D. Lahiri, S. Ghosh, and A. Agarwal, Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: A review, Materials Science and Engineering: C, vol.32, issue.7, pp.1727-1758, 2012.
DOI : 10.1016/j.msec.2012.05.010

F. Moussy, Biomaterials for the developing world Substituted hydroxyapatites for biomedical applications: a review, Journal of Biomedical Materials Research Part A Ceramics International, vol.94, issue.41 8, pp.1001-1003, 2010.

W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, Journal of Materials Research, vol.95, issue.36, pp.94-117, 1998.
DOI : 10.1007/BF01139073

D. Tadic, F. Peters, and M. Epple, Continuous synthesis of amorphous carbonated apatites, Biomaterials, vol.23, issue.12, pp.2553-2559, 2002.
DOI : 10.1016/S0142-9612(01)00390-8

Y. W. Gu, N. H. Loh, K. A. Khor, S. B. Tor, and P. Cheang, Spark plasma sintering of hydroxyapatite powders, Biomaterials, vol.23, issue.1, pp.37-43, 2002.
DOI : 10.1016/S0142-9612(01)00076-X

A. A. White, S. M. Best, and I. A. Kinloch, Hydroxyapatite?Carbon Nanotube Composites for Biomedical Applications: A Review, International Journal of Applied Ceramic Technology, vol.254, issue.2, pp.1-13, 2007.
DOI : 10.1016/0022-1902(78)80298-X

L. Yu, K. A. Khor, H. Li, and P. Cheang, Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings, Biomaterials, vol.24, issue.16, pp.2695-2705, 2003.
DOI : 10.1016/S0142-9612(03)00082-6

Y. W. Gu, K. A. Khor, and P. Cheang, Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS), Biomaterials, vol.25, issue.18, pp.4127-4134, 2004.
DOI : 10.1016/j.biomaterials.2003.11.030

S. Oh, N. Oh, M. Appleford, and J. L. Ong, Bioceramics for Tissue Engineering Applications ???????? A Review, American Journal of Biochemistry and Biotechnology, vol.2, issue.2, pp.49-56, 2006.
DOI : 10.3844/ajbbsp.2006.49.56

K. Balani, Y. Chen, S. P. Harimkar, N. B. Dahotre, and A. Agarwal, Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution, Acta Biomaterialia, vol.3, issue.6, pp.944-951, 2007.
DOI : 10.1016/j.actbio.2007.06.001

Y. Chen, T. H. Zhang, C. H. Gan, and G. Yu, Wear studies of hydroxyapatite composite coating reinforced by carbon nanotubes, Carbon, vol.45, issue.5, pp.998-1004, 2007.
DOI : 10.1016/j.carbon.2006.12.021

D. Gopi, E. Shinyjoy, M. Sekar, M. Surendiran, L. Kavitha et al., Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method, Corrosion Science, vol.73, pp.321-330, 2013.
DOI : 10.1016/j.corsci.2013.04.021

T. M. Sridhar, U. K. Mudali, and M. Subbaiyan, Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel, Corrosion Science, vol.45, issue.10, pp.2337-2359, 2003.
DOI : 10.1016/S0010-938X(03)00063-5

X. H. Chen, C. S. Chen, H. N. Xiao, F. Q. Cheng, G. Zhang et al., Corrosion behavior of carbon nanotubes???Ni composite coating, Surface and Coatings Technology, vol.191, issue.2-3, pp.351-356, 2005.
DOI : 10.1016/j.surfcoat.2004.04.055

B. M. Praveen, T. V. Venkatesha, Y. A. Naik, and K. Prashantha, Corrosion studies of carbon nanotubes???Zn composite coating, Surface and Coatings Technology, vol.201, issue.12, pp.5836-5842, 2007.
DOI : 10.1016/j.surfcoat.2006.10.034

N. Ignjatovi´cignjatovi´c, S. Tomi´ctomi´c, M. Daki´cdaki´c, M. Miljkovi´cmiljkovi´c, M. Plav?i´plav?i´c et al., Synthesis and properties of hydroxyapatite/poly-?-lactide composite biomaterials, Biomaterials, vol.20, issue.9, pp.809-816, 1999.
DOI : 10.1016/S0142-9612(98)00234-8

A. Bigi, E. Boanini, S. Panzavolta, and N. Roveri, Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate, Biomacromolecules, vol.1, issue.4, pp.752-756, 2000.
DOI : 10.1021/bm0055854

J. D. Hartgerink, E. Beniash, and S. I. Stupp, Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers, Science, vol.294, issue.5547, pp.1684-1688, 2001.
DOI : 10.1126/science.1063187

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

B. Hahn, J. Lee, and D. Park, Mechanical and in vitro biological performances of hydroxyapatite???carbon nanotube composite coatings deposited on Ti by aerosol deposition, Acta Biomaterialia, vol.5, issue.8, pp.3205-3214, 2009.
DOI : 10.1016/j.actbio.2009.05.005

M. S. Dresselhaus and H. Dai, Carbon Nanotubes: Continued Innovations and Challenges, MRS Bulletin, vol.29, issue.04, pp.237-243, 2004.
DOI : 10.1142/9781860943799

A. Peigney, Composite materials: Tougher ceramics with nanotubes, Nature Materials, vol.2, issue.1, pp.15-16, 2003.
DOI : 10.1038/nmat794

A. Li, K. Sun, W. Dong, and D. Zhao, Mechanical properties, microstructure and histocompatibility of MWCNTs/HAp biocomposites, Materials Letters, vol.61, issue.8-9, pp.8-9, 2007.
DOI : 10.1016/j.matlet.2006.07.159

M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, vol.287, issue.5453, pp.637-640, 2000.
DOI : 10.1126/science.287.5453.637

P. Avouris, Carbon nanotube electronics, Chemical Physics, vol.281, issue.2-3, pp.429-445, 2002.
DOI : 10.1016/S0301-0104(02)00376-2

Y. Di, X. Yang, and W. Lei, Surface modification of CNTcathodes by an acid-erosion process, Nanotechnology, vol.18, issue.50, pp.1-5, 2007.

Q. Li, J. Liu, and S. Xu, Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites, Advances in Materials Science and Engineering, vol.12, issue.1, 2015.
DOI : 10.1016/j.conbuildmat.2013.08.044

Y. Usui, K. Aoki, and N. Narita, Carbon Nanotubes with High Bone-Tissue Compatibility and Bone-Formation Acceleration Effects, Small, vol.26, issue.2, pp.240-246, 2008.
DOI : 10.1002/smll.200700670

M. Kalbacova, M. Kalbac, L. Dunsch, and U. Hempel, Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts, Carbon, vol.45, issue.11, pp.2266-2272, 2007.
DOI : 10.1016/j.carbon.2007.06.025

D. Lahiri, A. P. Benaduce, and F. Rouzaud, Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating, Journal of Biomedical Materials Research Part A, vol.283, issue.Suppl, pp.1-12, 2011.
DOI : 10.1002/jbm.a.32952

M. Matsuoka, T. Akasaka, Y. Totsuka, and F. Watari, Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes, Materials Science and Engineering: B, vol.173, issue.1-3, pp.1-3, 2010.
DOI : 10.1016/j.mseb.2009.12.044

T. Akasaka, A. Yokoyama, M. Matsuoka, T. Hashimoto, and F. Watari, Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations, Materials Science and Engineering: C, vol.30, issue.3, pp.391-399, 2010.
DOI : 10.1016/j.msec.2009.12.006

C. S. Ciobanu, F. Massuyeau, L. V. Constantin, and D. Predoi, Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100??C, Nanoscale Research Letters, vol.6, issue.1, 2011.
DOI : 10.1016/j.jssc.2003.10.023

URL : https://hal.archives-ouvertes.fr/hal-00849703

C. S. Ciobanu, S. L. Iconaru, P. Le-coustumer, L. V. Constantin, and D. Predoi, Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria, Nanoscale Research Letters, vol.7, issue.1, 2012.
DOI : 10.1016/j.carbpol.2008.09.013

I. Cacciotti, A. Bianco, M. Lombardi, and L. Montanaro, Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour, Journal of the European Ceramic Society, vol.29, issue.14, pp.2969-2978, 2009.
DOI : 10.1016/j.jeurceramsoc.2009.04.038

L. Wu, C. Man, and H. Wang, PEGylated Multi-Walled Carbon Nanotubes for Encapsulation and Sustained Release of Oxaliplatin, Pharmaceutical Research, vol.278, issue.22, pp.412-423, 2013.
DOI : 10.1007/s11095-012-0883-5

Y. Han, J. Xu, Z. Li, G. Ren, and Z. Yang, In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells, NeuroToxicology, vol.33, issue.5, pp.1128-1134, 2012.
DOI : 10.1016/j.neuro.2012.06.004

A. Dinischiotu, L. Stanca, D. Gradinaru, S. N. Petrache, M. Radu et al., Lipid Peroxidation Due to In Vitro and In Vivo Exposure of Biological Samples to Nanoparticles, Methods in Molecular Biology, vol.1028, pp.155-164, 2013.
DOI : 10.1007/978-1-62703-475-3_10

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

E. Battaut, Particle sizes and their statistics from Debye-Sherrer lines, " in International Tables for X-Ray Crystallography, pp.318-323, 1962.

H. Najafi, Z. A. Nemati, and Z. Sadeghian, Inclusion of carbon nanotubes in a hydroxyapatite sol???gel matrix, Ceramics International, vol.35, issue.7, pp.2987-2991, 2009.
DOI : 10.1016/j.ceramint.2009.03.017

C. S. Ciobanu, C. L. Popa, and D. Predoi, Sm:HAp nanopowders present antibacterial activity against Enterococcus faecalis, Journal of Nanomaterials Article ID, vol.2014, issue.780686, 2014.

M. Markovic, B. O. Fowler, and M. S. Tung, Preparation and comprehensive characterization of a calcium hydroxyapatite reference material, Journal of Research of the National Institute of Standards and Technology, vol.109, issue.6, pp.553-568, 2004.
DOI : 10.6028/jres.109.042

L. Yang, W. Z. Wei, X. H. Gao, J. J. Xia, and H. Tao, A new antibody immobilization strategy based on electrodeposition of nanometer-sized hydroxyapatite for label-free capacitive immunosensor, Talanta, vol.68, issue.1, pp.40-46, 2005.
DOI : 10.1016/j.talanta.2005.04.038

D. Pan, Y. Wang, Z. Chen, T. Yin, and W. Qin, Fabrication and Characterization of Carbon Nanotube-Hydroxyapatite Nanocomposite: Application to Anodic Stripping Voltammetric Determination of Cadmium, Electroanalysis, vol.72, issue.8, pp.944-952, 2009.
DOI : 10.1002/elan.200804492

C. S. Ciobanu, E. Andronescu, B. S. Vasile, C. M. Valsangiacom, R. V. Ghita et al., Looking for new synthesis of hydroxyapatite doped with europium, Journal of Optoelectronics and Advanced Materials, vol.4, pp.1515-1519, 2010.

X. Bai, K. More, C. M. Rouleau, and A. Rabiei, Functionally graded hydroxyapatite coatings doped with antibacterial components, Acta Biomaterialia, vol.6, issue.6, pp.2264-2273, 2010.
DOI : 10.1016/j.actbio.2009.12.002

L. Niu, H. Kua, and D. H. Chua, Bonelike Apatite Formation Utilizing Carbon Nanotubes as Template, Langmuir, vol.26, issue.6, pp.4069-4073, 2010.
DOI : 10.1021/la9034722

M. K. Kumar, A. Leela-mohana-reddy, and S. Ramaprabhu, Exfoliated single-walled carbon nanotube-based hydrogen sensor, Sensors and Actuators B: Chemical, vol.130, issue.2, pp.653-660, 2008.
DOI : 10.1016/j.snb.2007.10.033

R. Wahab, S. G. Ansari, Y. S. Kim, T. R. Mohanty, I. H. Hwang et al., Immobilization of DNA on nano-hydroxyapatite and their interaction with carbon nanotubes, Synthetic Metals, vol.159, issue.3-4, pp.3-4, 2009.
DOI : 10.1016/j.synthmet.2008.09.016

A. M. Rao, E. Richter, and S. Bandow, Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes, Science, vol.275, issue.5297, pp.187-190, 1997.
DOI : 10.1126/science.275.5297.187

Q. Liu, W. Liu, Z. Cui, W. Song, and L. Wan, Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods, Carbon, vol.45, issue.2, pp.268-273, 2007.
DOI : 10.1016/j.carbon.2006.09.029

J. L. Xu, K. A. Khor, J. J. Sui, and W. N. Chen, Preparation and characterization of a novel hydroxyapatite/carbon nanotubes composite and its interaction with osteoblast-like cells, Materials Science and Engineering: C, vol.29, issue.1, pp.44-49, 2009.
DOI : 10.1016/j.msec.2008.05.009

G. M. Neelgund, K. Olurode, Z. Luo, and A. Oki, A simple and rapid method to graft hydroxyapatite on carbon nanotubes, Materials Science and Engineering: C, vol.31, issue.7, pp.1477-1481, 2011.
DOI : 10.1016/j.msec.2011.06.001

W. Zheng, Q. Li, L. Su, Y. Yan, J. Zhang et al., Direct Electrochemistry of Multi-Copper Oxidases at Carbon Nanotubes Noncovalently Functionalized with Cellulose Derivatives, Electroanalysis, vol.124, issue.6, pp.587-594, 2006.
DOI : 10.1002/elan.200503444

H. Patel and S. Kwon, Multi-walled carbon nanotube-induced inflammatory response and oxidative stress in a dynamic cell growth environment Submit your manuscripts at http://www.hindawi, Journal of Biological Engineering, vol.6, issue.22, 2012.