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We dedicate this paper to the memory of 
Lev Okun, an expert on photon mass

The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon 
mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion 
due to plasma effects and a photon mass complicates the derivation of a limit on mγ . The dispersion 
measure (DM) of FRB 150418 is known to ∼ 0.1%, and there is a claim to have measured its redshift 
with an accuracy of ∼ 2%, but the strength of the constraint on mγ is limited by uncertainties in the 
modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic 
medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that mγ �
1.8 × 10−14 eV c−2 (3.2 × 10−50 kg), if FRB 150418 indeed has a redshift z = 0.492 as initially reported. 
In the future, the different redshift dependences of the plasma and photon mass contributions to DM 
can be used to improve the sensitivity to mγ if more FRB redshifts are measured. For a fixed fractional 
uncertainty in the extra-galactic contribution to the DM of an FRB, one with a lower redshift would 
provide greater sensitivity to mγ .

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127
When setting an upper limit on the photon mass, the Parti-
cle Data Group (PDG) [1] cites the outcome of modelling the so-
lar system magnetic field: first at 1 AU, mγ < 5.6 × 10−17 eV c−2

(= 10−52 kg) [2,3], and later at 40 AU, mγ < 8.4 × 10−19 eV c−2

(= 1.5 × 10−54 kg) [2]. However, the laboratory upper limit is four 
orders of magnitude larger [4]; for reviews see [5,6]. In [6], the 
authors state the concern that “Quoted photon-mass limits have at 
times been overly optimistic in the strengths of their characterizations. 
This is perhaps due to the temptation to assert too strongly something 
one ‘knows’ to be true”. This concern was mainly addressed to the 
galactic magnetic field model limits [7], but it should be borne in 
mind also when assessing the solar system limits.

Indeed, the estimates on the deviations from Ampère’s law in 
the solar wind [2,3] are not based simply on in situ measurements. 
For example: (i) the magnetic field is assumed to be exactly, al-

E-mail address: alexandre.sakharov@cern.ch (A.S. Sakharov).
http://dx.doi.org/10.1016/j.physletb.2016.04.035
0370-2693/© 2016 Published by Elsevier B.V. This is an open access article under the CC
ways and everywhere a Parker spiral; (ii) the accuracy of particle 
data measurements from, e.g., Pioneer or Voyager, has not been 
discussed; (iii) there is no error analysis, nor data presentation, 
instead; (iv) there is extensive use of a reductio ad absurdum ap-
proach based on earlier results of other authors, which are often 
devoted to other issues than establishing a basis for an extremely 
difficult measurement of a mass that is many orders of magnitude 
lower than that of an electron or a neutrino.

In order to check these estimates of the solar wind at 1 AU, 
a more experimental approach has been pursued via a thorough 
analysis of Cluster data [8], leading to a mass upper limit lying 
between 1.4 × 10−49 and 3.4 × 10−51 kg, according to the esti-
mated potential. The difference between the results of this con-
servative approach and previous estimates, as well as the need for 
astrophysical modelling, motivates the development of additional 
methods for constraining the photon mass.

The time structures of electromagnetic emissions from astro-
physical sources at cosmological distances have been used to con-
strain other aspects of photon/electromagnetic wave propagation, 
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such a possible Lorentz-violating energy/frequency dependence of 
the velocity of light in vacuo [9–13], and the possibility of disper-
sion in photon velocities of fixed energy/frequency, as suggested 
by some models of quantum gravity and space–time foam [14,
15]. Similarly, the gravitational waves recently observed by Ad-
vanced LIGO from the source GW150914 have been used to con-
strain aspects of graviton/gravitational wave propagation, including 
an upper limit on the graviton mass: mg < 1.2 × 10−22 eV c−2

(= 2.1 × 10−58 kg) [16,17] and limits on Lorentz violation [18,
19], and the possible observation by Fermi of an associated γ -ray 
pulse [20] suggests that light and gravitational waves have the 
same velocities to within 10−17 [18,21].

The time structures of electromagnetic emissions from astro-
physical sources at cosmological distances can also be used to de-
rive an upper limit on the photon mass, mγ . Since the effect of the 
photon mass on the velocity of light is enhanced at low frequency 
ν (energy E): �v ∝ −m2

γ c4/h2ν2 (−m2
γ c4/E2), measurements of 

time structures at low frequency or energy are particularly sensi-
tive to mγ . For this reason, measurements of short time structures 
in radio emissions from sources at cosmological distances are es-
pecially powerful for constraining mγ . This is to be contrasted with 
probes of Lorentz violation, for instance, where measurements of 
high-energy photons such as γ rays are at a premium. This is why 
probes of the photon mass using gamma-ray bursters (GRBs) [22]
and active galactic nuclei (AGNs) have not been competitive in 
constraining mγ . As we mention later, a stronger limit can be ob-
tained by using the apparent coincidence of a radio afterglow with 
a GRB, but this is also not competitive with the sensitivity offered 
by fast radio bursts (FRBs).

FRBs are potentially very interesting because their radio signals 
have well-measured time delays that exhibit the 1/ν2 dependence 
expected for both the free electron density along the line of sight 
and mass effects on photon propagation. Until recently, the draw-
back was that no FRB had had its redshift measured, though there 
was considerable evidence that they occurred at cosmological dis-
tances. This has now changed with FRB 150418 [23], which has 
been reported to have occurred in a galaxy with a well-measured 
redshift z = 0.492 ± 0.008. The identification of its host galaxy has 
been questioned, and the alternative possibility of a coincidence 
with an AGN flare has been raised [24], though the likelihood of 
this is currently an open question [25]. In the following we assume 
the host galaxy identification made in [23], and also discuss more 
generally how non-galactic FRBs could be used to constrain photon 
propagation.

The frequency-dependent time lag of FRB 150418 between the 
arrivals of pulses with ν1 = 1.2 GHz and ν2 = 1.5 GHz is �tFRB

12 ≈
0.8 s, and was used in [23] to extract very accurately the disper-
sion measure (DM), which is given in the absence of a photon 
mass by the integrated column density of free electrons along the 
propagation path of a radio signal, 

∫
nedl. The delay of an elec-

tromagnetic wave with frequency ν propagating through a plasma 
with an electron density ne , relative to a signal in a vacuum, makes 
the following frequency-dependent contribution to the time de-
lay [26,27]

�tDM =
∫

dl

c

ν2
p

2ν2
= 415

( ν

1 GHz

)−2 DM

105 pc cm−3
s , (1)

where νp = (nee2/πme)
1/2 = 8.98 · 103n1/2

e Hz. As is discussed 
in [23], plasma effects with DM = 776.2(5) cm−3 pc could be re-
sponsible for the entire �tFRB

12 that was measured.1 There are con-

1 In [23] a different method has been used to obtain the DM value. However, for 
this letter it is enough to compare the arrival times of these two frequencies, which 
reproduces quite accurately the result of [23].
tributions to the DM of this extragalactic object from the free 
electron density in the host galaxy, estimated to be ∼ 37 cm−3 pc, 
from the Milky Way and its halo, estimated to be 219 cm−3 pc, 
and the intergalactic medium (IGM). Subtracting the other con-
tributions, the IGM contribution to the DM was estimated to be 
� 520 cm−3 pc, with uncertainties ∼ 38 cm−3 pc from the mod-
elling of the Milky Way using NE2001 [28]2 and ∼ 100 cm−3 pc
from inhomogeneities in the IGM. The DMIGM contribution to the 
dispersion delay (1) for a source at red shift z can be expressed in 
terms of the density fraction �IGM of ionized baryons [26]:

DMIGM = 3cH0�IGM

8πGmp
He(z) , (2)

where H0 is the present Hubble expansion rate, G is the Newton 
constant, mp is the proton mass, and the factor

He(z) ≡
z∫

0

(1 + z′)dz′√
�� + (1 + z′)3�m

, (3)

takes proper account of the time stretching in (1) and evolu-
tion of the free-electron density due to the cosmological expan-
sion [26,27,10,30]. The relation (2) was used in [23] to estimate 
the density of ionized baryons in the IGM: �FRB

IGM = 0.049 ± 0.013, 
assuming that the helium fraction in the IGM has the cosmolog-
ical value of 24%. We also assume that the present cosmological 
constant density fraction �� = 0.714 and the present matter den-
sity fraction �m = 0.286, and set the reduced Hubble expansion 
rate, h0 ≡ H0/(100 km s−1 Mpc−1 = 0.69 [31]. This measurement 
of �IGM is quite compatible with the density expected within stan-
dard �CDM cosmology [31]: ��CDM

IGM = 0.041 ± 0.002.
The measurement of �tFRB

12 can also be used to constrain the 
photon mass. For this purpose, we note that the difference in dis-
tance covered by two particles emitted by an object at a red shift 
z with velocity difference �u is

�L = H−1
0

z∫
0

�udz′√
�� + (1 + z′)3�m

. (4)

In case of the cosmological propagation of two massive photons 
with energies E2 > E1 the velocity difference is

�umγ = m2
γ

2(1 + z)2

(
1

E2
1

− 1

E2
2

)
, (5)

where the red shifts of the photon energies are taken into account 
and we use units: h̄ = c = k = 1. Thus, difference in arrival times 
of two photons of different energies from a remote cosmological 
object due to a non-zero photon mass can be parametrized as fol-
lows:

�tlag = m2
γ

2H0
· F (E1, E2) · Hγ (z) + �tDM + bsf(1 + z) , (6)

where F (E1, E2) ≡
(

1
E2

1
− 1

E2
2

)
,

Hγ (z) ≡
z∫

0

dz′

(1 + z′)2
√

�� + (1 + z′)3�m

, (7)

and we include in (6) the contribution �tDM to the time delay 
due to plasma effects and a possible, generally unknown, source 

2 For limitations of NE2001, see [29].
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time lag bsf in the source frame. Inverting (6) and transforming 
to experimental units FGHz(

ν1
1 GHz , ν2

1 GHz ) and expressing all time 
measurements in seconds we arrive at

mγ = (1.05 · 10−14 eV s−1/2)

×
√

h0

FGHz Hγ
(�tlag − �tDM − bsf(1 + z)) . (8)

The most conservative bound

mγ < 2.6 × 10−14 eV c−2 (4.6 × 10−50 kg) (9)

would be obtained if the entire DM of FRB 150418 were due to 
mγ �= 0, i.e., �tlag � �tFRB

12 , �tDM = 0 and bsf = 0 in (8). How-
ever, this approach is probably too conservative, and a very rea-
sonable assumption would be to subtract from the DMFRB

IGM the 
IGM contribution corresponding to ��CDM

IGM . In this case, since the 
95% CL estimate of the IGM dispersion measure is DMFRB

IGM(2σ) �
520 ± (2 · 138) cm−3 pc [23], one should assume, according to (2)
and (1), that �tlag � 0.82 s at the 95% CL, �tDM ≈ 0.45 s and 
bsf = 0 in (8). In this case, one would find

mγ < 1.8 × 10−14 eV c−2 (3.2 × 10−50 kg) (10)

at the 95% CL.3 These bounds are much stronger than those ob-
tained from GRBs [22] and AGNs, and are getting within shouting 
distance of the PDG limit [2,1,3]. We regard this as the most rea-
sonable interpretation of the data on FRB 150418.

The question then arises, how much the FRB limit could be im-
proved in the future?

The DM of FRB 150418 has been measured with an accuracy 
of 0.1%, but the uncertainties in subtracting the contributions from 
the host galaxy, the IGM and the Milky Way amount to > 20%. 
In particular, uncertainties associated with inhomogeneities in the 
IGM approach 20%, dwarfing uncertainties associated with �IGM, 
which approach 5%, and in modelling the Milky Way [28,29], 
which exceed 5%. We doubt that the corresponding uncertainties 
for other FRBs could soon be reduced to the 0.1% level of the FRB 
150418 DM measurement, and consider that a plausible objective 
may be to constrain the sum of DMIGM and a possible photon-
mass effect for any given FRB with an accuracy of 10%.4 One way 
to improve the sensitivity to mγ may be to use data from FRBs 
at different redshifts. As we discuss below, the relative contribu-
tions of the IGM and a photon mass vary with the redshift z, and 
the sensitivity to mγ is greater for FRBs with smaller redshifts. 
A hypothetical 10% measurements of the non-host and non-Milky 
Way contributions to the DM of a FRB with z = 0.1 would yield a 
prospective sensitivity to mγ = 6.0 ×10−15 eV c−2 (1.1 ×10−50 kg).

As already commented, the frequency dependences of the IGM 
and mγ effects, Eqs. (1) and (8), are similar, but the degeneracy 
between them is broken by the different z dependences of He (3)
and Hγ (7). In particular, we note the mγ effect gains in relative 
more importance at smaller z because of the difference between 
the powers of (1 + z′) in the integrands of He and Hγ . In practice, 
if in the future a statistically relevant sample of FRBs at different 
redshifts is observed one might use the parametrization (6) to re-
cover the intrinsic time lag of every source from the sample as

bi
sf = 1

(1 + zi)
(ai

γ · F (E1, E2) · Hγ (z) + �ti
DM − �ti

lag) . (11)

3 Similar bounds were given in [32], which we received while working on this 
paper.

4 In this respect we are considerably less optimistic than the authors of [32].
Fig. 1. The (mγ , �IGM) plane, showing as a thin horizontal red band the �CDM 
expectation that �IGM = 0.041 ± 0.002, a curved grey shaded band representing the 
FRB 150418 constraint as discussed in the text, and other bands representing the 
impacts of hypothetical future 10% measurements of the extragalactic DM for FRBs 
with redshifts z = 0.1 (green and mauve) and z = 1.0 (blue). (For interpretation of 
the references to color in this figure, the reader is referred to the web version of 
this article.)

Assuming identical origins for the FRBs, one could optimize the set 
of bi

sf with respect to ai
γ and �i

IGM (�ti
DM), separating the non-zero 

photon mass contribution out from the plasma effect. The opti-
mization can be performed on a basis of some estimator: a simple 
one could be just a minimization of the RMS of bi

sf .
5

As discussed above, we consider that future measurements of 
the non-host galaxy and non-Milky Way contributions to the DMs 
of other FRBs at the 10% level may be feasible objectives. Accord-
ingly, we have made a first assessment of their possible future 
impacts on the photon mass limit. Fig. 1 displays an (mγ , �IGM)

plane, featuring as a thin horizontal band the �CDM expectation 
that ��CDM

IGM . The other curves have the forms

mγ = A
√

B − C (12)

that follows from (8), where A is a numerical pre-factor deter-
mined by the factor Hγ (z) of an object, the term B represents 
an observed time lag in terms of intergalactic DM

B = (103.1 s) · DMobs
IGM

105 pc cm−3
(13)

and C defines the fraction of an actual contribution of the ionized 
plasma effect to the observed time lag relative to the prediction of 
the standard �CDM model for a given object

C = �tIGM · �IGM

��CDM
IGM

. (14)

The curves in Fig. 1 assume an ionization fraction 0.9 but al-
low �IGM to be a free parameter. The curved grey shaded band 
shows the FRB 150418 constraint discussed above, at the 68% 
CL, which implies A = 2.96 · 10−14 eV s−1/2, DMobs

IGM = DMFRB
IGM and 

�tIGM = 0.45 s. The intersection of this band with the �IGM = 0
axis corresponds to the (overly?) conservative 95% CL limit (9) and 
its intersection with the �CDM band for �IGM corresponds to the 
‘reasonable’ 95% CL bound (10).

The Figure also displays other bands, showing the potential im-
pacts of hypothetical 10% measurements of the extragalactic DM 

5 A variant of such algorithm has been used in [34] for neutrino mass estimations 
from a supernova signal.
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for FRBs with redshift z = 0.1 (green and mauve) and z = 1.0
(blue).6 The hypothetical z = 0.1 green band has the same cen-
tral value as expected for ��CDM

IGM and a massless photon, for 
which case A = 1.97 · 10−14 eV s−1/2, DMobs

IGM = 83 pc cm−3 and 
�tIGM = 0.086 s have been used in (13) and (14).7 The z = 1.0
blue band has been calculated with A = 4.60 · 10−14 eV s−1/2, 
DMobs

IGM = 903 pc cm−3 and �tIGM = 0.94 s applied in (13) and (14). 
The hypothetical z = 0.1 mauve band has the same upper limit on 
�IGM as the FRB 150418 measurement and differs from the green 
one in having DMobs

IGM = 103 pc cm−3 used in (13) and (14). As ex-
pected, we see that a 10% measurement of an FRB with z = 0.1
yielding the expected central value (green band) would impose a 
more stringent constraint on mγ , namely

mγ < 6.0 × 10−15 eV c−2 (1.1 × 10−50 kg) . (15)

if one (very conservatively) allows any �IGM ≥ 0, strengthening to 
< 3 × 10−15 eV c−2 for ��CDM

IGM . Alternatively, we see that consis-
tency of the green band with the FRB 150418 constraint would 
require mγ < 2.5 ×10−15 eV c−2, without any assumption on �IGM.

We also see that consistency between a ‘high’ measurement 
from an FRB with z = 0.1 (mauve band) and an ‘expected’ mea-
surement from an FRB with z = 1.0 (blue band) would be consis-
tent with ��CDM

IGM only if one requires a non-zero mγ ∈ [2.5, 4.0] ×
10−15 eV c2. These are just examples of possible future develop-
ments in the interpretation of possible DM measurements from 
future FRBs with measured redshifts, and specifically how the ef-
fects of the IGM and a photon mass could in principle be distin-
guished. Significant improvements on these estimated sensitivities 
would require more careful estimates of possible reductions in the 
uncertainties in DMIGM, in particular, and would benefit from a 
combined analysis of a larger number of FRBs.

For completeness, we mention another way to bound mγ us-
ing radio emissions, namely by comparing the arrival time of radio 
afterglow and γ -ray emission from a GRB. The most promising 
example seems to be GRB 071109 which was observed [33] to ex-
hibit a radio afterglow at 8.46 GHz about 0.03 d after its γ -ray 
emission.8 Although the redshift of this GRB was not measured, 
assuming that its redshift lies within the range z ∈ [0.1, 5], we 
find an upper limit on the photon mass mγ � 2.8 × 10−11 eV c−2

(= 5.0 × 10−47 kg).9 The weakness of the limit compared to the 
FRB limit discussed earlier is due to the much larger time delay 
before the observation of the radio afterglow. Whilst this limit is 
not competitive with the FRB limit given above or the limit cur-
rently quoted by the PDG, this GRB afterglow method has the 
interest of involving a different type of astrophysical modelling. 
Moreover, it has potential for future improvement, e.g., if one could 
use lower-frequency waves and/or observe an afterglow sooner af-
ter the parent GRB, and particularly if time structure in the radio 
emissions analogous to those in the γ -ray emissions could be de-
tected.

We finish our discussion with come comments and specula-
tions. The present lack of redshift measurements for other FRBs is 
an obstacle for obtaining a more robust upper bound on the pho-
ton mass. However, one could also reverse the logic used above 
for FRB 150418 and, assuming the expected cosmological density 
of the IGM and the upper limit on the photon mass derived from 

6 The low luminosities of FRBs would render them difficult to detect at larger z.
7 For all hypothetical sources a 10% uncertainty in DMobs

IGM is applied.
8 Other GRBs have less sensitivity, because there were larger delays before their 

afterglows were detected.
9 Here we assume simultaneous emission of the radio waves and γ rays, which 

may not be the case. If the radio waves were emitted before the γ rays (foreglow), 
any delay due to the photon mass would be masked by the earlier time of emission.
FRB 150418, estimate the redshifts of other observed FRBs. Their 
redshift distribution might help pin down their origins. Another 
option would be to use gravitational lensing, which would become 
frequency dependent in the presence of a photon mass [5]. The 
lensing is independent of the distance from the source, and a pho-
ton of mass mγ and energy E from a source of mass M would 

be gravitationally deflected by an angle θ = 4M G
R c2

(
1 + m2

γ c4

2E2
γ

)
, for 

a photon of energy E (or frequency ν = E/h), where R is the size 
of the celestial body and G is the gravitational constant. In [5], 
the photon-mass deflection �θ was set equal to the difference be-
tween the value observed for some celestial object, e.g., the Sun, 
and the standard theoretical case for massless photon, thereby ob-
taining an upper bound mγ � hν c−2 √

2�θ/θ0, where θ0 = 4M G
R c2

is the standard massless photon deflection. Limits of the order 
of mγ � 10−44 kg can be obtained this way. Conversely, using 
upper bounds of the photon mass obtained from other methods 
like the FRBs discussed here would remove one uncertainty in the 
predictions for expected deflection angles, sharpening the use of 
comparisons with observations to constrain better the properties 
of lensing objects.
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