average TGF RHESSI spectrum (>10 MeV) is not well reproduced [Xu et al., 2012].

In the following, we distinguish the theory of TGF production by feedback-enhanced RREAs seeded by cos-
mic ray secondary electrons in large-scale ambient electric fields from that of direct thermal runaway electron
production/acceleration and their corresponding avalanches in the transient electric field produced in the
lightning leader tip region, as they lead to different testable predictions. For example, in the latter theory, the
TGF source is located in a region around the lightning leader tip spanning a few hundreds of meters, whereas
feedback-enhanced RREA-based models assume that regions with unusually strong ambient electric fields
in thunderstorms extend over distances of several kilometers [e.g., Liu and Dwyer, 2013]. Additionally, optical
emissions produced by these two mechanisms are different [Xu et al., 2015]. Another possible discrimination
between theoretical models of TGF production might be performed on the basis of TGF spectra analysis. Since
the model based on RREAs in large-scale ambient electric fields predicts a robust TGF spectrum observed
by satellites and the leader-based model results are strongly dependent on the leader potential (see discus-
sion below), it might be possible to determine which of the production model is valid based on the intrinsic
variation of individual TGF spectra measured.

In this paper, we model the production and acceleration of high-energy electrons during negative corona
flash stages of stepping intracloud lightning leaders and the corresponding TGFs and CG lightning-related
X-ray bursts in a unified fashion. We show how the source photon spectrum and fluence depend on the
potential drop formed in the lightning leader tip region and how the X-ray burst spectrum progressively con-
verges toward a typical TGF spectrum as the potential drop increases. Additionally, we show that the number
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Figure 1. Electric field with respect to the distance from the leader tip calculated using the method of moments.
The dashed lines represent analytical fits of the numerical solutions calculated using equation (1). Electric fields with
amplitudes greater than 50 kV/cm are not considered in this study (grey area) as they could only be present on very
short timescales. In the Monte Carlo simulations, electrons are injected at the location where the field is equal to
50 kV/cm.

of streamers produced in a negative corona flash, the source electron energy distribution function, the
corresponding number of photons, and the photon energy distribution and transport through the atmo-
sphere up to low-orbit satellite altitudes exhibit a very strong dependence on this potential drop. This leads
to a threshold effect causing X-rays produced by leaders with potentials lower than those producing typical
TGFs extremely unlikely to be detected by low-orbit satellites. Furthermore, we show that the leader-based
model allows a continuous scaling in the number of produced high-energy photons from values characteris-
tic for CG lightning-related bursts up to values typical for TGFs that are consistent with the observed fluences
and spectra.

2. Model Formulation

We first calculate the electric field produced in the vicinity of lightning leader tips during the negative corona
flash stage, i.e., when a new leader step has just formed and the streamer zone is not yet fully developed.
Hence, at this point, the developing streamers do not efficiently screen out the electric field produced by the
leader. The lightning leader is thus considered to be a perfectly conducting cylinder aligned with the ambient
large-scale electric field in the thunderstorm. The polarization of the leader in the ambient field results in a
specific charge distribution that we calculate using the method of moments [Balanis, 1989, p. 670]. The leader
radius is set as 1 cm in all the cases studied in this paper [e.g., see Rakov and Uman, 2003, p. 134]. The charge
distribution on the leader thus depends on two parameters: the length of the leader l and the magnitude
of the ambient field E0. These two quantities are related to the potential difference between the leader tip
and the ambient potential, which is directly connected to the potential drop in the leader tip region (named
“potential drop” in the following for the sake of simplicity), through the simple relation Ul = E0l∕2 [Bazelyan
and Raizer, 2000, p. 54]. In the present paper, we consider five cases corresponding to Ul = 5 MV (l =1 km,
E0 = 0.1 kV/cm), Ul = 10 MV (l = 2 km, E0 = 0.1 kV/cm), Ul = 60 MV (l = 2 km, E0 = 0.6 kV/cm), Ul = 160 MV
(l=4 km, E0 =0.8 kV/cm), and Ul =300 MV (l=6 km, E0 =1 kV/cm).

From the charge distribution obtained numerically through the method of moments, we directly calculate the
electric field produced by the leader additionally to the ambient field and use this result in our Monte Carlo
simulations for electrons. For each potential drop studied in this paper, the electric field is shown in Figure 1
with respect to the distance from the leader tip along the axis of symmetry of the system. An analytical fit of
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the z component of the electric field (i.e., parallel component to the leader channel) is found (see Figure 1)
using the following expression:

Ez(r, z) =
𝛼Ul

(r2 + z2)
𝛽

2

+ E0 (1)

where 𝛼 = 0.066 in SI units and 𝛽 ≃ 1.1. We note that the agreement is particularly good along the axis of
symmetry (r = 0) in the vicinity of the lightning leader tip. For example, in the case Ul = 300 MV, the relative
error is lower than 3% along the axis and lower than 6% in the whole domain. It is interesting to note that this
analytical fit offers a good estimate of the electric field for the broad range of ambient fields and potential
drops used in this paper. We have not empirically found such a simple representation for the r component of
the electric field (i.e., perpendicular component to the leader channel).

To capture the dynamics of the high-energy electrons produced in the vicinity of lightning leaders tip, we
use a Monte Carlo model. This model simulates the dynamics of electrons propagating in air with energies
from sub-eV to GeV. The model has been used in recent studies to quantify thermal runaway electron emis-
sions from streamer discharges [Celestin and Pasko, 2011], properties of RREAs in homogeneous fields, and
the acceleration of electrons in inhomogeneous fields produced by lightning leaders [Celestin et al., 2012; Xu
et al., 2012, 2014]. The initial energy of the thermal runaway electrons is defined as 65 keV because those
are believed to be produced by expanded streamers developing in the vicinity of the leader tip during the
negative corona flash process [Celestin and Pasko, 2011]. However, as electrons strongly accelerate in the field
produced by the leader tip, the exact value of the initial electron energy chosen is unimportant as long as
the initial electrons are in the runaway regime in a given leader electric field. The initial location of electrons
is defined so that the corresponding electric field is 50 kV/cm, which is a reasonable field magnitude at the
leader tip [Bazelyan and Raizer, 2000, pp. 67–68]. This upper limit set on the electric field is important because
following the static vacuum solution given by the method of moments, extremely strong electric fields are
obtained close to the leader tip (see Figure 1). We assume that these strong fields greater than 50 kV/cm at
ground level would not be present if the full dynamics of the stepping process were resolved in our model
(see discussion in Celestin and Pasko [2011]). This strong assumption is made in order to simplify the highly
complex time dynamics of the leader-streamer zone system during the negative corona flash. Therefore, the
full details of the time dynamics of acceleration of the high-energy electrons producing an X-ray burst cannot
be reproduced.

Hence, in the 5 MV, 10 MV, 60 MV, 160 MV, and 300 MV cases, the initial electron positions are, respectively,
set as 8 cm, 15 cm, 90 cm, 2 m, and 3.5 m from the leader tip. The corresponding electric potential drops
between these initial locations and the point beyond which all electrons start decelerating (where the electric
field becomes lower than Erun ≃ 2.8 kV/cm at ground level) are approximately 1.1 MV, 2 MV, 11 MV, 28 MV, and
53 MV, respectively. These potential drops are directly related to the maximum energy that electrons can gain.
However, in the present paper we have chosen to report our results as functions of the potential difference
Ul between the potential at the leader tip and the ambient potential at the same position because it is more
directly connected to physical properties of the causative lightning discharge.

For the sake of simplicity, Monte Carlo simulations of electrons are performed in ground level air density
N=2.688 × 1025 m−3.

Figure 2 is an illustration of thermal runaway electrons produced by negative streamers during the negative
corona flash process subsequent to a leader step formation and their further acceleration in the field produced
by the lightning leader. The deflections of these electrons by nuclei of nitrogen and oxygen molecules pro-
duce bremsstrahlung radiation. The corresponding instantaneous photon energy spectrum S(𝜀𝛾 , t) (in units of
eV−1 s−1) is obtained from the instantaneous normalized energy distribution of electrons f (𝜀, t) at any moment
of time using the Bethe-Heitler differential cross section

d𝜎𝛾
d𝜀𝛾

(𝜀, 𝜀𝛾 ) [e.g., Lehtinen, 2000, pp. 45–49], where 𝜀 is

the kinetic energy of the electron and 𝜀𝛾 is the energy of the produced photon

S(𝜀𝛾 , t) = N ∫ f (𝜀, t)
d𝜎𝛾
d𝜀𝛾

(𝜀, 𝜀𝛾 )ve(𝜀)d𝜀 (2)

where ve(𝜀) = c

√
1 −

(
1 + 𝜀

mc2

)−2
is the relativistic speed of an electron with energy 𝜀 and rest mass m, and

c is the speed of light in vacuum.
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Figure 2. Illustration of the production of runaway electrons and their acceleration in the lightning leader field during
the negative corona flash process.

To evaluate the number of photons produced, we calculate the bremsstrahlung photon production frequency
per electron

⟨
𝜈𝛾
⟩

for electrons with energies greater than 𝜀min at each moment of time as

⟨
𝜈𝛾
⟩
(t) = N ∫

+∞

𝜀min

f (𝜀, t)𝜎𝛾 (𝜀)ve(𝜀)d𝜀 (3)

where 𝜎𝛾 (𝜀) =∫ 𝜀

𝜀min

d𝜎𝛾
d𝜀𝛾

(𝜀, 𝜀𝛾 )d𝜀𝛾 is the total cross section for production of bremsstrahlung photons with

energies greater than 𝜀min by deflections of an electron with energy 𝜀> 𝜀min. The bremsstrahlung photon
production frequency per electron is then multiplied by the total number of electrons Ne(t) with energies
greater than 𝜀min at each moment of time and then integrated over time up to the time at which no electron
with energy greater than 𝜀min is left in the simulation. Thus, we obtain the total number of produced photons
with energy greater than 𝜀min

N𝛾 = ∫
+∞

0
Ne(t)

⟨
𝜈𝛾
⟩
(t)dt (4)

The time-integrated photon spectrum S(𝜀𝛾 ) is obtained by substituting the instantaneous electron distribu-
tion f (𝜀, t) with the time-integrated electron distribution f (𝜀) (weighting f (𝜀, t) by the number of electrons at
any moment of time) in equation (2).

In addition, we use a Monte Carlo model to simulate photon transport through the atmosphere in a similar
way as that described by Østgaard et al. [2008]. Three main collision types for photons with energies between
10 keV and 100 MeV are considered: photoelectric absorption (main process for energies up to ∼30 keV),
Compton scattering (main process from ∼30 keV to ∼30 MeV), and electron-positron pair production (main
process >30 MeV). This model has been validated through calculations of TGF energy spectra based on
RREA theory [Xu et al., 2012]. A very good agreement has been obtained with previously published results
[e.g., Dwyer and Smith, 2005].

3. Results

Figures 3a and 3b, respectively, show simulation results of time-integrated electron energy distribution func-
tions (EEDF) for each lightning leader potential drop magnitude and the corresponding time-integrated
bremsstrahlung photon spectra at the source (photon transport through the atmosphere is not taken into
account at this point) calculated using the formulas described in the previous section. The distributions and
spectra shown in Figure 3 are normalized so that integration over the presented energy range yields one. It
is clear that, as the potential drop in the leader tip region increases, the electron and photon distributions
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Figure 3. (a) Time-integrated electron energy distribution functions for each lightning leader potential drop magnitude used in the present study.
(b) Corresponding bremsstrahlung photon spectra calculated using equation (2).

become more energetic. Although the photon spectra corresponding to different potential drops present
similar features (Figure 3b) with significantly different energies, it is interesting to note that the shapes of
the electron distributions vary significantly as the potential drop increases. Close to the maximum energy
gained by electrons in each case, we can clearly see a peak in the EEDFs corresponding to potential drops for
a few tens of megavolts. However, this feature attenuates as the potential drop increases, as it becomes hardly
noticeable for the 160 MV case and it is not visible in the 300 MV case.

Figure 4 represents the number of electrons with energies greater than 1 MeV obtained in the simulations per
runaway electron initially injected in the system as a function of time. In the 5 MV case, the energy gained by
the accelerating electrons does not reach 1 MeV. For the 10 MV case, nearly only the thermal runaway elec-
trons that were initially injected gain energies greater than 1 MeV, and hence, the number of electrons with
energies greater than 1 MeV per electron initially injected is very close to unity. A more significant amplifica-
tion of high-energy electrons is seen for higher potential drops (see section 4). We emphasize that the results
shown in Figure 4 correspond to an instantaneous injection of all the initial thermal runaway electrons in the
vicinity of the leader tip. The results shown in Figure 4 therefore represent impulse responses of the system.
They can be convolved with the actual time distribution of the production of thermal runaway electrons by
streamer discharges in the negative corona flash in order to obtain the true duration of the process. However,
the highly complex time dynamics of the leader-streamer zone system during the negative corona flash is not

Figure 4. Number of electrons with energies greater than 1 MeV per electron initially injected in the system as a
function of time. The true total duration of the process is longer than shown in this figure as these results correspond to
impulse responses.
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Table 1. Number of High-Energy Photons

>10 keV >1 MeV Total Number of Photonsa

Potential Drop (per Injected Electron) (per Injected Electron) (>10 keV)

5 MV 0.086 0 1011

10 MV 0.21 0.0059 1012

60 MV 3.3 0.53 6 × 1014

160 MV 31.8 6.1 4 × 1016

300 MV 404 79 2 × 1018

aA reference of 1011 photons with energy >10 keV in a 5 MV leader case, which corresponds
to estimates based on the observations of negative cloud-to-ground discharges. From this
reference, we derive the numbers of photons for the other potential drops using the simulation
results (see section 4). If it is assumed that 1012 photons with energies greater than 10 keV are
produced instead of 1011, the total number of photons simply needs to be multiplied by 10.

resolved in our study, and only a simple limit of 50 kV/cm is set on the electric field produced at the leader tip
(see section 2). Investigation of related scenarios is beyond the scope of the present study.

Table 1 shows the number of photons with energies greater than either 10 keV or 1 MeV per electron initially
injected obtained by applying equation (4) to the simulation results presented in this paper and an estimate
of the total number of photons produced for different potential drops in the vicinity of the leader tip. The
total number of photons is obtained by assuming that 1011 photons with energies greater than 10 keV are
produced in the case of a potential drop of 5 MV (see section 4). The number of thermal runaway electrons Nth

initially produced by streamers during the negative corona flash is expected to be proportional to the number
of streamers in the streamer zone Ns, which is theoretically proportional to the square of the potential drop
Ul in the leader tip region [Celestin and Pasko, 2011]:

Nth = 𝜉Ns = 𝜉
𝜋𝜀0U2

l

2E−
s qs

(5)

where 𝜉 is the proportionality constant, 𝜀0 is the permittivity of free space, qs ≃ 1 nC is the typical charge in
the streamer head [Bazelyan and Raizer, 2000, pp. 69–71], and E−

s is the critical field for stable propagation of
negative streamer. Qin and Pasko [2014] have shown that E−

s depends on the specific initial conditions
leading to streamer formation and generally can be greater than 10 kV/cm, while ∼10 kV/cm represents a
good order of magnitude estimate of this field. The proportionality coefficient in equation (5) is obtained from
the assumption that 1011 photons with energies greater than 10 keV are produced in the case of a potential
drop of 5 MV (see section 4). Following this procedure, we find that 𝜉 ≃ 3.4 × 106, which is consistent with
the upper limit of 1010 found by considering that all the streamers eventually constituting the streamer zone
emit runaway electrons when they reached their limit of growth [Celestin and Pasko, 2011; Xu et al., 2014]. The
total number of photons corresponding to other potential drops is obtained through the assumption that
this coefficient does not depend on the potential drop.

Table 2 shows the TGF fluence obtained at an altitude of 500 km and a radial distance from the source of
200 km (subsatellite point-to-source distance) as a function of potential drops formed by lightning leaders.
To calculate these TGF fluences, we have used our Monte Carlo model simulating the transport of photons

Table 2. TGF Fluence at an Altitude of 500 km and a Radial
Distance of 200 km From the Sourcea

Potential Drop Fluence

5 MV 9 × 10−11 ph/cm2

10 MV 5 × 10−9 ph/cm2

60 MV 1.5 × 10−4 ph/cm2

160 MV 0.02 ph/cm2

300 MV 1 ph/cm2

aThe TGF source altitude is chosen at 12 km.
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Figure 5. Calculated TGF fluence as a function of the potential drop formed by the causative lightning leader at an
altitude of 500 km and a radial distance of 200 km from the source. The lower (upper) curve is calculated assuming that
1011 (1012) photons with energies greater than 10 keV are produced by a leader forming a potential drop of 5 MV
(see Table 2). The dashed line represents an effective current threshold of 0.1 cm−2 for TGF satellite detection.

through the atmosphere and the total number of photons >10 keV at the source presented in Table 1. The
radial distance of 200 km is chosen because it corresponds approximately to the maximum probability of
receiving a TGF photon when considering the variation of photon density with radial distance from the source
and the probability for a low-orbit satellite to be at a given radial distance from a TGF source [Celestin and
Pasko, 2012]. Additionally, this radial distance corresponds well to typical radial distances of TGF observations
by Fermi [e.g., Briggs et al., 2013, Figure 8], AGILE [Marisaldi et al., 2010b, 2014], and RHESSI [e.g., Nisi et al.,
2014, Figure 5]. Figure 5 shows the data presented in Table 2 assuming that 1011 to 1012 photons with energies
greater than 10 keV are produced by a leader forming a potential drop of 5 MV.

4. Discussion

It is important to note that, in the present work, the leader channel geometry and amplitudes of ambient
electric field are assumed in order to lead to given leader potential drop Ul. At TGF production altitudes, the
air density is reduced and so is the ambient electric field. From equation (1), it can be shown that the energy
gained by the electrons from their initiation location (corresponding to E = 50 kV/cm ×N∕N0) to the point
where they start decelerating is weakly dependent on the altitude if the ambient electric field amplitude E0

scales with the air density as N∕N0 and if 𝛽 is close to 1. The acceleration length scales as (N0∕N)1∕𝛽 . Therefore,
the energy loss of minimum ionizing electrons over the acceleration region also weakly depends on the source
altitude. Assuming that the electric field in the deceleration region is negligible compared to the dynamic
friction, the deceleration length scales as N0∕N. As 𝛽 ≃ 1, one sees that the dynamics of electrons remains
very similar at different altitudes for a given leader potential drop Ul. However, the propagation length of the
electrons can be significantly increased. For example, a factor of ∼4 should be considered in the propaga-
tion length of electrons at 12 km. Since the propagation length approximately scales as N0∕N, the number of
collisions and the number of electrons and photons produced are weakly dependent of the source altitude.

The ambient electric field E0 should decrease with the altitude to prevent it from reaching unphysical values.
Therefore, using the leader geometry considered in this paper for the sake of simplicity (straight unbranched
leader) to obtain high potential drops Ul leads to required leader lengths that might be too long. However,
we emphasize that the most important lightning parameter assumed here is the potential drop Ul, and other
leader geometries can lead to enhanced potential drops. Mallios et al. [2013] have recently shown that down-
ward positive leaders propagating before the start of the propagation of negative leaders in a bidirectional
intracloud discharge could lead to extreme potentials in the lightning leader as compared to the ambient
potential at the negative leader tip. This idea is supported by the fact that the threshold for initiation and prop-
agation of positive leaders may be lower than that of negative leaders (see discussion in Mallios et al. [2013,
section 4.2]). More specifically, in the case studied by Mallios et al. [2013], a large-scale ambient electric field
of 0.7 kV/cm involved a 300 MV potential drop in front of the leader tip. Those values are consistent with
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those used in the present study. We speculate that such positive and negative lightning leader sequence and
lightning geometry would produce extreme electric potential drops and the related TGFs.

When accelerating in the inhomogeneous electric field produced by a lightning leader during negative corona
flash, the instantaneous EEDF tends to be very hard in energy due to the nonequilibrium acceleration process
as described in Celestin et al. [2012]. After some time, electrons slow down as they reach locations where the
electric field produced by the leader becomes weaker and the corresponding instantaneous EEDF becomes
softer. This whole dynamics results in the time-integrated distributions shown in Figure 3a. For very high
potential drops, the difference between results presented here and results obtained in [Celestin et al., 2012] is
that the acceleration process is not stopped after a few tens of nanoseconds to match the AGILE high-energy
spectrum [Tavani et al., 2011], but is able to continue up until no electron with energy greater than 1 keV is
present in the simulation.

As shown in Figure 3a, a time-integrated EEDF corresponding to strong potential drops resembles the stan-
dard RREA distribution with an exponential cutoff. However, as shown in Figure 3a, the exponential cutoff is
found at 6 MeV, which is lower than the cutoff of ∼7 MeV usually presented in the literature [e.g., Dwyer et al.,
2012]. We have verified that this is caused by the change of the EEDF during the deceleration phase of the
electrons that contributes to the time-integrated distribution. This phase occurs when the electrons reach
locations where the electric field produced by the leader becomes weaker than the relativistic runaway thresh-
old field, and as a consequence, the mean electron energy decreases. Although we have verified that this result
is consistent with RHESSI TGF average spectrum (see discussion below), this feature may be of interest for
further investigation of TGF production mechanisms using future observations. Moreover, from the initiation
to the last electron with energy greater than 1 keV present in the simulation, the propagation zone of runaway
electrons for ground level air density spans approximately 350 m for a potential drop of 300 MV.

The total number of high-energy photons produced during a negative corona flash event is difficult to obtain
from purely theoretical considerations. As of yet, only upper limits had been used [Celestin and Pasko, 2011;
Xu et al., 2012, 2014] employing an assumption that every single streamer in a corona flash produces thermal
runaway electrons with the maximum possible flux [Celestin and Pasko, 2011]. However, observations indicate
that the number of photons with energies greater than 10 keV produced by a negative corona flash of natu-
ral −CG lightning leader is on the order of 1011 –1012 [Saleh et al., 2009; Dwyer et al., 2010; Schaal et al., 2012].
Using numerical modeling, Xu et al. [2014] have shown that 5 MV lightning-stepped leaders would produce
X-ray spectra similar to observational results of Schaal et al. [2012] in terms of general shape and spectral hard-
ness, and this potential drop is also consistent with the size and electric charge of streamer zones inferred from
X-ray observations obtained by Schaal et al. [2014]. It is therefore reasonable to deduce that negative corona
flash produced by natural stepped lightning leader with potential drop of ∼5 MV would produce 1011 –1012

photons with energies greater than 10 keV. This link between modeling and observational results is an impor-
tant point because it yields the missing proportionality constant 𝜉 between the square of the leader potential
drop magnitude and the number of initial thermal runaway electrons (see equation (5)). Once this propor-
tionality constant is known, assuming that it does not depend on the potential drop, one can estimate the
number of high-energy photons for any potential drops. The total number of photons produced for different
potential drops is presented in Table 1 assuming that 1011 photons with energies greater than 10 keV are pro-
duced in the case of a potential drop of 5 MV. If 1012 photons with energies greater than 10 keV are produced
instead of 1011, the total number of photons in Table 1 simply needs to be multiplied by 10.

From the results shown in Table 1, we see that a 300 MV potential drop leads to the production of 1018

photons with energies greater than 10 keV. These photons are produced by high-energy electrons prop-
agating over a total distance of ∼350 m from the initiation to extinction. In fact, the electrons accelerate
over ∼70 m, which corresponds to the location where the electric field magnitude drops below the RREA
threshold of 2.8 kV/cm. The number of electrons with energy greater than 1 MeV continues to increase up
until they reach ∼100 m. These lengths are obtained under ground level air density conditions and would
increase for higher altitudes. Given the photon spectrum obtained for this potential drop (Figure 3b) at the
source, using our Monte Carlo code to simulate the photon transport through the atmosphere, we find that,
for a source at 12 km altitude, a satellite with an altitude of 500 km and a radial distance of 200 km would
measure a photon fluence of ∼1 ph/cm2. This estimate assumes an ideal detector and is in agreement
with satellite observations of TGFs [e.g., Briggs et al., 2010; Gjesteland et al., 2012]. Additionally, applying the
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RHESSI detector response matrix [Dwyer and Smith, 2005; Grefenstette et al., 2009] (available at http://scipp.
ucsc.edu/∼dsmith/tgflib_public/data/), we find that the measured satellite photon spectrum at an altitude of
500 km accumulated for radial distances between 0 and 500 km is in agreement with the average RHESSI TGF
spectrum for TGF sources located between 12 and 15 km altitude (with a better agreement closer to 15 km).
This is consistent with results reported by Xu et al. [2012].

As seen in equation (5), the number of thermal runaway electrons produced during a corona flash is theoreti-
cally proportional to the square of the potential drop formed in front of the lightning leader tip. The electron
energy strongly depends on the leader potential drop (see Figure 3a). The multiplication of runaway elec-
trons and the duration of their propagation in the leader field strongly increase with the leader potential drop
(Figure 4). Hence, the number (see Table 1) and energy (see Figure 3b) of bremsstrahlung photons strongly
increase with the leader potential drop. Finally, the number of photons that can escape into space depends
on the energy and number of photons at the source and is in turn very sensitive to the potential drop in front
of the lightning leader as seen in Table 2. We see in this table that if 300 MV IC lightning leaders are to produce
TGFs with a fluence of 1 ph/cm2, a TGF produced by a leader forming a potential drop only a factor of two lower
would be invisible to usual detectors in space. We can also see that X-ray bursts produced by ICs with poten-
tial drops similar to those of −CGs (between 5 and 10 MV) would not be detectable from space. From these
results, we therefore conclude that the leader producing TGF model predicts that TGFs detected by satellites
represent only a small fraction of a much larger distribution, in agreement with existing observation-based
analyses [Østgaard et al., 2012]. This is clearly shown in Figure 5, where the dashed line corresponds to a flu-
ence 0.1 ph/cm2, an effective current threshold for TGF detection by satellite. This emphasizes the need of
aircraft campaigns to perform measurements as close as possible to the lightning X-ray burst sources [e.g.,
see Smith et al., 2011; Hansen et al., 2013].

5. Conclusions

We summarize the main conclusions of this paper as follows.

1. We have modeled the propagation and multiplication of runaway electrons in the inhomogeneous electric
field formed in front of negative lightning leaders during negative corona flash stages. The lightning-formed
potential drops studied in this paper vary from 5 MV, that are considered to be typical for −CGs, up to 300 MV,
that would be produced by ICs and be the source of TGFs.

2. We have specifically investigated the dependencies on the leader potential drop of the electron energy dis-
tribution, the electron multiplication and propagation, the photon spectrum at the source, and the photon
fluence as observed by satellite.

3. It is found that the source photon spectra become more energetic with increasing lightning leader potential
drops in a continuous fashion and are similar to photon spectra associated with RREAs in large-scale ambient
electric fields for potential drops greater than ∼200 MV, except for a slightly lower exponential cutoff due
to the slowing down of electrons outside the high-field region in the vicinity of the leader tip, in agreement
with the average RHESSI TGF spectrum for source altitudes between 12 and 15 km.

4. Using the number of photons in X-ray bursts produced by −CGs estimated from observations as a reference
point, we have shown that positive intracloud lightning discharges producing 300 MV potential drops would
lead to photon bursts with fluences and spectra consistent with TGF observations. This establishes a clear
physical connection between X-ray bursts produced by lightning leaders and TGFs.

5. Finally, we have estimated that if lightning leaders producing potential drops close to 300 MV during nega-
tive corona flashes are indeed responsible for TGFs, the very strong dependence of the TGF fluence on the
potential drop would make TGFs produced by leaders with slightly lower potential drops (e.g., 160 MV) invis-
ible to usual detectors in space. We therefore conclude that the leader producing TGFs model predicts that
TGFs detected by satellites represent only a small fraction of a much larger distribution in agreement with
conclusions of observation-based studies already published in the literature.
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