Heterogeneous Interaction of H2O2 with TiO2 Surface under Dark and UV Light Irradiation Conditions - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry A Année : 2012

Heterogeneous Interaction of H2O2 with TiO2 Surface under Dark and UV Light Irradiation Conditions

Résumé

The heterogeneous interaction of H2O2 with TiO2 surface was investigated under dark conditions and in the presence of UV light using a low pressure flow tube reactor coupled with a quadrupole mass spectrometer. The uptake coefficients were measured as a function of the initial concentration of gaseous H2O2 ([H2O2]0 = (0.17–120) × 1012 molecules cm–3), irradiance intensity (JNO2 = 0.002–0.012 s–1), relative humidity (RH = 0.003–82%), and temperature (T = 275–320 K). Under dark conditions, a deactivation of TiO2 surface upon exposure to H2O2 was observed, and only initial uptake coefficient of H2O2 was measured, given by the following expression: γ0(dark) = 4.1 × 10–3/(1 + RH0.65) (calculated using BET surface area, estimated conservative uncertainty of 30%) at T = 300 K. The steady-state uptake coefficient measured on UV irradiated TiO2 surface, γss(UV), was found to be independent of RH and showed a strong inverse dependence on [H2O2] and linear dependence on photon flux. In addition, slight negative temperature dependence, γss(UV) = 7.2 × 10–4 exp[(460 ± 80)/T], was observed in the temperature range (275–320) K (with [H2O2] ≈ 5 × 1011 molecules cm–3 and JNO2 = 0.012 s–1). Experiments with NO addition into the reactive system provided indirect evidence for HO2 radical formation upon H2O2 uptake, and the possible reaction mechanism is proposed. Finally, the atmospheric lifetime of H2O2 with respect to the heterogeneous loss on mineral dust was estimated (using the uptake data for TiO2) to be in the range of hours during daytime, i.e., comparable to H2O2 photolysis lifetime (∼1 day), which is the major removal process of hydrogen peroxide in the atmosphere. These data indicate a strong potential impact of H2O2 uptake on mineral aerosol on the HOx chemistry in the troposphere.

Domaines

Chimie
Fichier non déposé

Dates et versions

insu-01334724 , version 1 (21-06-2016)

Identifiants

Citer

Manolis N. Romanias, Atallah El Zein, Yuri Bedjanian. Heterogeneous Interaction of H2O2 with TiO2 Surface under Dark and UV Light Irradiation Conditions. Journal of Physical Chemistry A, 2012, 116 (31), pp.8191−8200. ⟨10.1021/jp305366v⟩. ⟨insu-01334724⟩
41 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More