, Lower Jurassic ammonitiferous concretions from Dorset, Journal of the Geological Society, vol.157, pp.165-172

S. Danise, S. Dominici, and U. Betocchi, Mollusk species at a Pliocene shelf whale fall 623, Palaios, vol.25, pp.449-556, 2010.

P. G. Davis, The bioerosion of bird bones, International Journal of Osteoarchaeology, vol.7, pp.625-388, 1997.

F. Dehairs, R. Chesselet, and J. Jedwab, Discrete suspended particles of barite and the 627 barium cycle in the open Ocean, Earth and Planetary Science Letters, vol.49, pp.528-550, 1980.

J. W. Deming, A. L. Reysenbach, S. A. Macko, and C. R. Smith, Evidence for the microbial 629 basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: bone-630 colonizing bacteria and invertebrate endosymbionts, Microscopy Research and Technique, vol.37, p.170, 1997.

D. L. Distel, A. R. Baco, E. Chuang, W. Morrill, C. Cavanough et al., Do 633 mussels take wooden steps to deep-sea vents?, Nature, vol.403, pp.725-726, 2000.

S. Dominici, E. Cioppi, S. Danise, U. Betocchi, G. Gallai et al., , p.635

S. , Mediterranean fossil whale falls and the adaptation of mollusks to extreme habitats, 636 Geology, vol.37, pp.815-818, 2009.

N. Dubilier, C. Bergin, and C. Lott, Symbiotic diversity in marine animals: the art of 638 harnessing chemosynthesis, Nature Reviews, vol.6, pp.725-740, 2008.

S. Duperon, The diversity of deep-sea mussels and their bacterial symbioses, pp.137-168, 2010.

E. Flügel, Microfacies of carbonate rocks, 2010.

J. L. Goedert, R. L. Squires, and L. G. Barnes, Paleoecology of whale-fall habitats from, p.643, 1995.

, water Oligocene rocks, Olympic Peninsula, Washington state. Palaeogeography, Palaeoclimatology, p.644

, Palaeoecology, vol.118, pp.151-158

S. K. Goffredi, C. K. Paull, K. Fulton-bennett, L. A. Hurtado, and R. C. Vrijenhoek, Unusual 646 benthic fauna associated with a whale fall in Monterey Canyon, California. Deep-Sea Research I, vol.647, issue.51, pp.1295-1306, 2004.

S. K. Goffredi, R. Wilpiszeski, R. Lee, and V. J. Orphan, Temporal evolution of methane 649 cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey 650, 2008.

C. Canyon, The International Society for Microbial Ecology Journal, vol.2, pp.204-220

S. Golubic, I. Friedmann, and J. Schneider, The lithobiontic ecological niche, with special 652 reference to microorganisms, Journal of Sedimentary Petrology, vol.51, pp.475-478, 1981.

S. Golubic, G. Radtke, and T. Le-campion-alsumard, Endolithic fungi in marine 654 ecosystems, Trends in Microbiology, vol.13, pp.229-235, 2005.

M. T. Gonzaléz-munoz, B. Fernández-luque, F. Martínez-ruiz, K. B. Chekroun, and J. M. Arias, , p.656

M. Rodríguez-gallego, M. Martínez-canamero, C. De-linares, and A. Paytan, , p.657, 2003.

, Barite by Myxococcus xanthus: Possible implications for the biogeochemical cycle of Barium, 658 Applied and Environmental Microbiology, vol.69, pp.5722-5725

K. Hachiya, A unique community in the reduced environment found from the Morozaki 660, 1992.

. Group, Kaseki no Tomo (Pubblication of the Tokai Fossil Society, vol.39, pp.37-41

C. J. Hackett, Microscopical focal destruction (tunnels) in exhumed human bones, 1981.

, Science and the Law, vol.21, pp.243-265

N. D. Higgs, A. G. Glover, T. G. Dahlgren, and C. T. Little, Using computed-tomography to 664 document borings by Osedax mucofloris in whale bone, Cahiers de Marine Biologie, vol.51, pp.401-405, 2010.

N. D. Higgs, C. T. Little, A. G. Glover, T. G. Dahlgren, C. R. Smith et al., , 2011.

, Evidence of Osedax worm borings in Pliocene (~3 Ma) whale bone from the Mediterranean

, Historical Biology

J. F. Hubert, P. T. Panish, K. S. Prostak, and D. J. Chure, Chemistry, microstructure, p.669, 1996.

, diagenetic model of Jurassic dinosaur bones, vol.66, pp.531-547

M. M. Jans, Microbial bioerosion of bone -a review, Current development in Bioerosion. Erlangen Earth Conference Series, pp.397-413, 2008.

J. Jehli?ka and C. Bény, Application of Raman microspectrometry in the study of structural 674 changes in Precambrian kerogens during regional metamorphism, Organic Geochemistry, vol.18, pp.211-675, 1992.

W. J. Jones, Y. J. Won, P. A. Maas, P. J. Smith, R. A. Lutz et al., Evolution 677 of habitat use by deep-sea mussels, Marine Biology, vol.148, pp.841-851, 2006.

A. Kaim, Y. Kobayashi, H. Echizenya, R. G. Jenkins, and K. Tanabe, Chemosynthesis 679 based associations on Cretaceous plesiosaurid carcasses, Acta Palaeontologica Polonica, vol.53, pp.97-104, 2008.

Y. Kano, S. Chiba, and T. Kase, Major adaptive radiation in neritopsine gastropods 681 estimated from 28S rRNA sequences and fossil records, Proceedings of the Royal Society, p.682, 2002.

, London B, vol.269, pp.2457-2465

M. Kastner, Control of dolomite formation, Nature, vol.311, pp.410-411, 1984.

S. Kiel, Fossil evidence for micro-and macrofaunal utilization of large nektonfalls: 685 examples from early Cenozoic deep-water sediments in Washington State, p.686, 2008.

, Palaeoclimatology, Palaeoecology, vol.267, pp.161-174

S. Kiel and J. L. Goedert, Deep-sea food bonanzas: early Cenozoic whale-fall communities 688 resemble wood-fall rather than seep communities, Proceedings of the Royal Society of London B, vol.689, pp.2625-2631, 2006.

S. Kiel and C. T. Little, Cold-seep mollusks are older than the general marine mollusk 691 fauna, Science, vol.313, pp.8656-8659, 2006.

R. A. Koski, P. F. Lonsdale, W. C. Shanks, M. E. Vemdt, and S. S. Howe, Mineralogy and 696 geochemistry of a sediment hosted hydrothermal sulfide deposits from the southern trough of the 697, 1985.

, Journal of Geophysical Research, vol.90, pp.6695-6707

A. B. Kudryavtsev, J. W. Schopf, D. G. Agresti, and T. J. Wdowiak, In situ laser-Raman 699 imagery of Precambrian microscopic fossils, Proceedings of the National Academy of Sciences 700 USA 98, pp.823-826, 2001.

T. A. Laetsch and R. T. Downs, Software for identification and refinement of cell parameters 702 from powder diffraction data of minerals using the RRUFF Project, American Mineralogist, vol.703, 2006.

, Crystal Structure Databases. Program and Abstracts of the 19th General Meeting of the 704 International Mineralogical Association in, pp.8-25

R. L. Lyman, Vertebrate taphonomy, 1994.

C. P. Marshall, H. G. Edwards, and J. Jehlicka, Understanding the application of Raman 707 spectroscopy to the detection of traces of life, Astrobiology, vol.10, pp.229-243, 2010.

S. J. Mazzullo, Organogenic dolomitization in peritidal to deep-sea sediments, Journal, p.709, 2000.

, Sedimentary Research, vol.70, pp.10-23

N. Mcloughlin, M. D. Brasier, D. Wacey, O. R. Green, and R. S. Perry, On Biogenicity 711 Criteria for Endolithic Microborings on Early Earth and Beyond, vol.7, pp.10-26, 2007.

P. S. Mozley and S. J. Buns, Oxygen and carbon isotopic composition of marine carbonate 713 concretions: an overview, Journal of Sedimentary Petrology, vol.63, pp.73-83, 1993.

T. Naganuma, H. Wada, and K. Fujioka, Biological community and sediment fatty acids 715 associated with the deep-sea whale skeleton at the Torishima Seamount, Journal of Oceanography, vol.716, pp.1-15, 1996.

E. A. Nesbitt, A novel trophic relationship between cassid gastropods and mysticete 718 whale carcasses, Lethaia, vol.38, pp.17-25, 2005.

J. D. Pasteris and B. Wopenka, Necessary, but not sufficient: Raman identification of 720 disordered carbon as a signature of ancient life, Astrobiology, vol.3, pp.727-738, 2003.

A. Paytan and E. M. Griffith, Marine barite: Recorder of variations in ocean export 722 productivity, Deep-Sea Research II, vol.54, pp.687-705, 2007.

J. Peckmann and V. Thiel, Carbon cycling at ancient methane-seeps, Chemical Geology, vol.724, pp.443-467, 2004.

H. U. Pfretzschner, Pyrite in fossil bone, Neues Jahrbuch für Geologie und Paläontologie 726 Abhandlungen, vol.220, pp.1-23, 2001.

H. U. Pfretzschner, Fossilization of Haversian bone in aquatic environments, Comptes, vol.728, 2004.

, Rendus Palevol, vol.3, pp.605-616

N. D. Pyenson and D. M. Haasl, Miocene whale-fall from California demonstrates that 730 cetacean size did not determine the evolution of modern whale-fall communities, Biology Letters, vol.731, pp.709-711, 2007.

R. Raiswell and Q. J. Fisher, Mudrock-hosted carbonate concretions: a review of growth 733 mechanisms and their influence on chemical and isotopic compostion, Journal of the Geological 734 Society, vol.157, pp.239-251, 2000.

R. Riding and S. Tomás, Stromatolite reef crusts, Early Cretaceous, Spain; bacterial origin 736 of in situ-precipitated peloid microspar?, Sedimentology, vol.53, pp.23-34, 2006.

W. Schäfer, Ecology and palaeoecology of marine environments, 1972.

G. Schumann, W. Manz, J. Reitner, and M. Lustrino, Ancient fungal life in North Pacific 740, 2004.

, Eocene oceanic crust. Geomicrobiology Journal, vol.21, pp.241-246

J. M. Senko, B. S. Campbell, J. R. Henriksen, M. S. Elshahed, T. A. Dewers et al., Barite deposition resulting from phototrophic sulfide-oxidizing bacterial activity, Cosmochimica Acta, vol.742, pp.773-780, 2004.

R. S. Shapiro, Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: 745 Relevance to, Astrobiology. Astrobiology, vol.4, pp.438-449, 2004.

R. S. Shapiro and E. Spangler, Bacterial fossil record in whale-falls: Petrographic evidence 747 of microbial sulfate reduction, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.274, pp.196-203, 2009.

C. R. Smith, Bigger is better: the role of whales as detritus in marine ecosystems, p.749, 2006.

J. A. Estes, D. P. De-master, R. L. Brownell, and D. F. Doak, Whales, p.750

C. R. Smith and A. R. Baco, Ecology of whale falls at the deep-sea floor. Oceanography and 752 Marine Biology: an, Annual Review, vol.41, pp.311-354, 2003.

C. R. Smith, H. L. Maybaum, A. R. Baco, R. H. Pope, S. D. Carpenter et al., , p.754

S. A. Deming and J. W. , , 1998.

, Northeast Pacific: macrofaunal, microbial and bioturbation effects. Deep-Sea Research II, vol.45, pp.335-756

R. L. Squires, J. L. Goedert, and L. G. Barnes, Whale carcasses, Nature, vol.349, p.574, 1991.

M. G. Stamatakis and J. R. Hein, Origin of barite in tertiary marine sedimentary rocks from 759, 1993.

L. Island and . Greece, Economic Geology, vol.88, pp.91-103

M. E. Torres, G. Bohrmann, T. E. Dubé, and F. G. Poole, Formation of modern and Paleozoic 761 stratiform barite at cold methane seeps on continental margins, Geology, vol.31, pp.897-900, 2003.

T. Treude, C. R. Smith, F. Wenzhöfer, E. Carney, A. F. Bernardino et al., , p.763

M. Boetius and A. , Biogeochemistry of a deep-sea whale fall: sulphate reduction, sulfide efflux 764 and methanogenesis, Marine Ecology Progress Series, vol.382, pp.1-21, 2009.

C. N. Trueman and D. M. Martill, The long-term survival of bone: the role of bioerosion, 2002.

, Archaeometry, vol.44, pp.371-382

G. Turner-walker, The chemical and microbial degradation of bones and teeth, p.768, 2008.

R. Pinhasi, Advances in human paleopathology, p.29

G. Turner-walker, C. M. Nielsen-marsh, U. Syversen, H. Kars, and M. J. Collins, Sub-771 micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone, 772 International Journal of Osteoarchaeology, vol.12, pp.407-414, 2002.

M. Veronesi, Analisi sedimentoloigico-stratigrafica sulle Arenarie di M, p.774, 1997.

P. , , p.139

O. Wings, Authigenic minerals in fossil bones from the Mesozoic of England: poor 777 correlation with depositional environments, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.778, pp.15-32, 2004.

, -5 ?m) microcrystalline dolomite (md) and the well developed rhombohedra on the external part 831 (arrows). F. Pyrite framboids (py) partially oxidized into lepidocrocite (lep) and closely associated 832 with small rhombohedral dolomite (rd)

, Transmitted light photomicrographs of petrographic thin sections showing rosette-like 837 cements lining whale bones. A. Rosette-like structures (white arrows) close to bone trabeculae and 838 embedded in sparry calcite. Rosette-like structures occur typically as isolated and paired bodies, or 839 in small aggregates

, Note also the osteocytes (black arrow) within the whale bone. B. Detail of rosette-like structures 841 formed by few small pyrite framboids (py) surrounded by rhombohedral dolomite crystals

, Raman spectra of the carbonate cements filling cancellous bones and of pyrite-lepidocrocite 845

, Raman spectral signature of rhombohedral dolomite crystals and sparry calcite

, Note the presence of well-defined D 847 (1350 cm -1 ) and G (1600 cm -1 ) peaks associated with both the dolomite crystals and pyrite, vol.848

, Transmitted light photomicrographs of petrographic thin sections showing Type 1 852 microborings in cancellous and compact bones. A. Trabeculae of cancellous bones (wb) intensely 853 bored by Type 1 microborings (arrows). Cancellous bones are filled with clotted dolomite, p.854

, micropeloids (mp) and sparry calcite (sc). B. Detail of Type 1 microborings within trabecular