The fate of C4 and C3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

To cite this version:

HAL Id: insu-01321951
https://hal-insu.archives-ouvertes.fr/insu-01321951
Submitted on 30 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License
Accepted Manuscript

Title: The fate of C4 and C3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

PII: S0075-9511(16)30022-6
DOI: http://dx.doi.org/doi:10.1016/j.limno.2016.03.008
Reference: LIMNO 25510

To appear in:

Received date: 15-5-2015
Revised date: 1-3-2016
Accepted date: 6-3-2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The fate of C\textsubscript{4} and C\textsubscript{3} macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

J.M. Mortillaro1,*, C. Passarelli1, G. Abril2,3, C. Hubas1, P. Alberic4, L.F. Artigas5, M.F. Benedetti6, N. Thiney1, P. Moreira-Turcq7, M. Perez3,6, L.O. Vidal8, T. Meziane1

1 Unité Mixte de Recherche Biologie des organismes et écosystèmes aquatiques (BOREA UMR 7208), Sorbonne Université, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, CNRS, IRD, CP53, 61 rue Buffon 75005 Paris, France
2 Laboratoire Environnement et Paléoenvironnements Océanique (EPOC) UMR-CNRS 5805, Université de Bordeaux, Allée Geoffroy Saint-Hilaire 33615 Pessac, France
3 Universidade Federal Fluminense, Department of Geochemistry, Niteroi, Rio de Janeiro, Brazil
4 Institut des Sciences de la Terre d'Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
5 Laboratoire d'Océanologie et Géosciences (LOG), UMR-CNRS-ULCO-UL1 8187, Université du Littoral Côte d'Opale (ULCO), 32 avenue Foch, 62930 Wimereux, France
6 Equipe Géochimie des Eaux, Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
7 Institut de Recherche pour le Développement, 32 avenue Henri Varagnat, 93143 Bondy, France
8 Laboratório de Ecologia Aquática, Departamento de Biologia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, MG 36036-900 Juiz de Fora, Brazil

* Corresponding author: Tel: +33 4 6761 4467

E-mail: jean-michel.mortillaro@cirad.fr

Abbreviated title: Degradation of central Amazon macrophytes

Keywords: Central Amazon, floodplains, fatty acids, stable isotopes, macrophytes, degradation
Summary
The central Amazon floodplains are particularly productive ecosystems, where a large diversity of organic carbon sources are available for aquatic organisms. Despite the fact that C₄ macrophytes generally produce larger biomasses than C₃ macrophytes, food webs in the central Amazon floodplains appear dominantly based on a C₃ carbon source.

In order to investigate the respective fate and degradation patterns of C₄ and C₃ aquatic plant-derived material in central Amazon floodplains, we developed a 23-days batch experiment. Fatty acid and carbon concentrations as well as stable isotope compositions were monitored over time in 60 L tanks. These tanks contained Amazon water, with different biomasses of C₃ and C₄ macrophyte, representative of in situ densities occurring in central Amazon floodplains.

In the C₄ Paspalum repens treatments, organic (POC, DOC) and inorganic carbon (DIC) got rapidly enriched in 13C, whereas in the C₃ Salvinia auriculata treatments, POC and DOC showed little change in concentration and isotopic composition, and DIC got depleted in 13C. The contribution of P. repens to POC and DOC was estimated to reach up to 94.2 and 70.7 %, respectively. In contrast, no differences were reported between the C₃ S. auriculata and control treatments, an observation attributed to the lower C₃ biomass encountered in the field, to a slower degradation rate of C₃ compared to C₄ compounds, and to similar isotopic compositions for river POC and DOC, and C₃ compounds.

The 13C enrichments of POC, DOC, and DIC from P. repens treatments were attributed to an enhanced bacterially-mediated hydrolysis and mineralization of C₄ material. Evolutions of bacterial abundance and branched fatty acid concentrations confirmed the role of heterotrophic microbial communities in the high P. repens decomposition rate. Our experiment highlights the predominant role of C₄ aquatic plants, as a large source of almost entirely biodegradable organic matter available for heterotrophic activity and CO₂ outgassing to the atmosphere.
Introduction

One of the largest sources of organic carbon in Amazon floodplains is derived from aquatic macrophytes, which contribute up to half of the ecosystem primary production (Melack & Forsberg, 2001). These macrophytes grow emerged, submerged or floating, with 388 species described in a várzea (i.e. white-water nutrient rich floodplain) located near the city of Manaus, in central Amazon (Junk & Piedade, 1993b). Among the most abundant species, the floating grasses *Echinochloa polystachya* and *Paspalum fasciculatum* (Poaceae family) can reach biomasses of 80 and 60 t ha$^{-1}$, respectively (Junk & Piedade, 1993a; Piedade et al., 1991). Another macrophyte largely represented in the várzea is *P. repens* (up to 22 t ha$^{-1}$, Fig. 1, Junk & Piedade, 1993a). These aerial species, which convert atmospheric carbon dioxide into biomass through a C$_4$ pathway, constitute floating meadows that can extend over large areas of floodplains (Junk & Howard-Williams, 1984; Hess et al., 2003; Silva et al., 2013). Amazon floating meadows may also be composed of macrophytes using the C$_3$ photosynthetic pathway such as *Eichhornia* sp., *Pistia stratiotes* and *Salvinia auriculata* (Fig. 1). However, the biomass of all these C$_3$ macrophytes add up to 3 to 15 t ha$^{-1}$ only (Furch & Junk, 1992).

The ecology of C$_3$ and C$_4$ macrophytes, and particularly their biomass and production rates, have been thoroughly examined (e.g. Morison et al., 2000; Engle et al., 2008; Silva et al., 2013). Despite their large abundance, C$_4$ macrophytes constitute a minor source of energy for Amazon aquatic food webs (Hamilton et al., 1992; Forsberg et al., 1993; Mortillaro et al., 2015) and modest contributors to particulate organic carbon (POC, Hedges et al., 1986; Mortillaro et al., 2011; Moreira-Turcq et al., 2013). Indeed, C$_4$ macrophytes are largely 13C enriched (-12‰, Hedges et al., 1986; Mortillaro et al., 2011) compared to POC in rivers and várzea of the Amazon (-30‰, Quay et al., 1992; Hedges et al., 1994). The almost constant isotopic composition of dissolved organic carbon (DOC), at around -29‰ in the Amazon River, suggests a dominant C$_3$ source such as terrestrial plants and/or macrophytes. In contrast, dissolved inorganic carbon (DIC) is much heavier (-17.7 to -11.5‰, Quay et al., 1992), i.e. closer to C$_4$ macrophytes signature, but also closer to the signature of atmospheric CO$_2$. This isotopic composition results from isotopic equilibration induced by CO$_2$ gas exchange (Quay et al., 1992; Hedges et al., 1994; Mayorga et al., 2005; Abril et al., 2014), and/or due to carbonate mineral weathering (e.g. chemical or mechanical decay of rocks, Mayorga et al., 2005).
Previous macrophyte (C\textsubscript{3} and C\textsubscript{4}) degradation experiments in litterbags, exposed to natural weathering, found an initially rapid loss of weight and a decrease in nutrients (Howard-Williams & Junk, 1976; Furch & Junk, 1992). However, the contribution of macrophytes to the Amazon aquatic food webs was not verified by Fellerhoff et al. (2003) in their degradation experiment. Therefore, in order to examine the apparent discrepancy between the high biomass of C\textsubscript{4} macrophytes in the floodplains and their modest contribution to the organic matter (OM) pool in the Amazon river-floodplain ecosystem, a degradation experiment was designed to investigate the fate of carbon from C\textsubscript{4} and C\textsubscript{3} macrophytes in microcosms. Particulate and dissolved carbon concentrations, stable isotope compositions and fatty acids (FA) concentrations, were analyzed in large volumes of Amazon waters incubated with variable amounts of a C\textsubscript{4} and a C\textsubscript{3} macrophyte. Bacterial abundance and nutrient concentrations complemented the description of macrophyte degradation throughout a 23-day experiment. Our work hypothesis was that very fast decomposition and mineralization of C\textsubscript{4} macrophytes explain their low contribution to central Amazon aquatic food webs.

Material and methods

Sampling

In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of *P. repens* (C\textsubscript{4}) and *S. auriculata* (C\textsubscript{3}, Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. *Eichhornia* sp. and *Pistia stratiotes*), as characterized in a previous study (Mortillaro et al., 2011).

Macrophyte samples were sorted in order to eliminate dead leaves and washed to remove sediment and invertebrates. About 900 L of water were also sampled from the lake and distributed into 15 microcosms of 60 L each. Three water samples and three portions of each macrophyte were collected in order to get their initial composition (i.e. stable isotopes and FA).

Experimental setup

The experiment was implemented on the Yane José IV boat in August-September 2010. Five experimental treatments were used: high and low biomasses of *P. repens* (PR-HB and PR-LB, respectively) and *S. auriculata* (SA-HB and SA-LB, respectively), as well as a control.
without macrophyte (Ctrl). These five treatments were selected to distinguish species effect from biomass effect on water characterization. For each treatment, triplicate microcosms were used. In PR-HB microcosms, 250 g of fresh *P. repens* leaves (25.6 gC) were used. This amount was estimated from a maximum dry biomass of 22 t ha\(^{-1}\) (recorded in the Janauari Lake near Camaleão Lake, Junk & Piedade, 1993a), with less than one fifth of emerged *P. repens* biomass (Silva et al., 2009), an estimated water proportion of 75.9 % and a microcosms surface of 0.13 m\(^2\). Similarly, the mean *S. auriculata* dry biomass was estimated to be 1 t ha\(^{-1}\) (Junk & Piedade, 1997) giving a theoretical wet weight of 200 g (93.5 % of water). However, low biomasses of *S. auriculata* were available during sampling, so that only 100 g (2.3 gC) per microcosm were used (SA-HB). Low biomass treatments contained 10 % of the high biomass amount for each species (25 g of macrophytes for PR-LB and 10 g for SA-LB). Macrophyte leaves were introduced into microcosms filled with floodplain water, and were kept in the dark under constant temperature conditions (28 °C). Permanent stirring with a water pump ensured oxygenation of the microcosms (from 40 to 100 % air-saturation) and avoided anaerobic conditions to occur. Although low dissolved oxygen is common under floating macrophytes in várzea (~50 % saturation, Engle & Melack, 1993), permanent oxygenation was maintained in order to match natural conditions within floating meadows in open waters, where wind and water currents are sufficient to maintain aerated to hypoxic waters (30 % min) in 2-6 meter depth water column (Vidal et al., 2015).

In each treatment, samples were collected after 3, 6, 12, 18 and 23 days of experiment. At each sampling time, around 3.5 L of water were collected and pre-filtered on 200 µm to avoid heterogeneity between samples due to contamination with macrophyte fragments. Consequently, POC concentrations reported here concern the fraction smaller than 200 µm. Microcosms volume (60 L) was chosen so that at the end of the experiment, 70 % of the initial water volume was still available, to avoid any concentration bias in the course of the experiment.

Sample analyses

The FA compositions of POM and macrophytes were analyzed with a gas chromatograph (Varian CP-3800 with flame ionization detector) after extraction, following a modified method of Bligh & Dyer (1959) as described in Mortillaro et al. (2011). POM samples were obtained after immediate on-board filtration (GF/F, 0.7 µm, pre-combusted 12 h at 450 °C) using a vacuum system under low pressure, after which filters were freeze dried and stored at -20 °C until analysis. The carbon and nitrogen compositions, and isotopic ratio (\(^{13}\)C/\(^{12}\)C or \(^{15}\)N/\(^{14}\)N), of dried POM and macrophyte samples were determined at the UC Davis Stable
Isotope Facility and reported in standard delta notation (δ^{13}C or δ^{15}N), defined as parts per
thousand ($\‰$) deviation from a standard (Vienna PeeDee Belemnite for δ^{13}C and atmospheric
N_2 for δ^{15}N, Peterson & Fry, 1987). The DOC concentrations and isotopic compositions
(δ^{13}C-DOC) were determined using an EA-IRMS analyzer following the protocol of Alberic
(2011). The DIC isotopic compositions (δ^{13}C-DIC) were also determined using an EA-IRMS
analyser following the protocol of Bouillon et al. (2007). However, DIC concentrations were
not measured, as microcosms were continuously aerated with pumps. The concentration of
nitrites (NO$_2$), nitrates (NO$_3$) and ammonium (NH$_4$) dissolved fractions, summarized as
DIN (dissolved inorganic nitrogen), as well as orthophosphate concentrations (PO$_4^{3-}$) were
determined by spectrophotometry following a modified method of Grasshoff (1999). Total
bacterial abundances were determined by direct epifluorescence microscopy counting, using
4,6-diamidino-2-phenyl-indole (DAPI) up to a final concentration of 1 µg mL$^{-1}$ after 15 min
of incubation (Porter & Feig, 1980). Direct counts were performed at 1 250x magnification,
under an epifluorescence microscope (Leica Leitz DMR; 365 nm). In turbid samples (high
suspected matter content), subsamples were pre-treated (before staining) by addition of
150 µl of Tween, sonicated at 35 kHz for 5 min, and centrifuged at 3 000 g during 10 min at
4 °C (Chevaldonne & Godfroy, 1997; Hubas et al., 2007a, 2007b).

Data analysis

The data obtained for each microcosm were compared, to evidence variations between
treatments. All FA of POM (up to 40) were used in these analyzes without transformation and
were represented by their relative proportions. A dissimilarity matrix between each pair of
samples was calculated using the Bray-Curtis index. Dissimilarities between samples were
then graphically represented using an nMDS (non-metric MultiDimensional Scaling, Zuur et
al., 2007). Differences between groups were tested using analyzes of similarities tests
(ANOSIM, Oksanen et al., 2010), without considering temporal variability. When differences
were significant, a similarity percentages analysis (SIMPER, Oksanen et al., 2010) was used
to determine the relative contribution of each FA to differences between two groups.
The differences in the isotopic compositions (δ^{13}C-DOC, δ^{13}C-POC, δ^{15}N-PON and
δ^{13}C-DIC) as well as differences in POC, DOC, DIN, PO$_4^{3-}$ concentrations and bacterial
abundance between treatments ($n = 5$) were tested using a non-parametric Kruskal-Wallis test
(KW). Non-parametric Mann-Whitney-Wilcoxon (MWW) Post-Hoc tests were then used to
identify the differences between individual treatments, after correction following a Benjamini
and Hochberg (BH) procedure for multiple comparisons (Benjamini & Hochberg, 1995).
The relative contribution of \(\text{C}_4 \) macrophytes to POM was calculated using a two end member mixing model (Forsberg et al., 1993):

\[
\% C_4 = \left[1 - \frac{\delta^{13}C_{\text{source}} - \delta^{13}C_{\text{C}}}{\delta^{13}C_{T} - \delta^{13}C_{C}} \right] \times 100
\]

(Eq. 1)

where \(\delta^{13}C_{\text{source}} \) was the \(\delta^{13}\text{C}-\text{POC} \) compositions for each time and treatment, \(\delta^{13}C_{\text{C}} \) was the mean \(P. \ repens \) composition, \(\delta^{13}C_{T} \) was the mean POM composition at the beginning of the experiment and \(\% C_4 \) the \(P. \ repens \) contribution to the isotopic compositions of OM in each sample.

All statistical analyses were implemented within the R programming environment (R Development Core Team 2010, package Vegan, Oksanen et al., 2010), with the probability \(\alpha \) set at 0.05.

Results

Among macrophyte samples, 41 FA were identified (Table 1) with an intragroup similarity of 92.5 and 93.2 % within \(P. \ repens \) and \(S. \ auriculata \), respectively, at the beginning of the experiment. \(P. \ repens \) was \(^{13}\text{C} \) and \(^{15}\text{N} \) enriched compared to \(S. \ auriculata \) (Table 1).

The water collected in the várzea was characterized by 37 FA (Table 1), where saturated 14:0, 15:0, 16:0 and 18:0 accounted for 70 % of the total FA composition of POM. The POC and DOC concentrations were respectively of 1.3 ± 0.1 and 2.8 ± 0.3 mg L\(^{-1}\) (Fig. 3), with a carbon isotopic composition of -30.1 ± 0.4 ‰ for POC and -28.7 ± 0.4 ‰ for DOC (Fig. 4). DIC was \(^{13}\text{C} \) enriched relative to POC and DOC (\(\delta^{13}\text{C-DIC} \) of -11.9 ± 0.2 ‰, Fig. 4).

Water from the five treatments showed significant differences in their global FA compositions (ANOSIM, \(R = 0.35, p < 0.001 \), Fig. 2). Samples from Ctrl, SA-LB, SA-HB, and PR-LB had a similar FA composition but differed from samples of PR-HB (Table 2). Similarities in the FA composition within each treatment were higher than 77 % (Table 3). A higher proportion of branched FA (mainly 15:0iso and 15:0anteiso) and a lower proportion of 18:0 were observed in PR-HB compared to other treatments (Table 3). The concentrations of POC, DOC, DIN, \(\text{PO}_4^{3-} \) as well as \(\delta^{13}\text{C-POC}, \delta^{13}\text{C-DOC}, \delta^{13}\text{C-DIC} \) and bacterial abundance displayed significant differences between treatments (KW, \(p < 0.001 \), Table 4, Figs. 3-5), whereas \(\delta^{15}\text{N-PON} \) was similar between all treatments (KW, \(p = 0.73 \)).

The highest concentrations of POC, DOC, DIN, \(\text{PO}_4^{3-} \) and highest bacterial abundance, were observed in PR-HB (Figs. 3 & 5, Table 4). However, a higher POC concentration was
recorded in SA-HB compared to PR-LB and SA-LB (Table 4, Fig. 3). No differences in DOC concentration were observed between SA-HB, PR-LB and Ctrl, whereas SA-LB displayed the lowest DOC concentration. In contrast, the δ^{13}C-POC was significantly higher in PR-HB (-14.3 ± 1.0 ‰) and in PR-LB (-21.0 ± 3.1 ‰) compared to other treatments (Fig. 4, Table 4). However, no difference was found between the isotopic compositions of SA and Ctrl treatments (MWW, $p > 0.05$, Table 4). The contribution of $P. repens$ to the 13C enrichment recorded in POC from PR-HB and PR-LB reached 94.2 and 63.2 %, respectively (Fig. 4, Eq. 1). Similarly, the highest δ^{13}C-DOC was recorded in PR-HB (-17.8 ± 1.2 ‰) with a contribution of $P. repens$ to the DOC of 70.7 % (Fig. 4, Eq. 1). A higher δ^{13}C-DOC was also observed in PR-LB (-24.9 ± 1.0 ‰, Fig. 4, Table 4) compared to SA-HB and SA-LB, with a contribution of $P. repens$ to the DOC reaching 27.8 %. A significant increase in δ^{13}C-DIC was only recorded for PR-HB (-5.9 ± 2.9 ‰, Fig. 4, Table 4), concomitantly to a decrease in δ^{13}C-DIC for SA-HB (-17.8 ± 3.7 ‰, Fig. 4, Table 4). In contrast, no differences were found between the Ctrl with both SA and PR low biomass treatments (MWW, $p > 0.05$, Table 4). δ^{13}C of organic and inorganic matters increased after 3 to 6 days in PR treatments, whereas no temporal trends were recorded for Ctrl and SA treatments except for δ^{13}C-DIC of SA-HB (Fig. 4).

Discussion

The present microcosm experiment highlights significantly different degradation patterns of two C_3 and C_4 Amazon macrophytes. Over a 23 day experiment, our results revealed a major impact of $P. repens$ degradation, at high biomass, on OM composition. This impact was apparently related to the biomass of macrophytes used in the experiment as well as to the inherent biodegradability of C_4 compared to C_3 macrophytes. Indeed, even though the fast degradation of the C_4 macrophyte was most evident in PR-HB, as revealed by all measured parameters, it was also observed in the PR-LB. For instance, PR-LB treatments (25 g of fresh macrophytes in a 60 L tank) showed stronger 13C enrichment in POC and DOC than SA-HB (100 g of macrophytes in a 60 L tank). There was however a slight increase in POC concentrations as well as a decrease in δ^{13}C-DIC in the $S. auriculata$ high biomass treatments that reveals on-going degradation.

In this experiment, $P. repens$ displayed large proportions of 18:2$\omega6$ and 18:3$\omega3$ polyunsaturated FA (up to 44 % of total FA), which is consistent with previous characterization of this FA as markers of macrophytes in this environment (Mortillaro et al.,
Similarly, carbon stable isotope compositions of both *P. repens* and *S. auriculata* were consistent with those expected from plants with C$_4$ and C$_3$ photosynthetic pathways (-13.0 ± 0.8 and -30.5 ± 0.5 ‰, respectively, Smith & Epstein, 1971).

Contribution of *P. repens* (C$_4$) and *S. auriculata* (C$_3$) to POM

In PR treatments, POC was significantly enriched in 13C, which indicates a contribution of *P. repens*, after its hydrolysis into the POM pool. This contribution was estimated to reach 94.2 and 63.2% of total POM composition for PR-HB and PR-LB, respectively, using a two-end-member mixing model. This was surprising as previous studies, characterizing POM in the Amazon Basin, suggested a low contribution of C$_4$ macrophytes (Hedges et al., 1986; Mortillaro et al., 2011; Moreira-Turcq et al., 2013). The contribution of *P. repens* to POM was confirmed by the increased proportion of branched FA in PR treatments (15:0iso and 15:0anteiso). These FA are regularly described as biomarkers of bacteria (Volkman et al., 1980; Kaneda, 1991; Mfilinge et al., 2003) and suggest here that in addition to hydrolysis, *P. repens* leaves were decomposed by heterotrophic microbial communities. Indeed, the transfer of FA to POM, including branched FA, was previously recorded from decomposing mangroves (Mfilinge et al., 2003). Similarly, the transfer of FA and the 13C enrichment of POM and sediments were evidenced in salt-marsh from the decomposition of the C$_4$ *Spartina* spp. (Boschker et al., 1999). In salt-marsh ecosystems, the composition of POM affected by *Spartina* spp. decomposition changed from predominantly unsaturated to branched and saturated FA typical of bacteria (Johnson & Calder, 1973; Schultz & Quinn, 1973). Similar findings were reported in PR-HB and differences in FA compositions and 13C enrichments reported for OM between PR and Ctrl treatments occurred in the first 3 to 6 days of the experiment. These changes in OM composition, as well as high bacterial abundance recorded in PR-HB, suggest a fast decomposition of this macrophyte, which may have exceeded hydrolysis (in agreement with previous studies; Fellerhoff et al., 2003).

Contrastingly to *P. repens*, no differences were reported between SA and Ctrl treatments for FA and δ^{13}C-POC. Yet, decomposition of *S. auriculata* could not be excluded using δ^{13}C-POC analyses. Indeed, fresh leaves of *S. auriculata* (-30.5 ± 0.5 ‰) had a similar composition to POM (-30.1 ± 0.4 ‰) at the beginning of the experiment. However, the higher POC concentrations measured in SA-HB compared to PR-LB and SA-LB suggest an effective hydrolysis of this macrophyte. The lack of differences between SA and Ctrl treatments for FA compositions and δ^{13}C-POC suggest however a slower hydrolysis of *S. auriculata* compared to *P. repens*. Indeed, Howard-Williams & Junk (1976) recovered 50% of *S. auriculata* initial dry weight at the end of a 186 days decomposition experiment. Similarly, Fellerhoff et al.
(2003) recovered 80% of *S. auriculata* initial dry weight after 21 days of incubation. During our experiment, large macrophyte debris were observed for a much longer time in the *S. auriculata* treatments than in the *P. repens* treatments. This higher resistance to fractionation of the C₃ macrophyte was consistent with the differences in FA, POC and δ¹³C-POC of the fine POM fraction (<200 µm).

Impact of macrophyte degradation on dissolved compounds

Decomposition of *P. repens* tissues led to a δ¹³C enrichment of DOC and DIC. Such increase of δ¹³C-DIC resulted from bacterial mineralization of macrophyte organic carbon and CO₂ equlibration at the air/water interface (Quay et al., 1992; Hedges et al., 1994; Mayorga et al., 2005). Because the experiment was performed in contact with air in order to maintain aerobic conditions, the δ¹³C-DIC signature was affected by isotopic equilibration with the atmosphere. This process tends to slowly increase the δ¹³C-DIC to a value close to the isotopic equilibrium with the atmosphere at around 0 ‰ (Polsenaere & Abril, 2012). Consequently, the observed δ¹³C-DIC values are the result of a balance between the DIC production from the C₃ or C₄ plants decomposition and equilibration with the atmosphere. In SA-HB, the rapid δ¹³C-DIC decrease from -11.9 ± 0.2 ‰ at the beginning of the experiment to -20.3 ± 7.0 ‰ after 3 days of incubation reveals that the C₃ macrophytes were undergoing mineralization processes. Indeed, hydrolysis tends to leach out compounds relatively enriched in δ¹³C with respect to more recalcitrant compounds (e.g. lignin) depleted in δ¹³C (Costantini et al., 2014).

Previous works in the Amazon have attributed δ¹³C enrichment of DIC to the preferential oxidation of organic carbon derived from C₄ macrophytes (Rai & Hill, 1984; Chanton et al., 1989; Quay et al., 1992; Waichman, 1996). Several other studies based on solute distribution suggested that C₄ grasses are more biodegradable than the bulk OM (Hedges et al., 1986; Quay et al., 1992; Mayorga et al., 2005). Ellis et al. (2012) have measured the δ¹³C of respired CO₂ in closed incubations at different stages of the hydrological cycle in the Solimões River and concluded that C₃ plants, C₄ plants and phytoplankton, all contributed to respiration in the Amazon River. The results of our incubations suggest however that high macrophyte biomasses are necessary in order to significantly alter the δ¹³C-DIC signature locally.

Besides carbon, the nitrogen (N) and phosphorus (P) concentrations in floodplain waters were also affected by the decomposition and mineralization of macrophytes. A large release of PO₄, DIN and potassium (K) was previously evidenced during the decomposition of *P. fasciculatum* (Furch & Junk, 1992). The decomposition of *P. fasciculatum* had the potential to supply floodplains with 242 kg ha⁻¹ of N and 66 kg ha⁻¹ of P in Furch & Junk (1992).
nutrients budget. Following these authors’ calculations (i.e. maximum amounts of bio-
elements released to water reported to maximum macrophyte biomasses), *P. repens* showed
the potential, in our degradation experiment, to supply floodplains with 176.4 kg ha\(^{-1}\) of N and
48.2 kg ha\(^{-1}\) of P. On the other hand, *S. auriculata* contribution to floodplains is estimated to
reach 0.13 kg ha\(^{-1}\) of N and 2.44 kg ha\(^{-1}\) of P only. Therefore, our study demonstrates that
P. repens represents a predominant source of N and P.

Fast nutrient recycling from decomposing macrophytes may fertilize Amazon floodplains,
where N and P are growth-limiting factors (Devol et al., 1984; Forsberg, 1984; Setaro &
Melack, 1984). Within the Amazon Basin, aquatic grasses such as *P. repens* have been
suggested to be able of atmospheric N\(_2\) fixation (Martinelli et al., 1992), so that atmospheric
N\(_2\) may contribute up to 90 % of plant N for stands of *P. repens* (Kern & Darwich, 2003).
Therefore, the fast decomposition of N\(_2\) fixing macrophytes may play a predominant role as a
natural fertilizer for floodplains (Piedade et al., 1991; Kern & Darwich, 2003), stimulating
phytoplankton production during the falling water period, when macrophytes start to
decompose (Rai & Hill, 1984).

In Amazon floodplains, *P. repens* maximum biomasses were observed during the wet season
(Junk & Piedade, 1993b, Silva et al., 2009), where C\(_4\) macrophyte contribution to the primary
production in várzea was estimated to reach 65 % (Melack & Forsberg, 2001). During this
season, POC and DOC mainly originate from depleted carbon sources similar to C\(_3\) primary
producers (Hedges et al., 1994, Mortillaro et al., 2011). However during the dry season,
macrophytes are subject to intensive degradation as water level decreases (Engle et al., 2008).
An increasing contribution of macrophytes to OM composition, due to the accumulation of
plant detritus, was suggested in the Amazon várzea (Mortillaro et al., 2011). However,
although macrophytes have been demonstrated experimentally to affect the \(\delta^{13}\)C-POC and
\(\delta^{13}\)C-DOC, fast microbial mineralization of organic carbon suggests that only large
macrophyte biomasses, produced during the flood season, have the potential to affect
\(\delta^{13}\)C-POC and \(\delta^{13}\)C-DOC within floodplains. Indeed, C\(_4\) material may contribute to sediments
OM composition (Sobrinho et al., 2016) according to spatial variability in C\(_4\) macrophytes
(Hess et al., 2003), despite a low burial of organic carbon in floodplain sediments (Moreira-
Turcq et al., 2004). Therefore, most C\(_4\) macrophytes are mineralized (Piedade et al., 1991;
Junk & Piedade, 1993a) and thus contribute significantly to CO\(_2\) outgassing, as previously
suggested (Quay et al., 1992). Moreover, bacterial growth has been shown, within Amazon
floodplains, to display a low efficiency (Vidal et al., 2015). This low efficiency implies,
besides high respiration rates, a low transfer of C\(_4\) carbon to higher trophic levels. The
production of C₃ macrophytes within the central Amazon Basin is much more limited than C₄ macrophytes (Furch & Junk, 1992). However, the lower lability of these macrophyte debris compared to C₄ macrophyte debris makes them available for being channeled through aquatic food webs. These findings can explain why Amazon food webs are mainly centered on a C₃ carbon source (Araujo-Lima et al., 1986; Hamilton et al., 1992; Forsberg et al., 1993), although C₄ macrophytes display a greater food quality and biomass for specialized herbivore fish species (Mortillaro et al., 2015).

Conclusion
Within the present experiment, the higher lability of C₄ compared to C₃ macrophytes was demonstrated. The contribution of *P. repens* to POC and DOC isotopes compositions reached a maximum after 3 to 6 days, indicating a fast decomposition rate of this macrophyte. Moreover, *P. repens* biomasses had a noticeable impact on OM composition. The decomposition of C₄ macrophytes was followed by the mineralization into DIC, as suggested by δ^{13}C-DIC, as well as by the release of DIN and P. Therefore, the fast mineralization of C₄ macrophytes, as well as the natural mixing of POM with 13C-depleted primary producers (e.g. phytoplankton, C₃ macrophytes, periphyton, and trees), should account for the overall low contribution of C₄ carbon sources to the central Amazon aquatic food webs.

Acknowledgments
This research is a contribution to the CARBAMA project, supported by the ANR (French National Agency for Research, grant number 08-BLAN-0221), and the CNPq (National Council for Scientific and Technological Development – Brazil, Universal Program grant number 477655/2010-6); it was conducted within an international cooperation agreement between the CNPq (Brazil) and the IRD (Institute for Research and Development – France), and under the auspices of the Environmental Research Observatory Hydrology and Geochemistry of the Amazon Basin (HYBAM), supported by the INSU and the IRD. We are grateful to Jessica Chicheportiche (LOG laboratory) for bacterial abundance estimations. We also want to thanks two anonymous reviewers whose comments helped improve this manuscript.
References

Mayorga, E., Aufdenkampe, A.K., Masiello, C.A., Krusche, A.V., Hedges, J.I., Quay, P.D.,

Melack, J.M., Forsberg, B.R., 2001. Biogeochemistry of Amazon floodplain lakes and
associated wetlands. In: The biogeochemistry of the Amazon Basin. (Eds M.E.
York.

mangrove leaves: microbial activity, decay and nutritional quality. Marine Ecology-
Progress Series, 265, 97-105.

Moreira-Turcq, P., Bonnet, M.P., Amorim, M., Bernardes, M., Lagane, C., Maurice, L.,
Perez, M., Seyler, P., 2013. Seasonal variability in concentration, composition, age,
and fluxes of particulate organic carbon exchanged between the floodplain and

Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon
region: insights into sedimentation rates. Palaeogeography Palaeoclimatology

high productivity of the C_4 aquatic grass Echinochloa polystachya in the Amazon
floodplain confirmed by net ecosystem CO_2 flux measurements. Oecologia, 125,
400-411.

Fatty acid and stable isotope (δ^{13}C, δ^{15}N) signatures of particulate organic matter in
the Lower Amazon River: Seasonal contrasts and connectivity between floodplain
lakes and the mainstem. Organic Geochemistry, 42, 1159-1168.

Trophic opportunism of central Amazon floodplain fish. Freshwater Biology.

and Systematics, 18, 293-320.

pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes. Frontiers in microbiology, 6, 1054.

Fig. 1. Floating meadows of *P. repens* (left) and *S. auriculata* (right).
Fig. 2. Nonmetric MDS of FA proportions (%) in POM. Squares (■) are for *P. repens* treatments with high (dark green) and low (light green) biomasses, circles (●) are for *S. auriculata* treatments with high (red) and low (orange) biomasses and blue triangles (▲) are for the Ctrl treatment.
Fig. 3. Boxplot of POC (a.) and DOC (b.) concentrations in each treatment: PR-HB (dark green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl (blue). Note that DIC time-courses were not determined because of the CO$_2$ loss to the atmosphere occurring throughout the experiment.
Fig. 4. Boxplot of δ^{13}C-POC (a.), δ^{13}C-DOC (b.) δ^{13}C-DIC (c.) in each treatment: PR-HB (dark green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl (blue).
Fig. 5. Boxplot of bacteria abundances (a.), DIN (b.) and PO$_4$ (c.) concentrations in each treatment: PR-HB (dark green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl (blue).

Table 1. FA concentrations and stable isotope compositions (δ^{13}C and δ^{15}N) of POM (FA: µg L$^{-1}$) and macrophytes (FA: mg g$^{-1}$) collected in Camaleão várzea. In bold are the proportion of saturated (SFA), branched (BFA), monounsaturated (MUFA), polyunsaturated (PUFA) and long chain FA (LCFA).

<table>
<thead>
<tr>
<th>FA n=3 ± S.D.</th>
<th>P. repens (mg g$^{-1}$) n=3 ± S.D.</th>
<th>S. auriculata (mg g$^{-1}$) n=3 ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:0</td>
<td>2.25 ± 1.81</td>
<td>0.10 ± 0.02</td>
</tr>
<tr>
<td>13:0</td>
<td>0.39 ± 0.10</td>
<td>1 10$^{-3}$ ± 5 10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14:0</td>
<td>15:0</td>
<td>16:0</td>
</tr>
<tr>
<td>6.13 ± 1.61</td>
<td>2.25 ± 0.34</td>
<td>24.14 ± 3.95</td>
</tr>
<tr>
<td>0.10 ± 4.10^−3</td>
<td>0.03 ± 2.10^−3</td>
<td>3.69 ± 0.38</td>
</tr>
<tr>
<td>0.20 ± 0.05</td>
<td>0.06 ± 0.01</td>
<td>2.33 ± 0.28</td>
</tr>
</tbody>
</table>

19:0	20:0	22:0
0.31 ± 0.02	0.30 ± 0.09	0.38 ± 0.14
4.10^−3 ± 2.10^−3	0.19 ± 0.03	0.37 ± 0.07
7.10^−3 ± 1.10^−3	0.02 ± 5.10^−3	0.04 ± 4.10^−3

%LCFA				
55.6	n.d.	n.d.	δ	δ
0.28 ± 0.02	6.65 ± 0.57	n.d.	8.69 ± 0.91	
6.13 ± 0.43	-13.02 ± 0.81	4.01 ± 1.32		

δ^15N (%e)				
0.06 ± 0.01	0.04 ± 5.10^−3	0.10 ± 0.03		
2.43 ± 0.71	4.01 ± 1.32	2.25 ± 1.11		

556 n.d. = not detected
Table 2. Summary of ANOSIM pairwise tests for FA composition of POM between treatments. Values in italics \((R < 0.3)\) are for high intragroup variability.

<table>
<thead>
<tr>
<th>Groups</th>
<th>R</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-HB : Ctrl</td>
<td>0.80</td>
<td><10⁻³</td>
</tr>
<tr>
<td>PR-HB : PR-LB</td>
<td>0.73</td>
<td><10⁻³</td>
</tr>
<tr>
<td>PR-HB : SA-HB</td>
<td>0.75</td>
<td><10⁻³</td>
</tr>
<tr>
<td>PR-HB : SA-LB</td>
<td>0.82</td>
<td><10⁻³</td>
</tr>
<tr>
<td>PR-LB : Ctrl</td>
<td>0.27</td>
<td><10⁻³</td>
</tr>
<tr>
<td>PR-LB : SA-HB</td>
<td>0.07</td>
<td>0.06(^{NS})</td>
</tr>
<tr>
<td>PR-LB : SA-LB</td>
<td>0.11</td>
<td><10⁻³</td>
</tr>
<tr>
<td>SA-HB : Ctrl</td>
<td>0.04</td>
<td>0.15(^{NS})</td>
</tr>
<tr>
<td>SA-HB : SA-LB</td>
<td>0.04</td>
<td>0.11(^{NS})</td>
</tr>
<tr>
<td>SA-LB : Ctrl</td>
<td>0.15</td>
<td>0.01</td>
</tr>
</tbody>
</table>

NS = non-significant

Table 3. Intragroup similarity of FA compositions in different treatments, and percentages of FA explaining most of this similarity (SIMPER procedure).

<table>
<thead>
<tr>
<th>Treatment (intragroup similarity)</th>
<th>14:0</th>
<th>15:0iso</th>
<th>15:0anteiso</th>
<th>15:0</th>
<th>16:0</th>
<th>18:0</th>
<th>22:5(\omega_6)</th>
<th>(\Sigma (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-HB (77.3 %)</td>
<td>6.5</td>
<td>11.2</td>
<td>6.3</td>
<td>3.9</td>
<td>44.1</td>
<td>4.9</td>
<td>5.1</td>
<td>76.8</td>
</tr>
<tr>
<td>PR-LB (85.1 %)</td>
<td>8.7</td>
<td>6.8</td>
<td>1.6</td>
<td>3.7</td>
<td>33.7</td>
<td>12.7</td>
<td>4.5</td>
<td>73.7</td>
</tr>
<tr>
<td>SA-HB (82.6 %)</td>
<td>8.8</td>
<td>3.9</td>
<td>1.5</td>
<td>3.4</td>
<td>37.1</td>
<td>13.8</td>
<td>5.0</td>
<td>75.4</td>
</tr>
<tr>
<td>SA-LB (81.7 %)</td>
<td>9.4</td>
<td>3.4</td>
<td>1.4</td>
<td>3.5</td>
<td>33.0</td>
<td>13.2</td>
<td>4.0</td>
<td>71.7</td>
</tr>
<tr>
<td>Ctrl (83.7 %)</td>
<td>8.5</td>
<td>3.8</td>
<td>1.4</td>
<td>3.3</td>
<td>39.4</td>
<td>14.3</td>
<td>4.9</td>
<td>77.7</td>
</tr>
</tbody>
</table>

Table 4. Summary of KW and MWW pairwise tests for \(\delta^{13}C\)-POC, \(\delta^{13}C\)-DOC, \(\delta^{13}C\)-DIC, POC, DOC, DIN, \(PO_4^{3-}\) concentrations and bacterial abundances of water samples between treatments.

<table>
<thead>
<tr>
<th></th>
<th>(\delta^{13}C)-POC</th>
<th>(\delta^{13}C)-DOC</th>
<th>(\delta^{13}C)-DIC</th>
<th>[POC]</th>
<th>[DOC]</th>
<th>[DIN]</th>
<th>[PO_4^{3-}]</th>
<th>Bact</th>
</tr>
</thead>
<tbody>
<tr>
<td>KW Global test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-HB : Ctrl</td>
<td>7 (10^{-4})</td>
<td>3 (10^{-3})</td>
<td>8 (10^{-4})</td>
<td>1 (10^{-3})</td>
<td>1 (10^{-3})</td>
<td>1 (10^{-3})</td>
<td>2 (10^{-3})</td>
<td><10⁻⁴</td>
</tr>
<tr>
<td>PR-HB : PR-LB</td>
<td>7 (10^{-4})</td>
<td>1 (10^{-3})</td>
<td>0.03</td>
<td>1 (10^{-4})</td>
<td>1 (10^{-3})</td>
<td>0.05</td>
<td>5 (10^{-3})</td>
<td><10⁻⁴</td>
</tr>
<tr>
<td>PR-HB : SA-HB</td>
<td>7 (10^{-4})</td>
<td>2 (10^{-4})</td>
<td><10⁻⁴</td>
<td>7 (10^{-3})</td>
<td>1 (10^{-3})</td>
<td>4 (10^{-3})</td>
<td>2 (10^{-3})</td>
<td><10⁻⁴</td>
</tr>
<tr>
<td>PR-HB : SA-LB</td>
<td>7 (10^{-4})</td>
<td>2 (10^{-4})</td>
<td>9 (10^{-3})</td>
<td>1 (10^{-4})</td>
<td>2 (10^{-4})</td>
<td>4 (10^{-3})</td>
<td>2 (10^{-3})</td>
<td><10⁻⁴</td>
</tr>
<tr>
<td>PR-LB : Ctrl</td>
<td>9 (10^{-4})</td>
<td>3 (10^{-4})</td>
<td>0.44(^{NS})</td>
<td>0.86(^{NS})</td>
<td>0.71(^{NS})</td>
<td>2 (10^{-3})</td>
<td>0.07(^{NS})</td>
<td>0.15(^{NS})</td>
</tr>
<tr>
<td>PR-LB : SA-HB</td>
<td>7 (10^{-4})</td>
<td>2 (10^{-4})</td>
<td><10⁻⁴</td>
<td>0.05</td>
<td>0.06(^{NS})</td>
<td>0.09(^{NS})</td>
<td>0.06(^{NS})</td>
<td>0.06(^{NS})</td>
</tr>
<tr>
<td>PR-LB : SA-LB</td>
<td>7 (10^{-4})</td>
<td>2 (10^{-4})</td>
<td>0.59(^{NS})</td>
<td>0.64(^{NS})</td>
<td>2 (10^{-3})</td>
<td>0.13(^{NS})</td>
<td>0.06(^{NS})</td>
<td>0.01</td>
</tr>
<tr>
<td>SA-HB : Ctrl</td>
<td>0.60(^{NS})</td>
<td>0.23(^{NS})</td>
<td><10⁻⁴</td>
<td>0.29(^{NS})</td>
<td>0.11(^{NS})</td>
<td>0.06(^{NS})</td>
<td>0.90(^{NS})</td>
<td>0.33(^{NS})</td>
</tr>
<tr>
<td>SA-HB : SA-LB</td>
<td>0.11(^{NS})</td>
<td>0.94(^{NS})</td>
<td><10⁻⁴</td>
<td>0.03</td>
<td>0.02</td>
<td>0.46(^{NS})</td>
<td>0.90(^{NS})</td>
<td>0.12(^{NS})</td>
</tr>
<tr>
<td>SA-LB : Ctrl</td>
<td>0.08(^{NS})</td>
<td>0.25(^{NS})</td>
<td>0.38(^{NS})</td>
<td>0.58(^{NS})</td>
<td>2 (10^{-3})</td>
<td>1 (10^{-3})</td>
<td>0.90(^{NS})</td>
<td>0.04</td>
</tr>
</tbody>
</table>

NS = non-significant.