K. Show, D. Lee, and J. Chang, Bioreactor and process design for biohydrogen production, Bioresource Technology, vol.102, issue.18, pp.8524-8557, 2011.
DOI : 10.1016/j.biortech.2011.04.055

T. Abbasi and S. Abbasi, ???Renewable??? hydrogen: Prospects and challenges, Renewable and Sustainable Energy Reviews, vol.15, issue.6, pp.3034-3074, 2011.
DOI : 10.1016/j.rser.2011.02.026

P. Hallenbeck, M. Abo-hashesh, and D. Ghosh, Strategies for improving biological hydrogen production, Bioresource Technology, vol.110, pp.1-9, 2012.
DOI : 10.1016/j.biortech.2012.01.103

P. Hallenbeck, Fermentative hydrogen production: Principles, progress, and prognosis, International Journal of Hydrogen Energy, vol.34, issue.17, pp.7379-89, 2009.
DOI : 10.1016/j.ijhydene.2008.12.080

M. Momirlan and T. Veziro?lu, Recent directions of world hydrogen production, Renewable and Sustainable Energy Reviews, vol.3, issue.2-3, pp.219-250, 1999.
DOI : 10.1016/S1364-0321(98)00017-3

S. Rittmann and C. Herwig, A comprehensive and quantitative review of dark fermentative biohydrogen production, Microbial Cell Factories, vol.11, issue.1, pp.10-1186, 2012.
DOI : 10.1007/s10529-007-9527-y

A. Ghimire, L. Frunzo, L. Pontoni, G. Antonio, P. Lens et al., Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate, Journal of Environmental Management, vol.152, pp.43-51, 2015.
DOI : 10.1016/j.jenvman.2014.12.049

F. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. Hawkes, Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress, International Journal of Hydrogen Energy, vol.32, issue.2, pp.172-84, 2007.
DOI : 10.1016/j.ijhydene.2006.08.014

B. Logan, S. Oh, I. Kim, and S. Van-ginkel, Biological Hydrogen Production Measured in Batch Anaerobic Respirometers, Environmental Science & Technology, vol.36, issue.11, pp.2530-2535, 2002.
DOI : 10.1021/es015783i

I. Rivera, G. Buitrón, P. Bakonyi, N. Nemestóthy, and K. Bélafi-bakó, Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent, Journal of Applied Electrochemistry, vol.34, issue.5, pp.1223-1232, 2015.
DOI : 10.1007/s10800-015-0864-6

K. Jung, D. Kim, S. Kim, and H. Shin, Bioreactor design for continuous dark fermentative hydrogen production, Bioresource Technology, vol.102, issue.18, pp.8612-8632, 2011.
DOI : 10.1016/j.biortech.2011.03.056

P. Bakonyi, N. Nemestóthy, V. Simon, and K. Bélafi-bakó, Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors, Renewable and Sustainable Energy Reviews, vol.40, 2014.
DOI : 10.1016/j.rser.2014.08.014

G. Kumar, P. Bakonyi, S. Periyasamy, S. Kim, N. Nemestóthy et al., Lignocellulose biohydrogen: Practical challenges and recent progress, Renewable and Sustainable Energy Reviews, vol.44, pp.728-765, 2015.
DOI : 10.1016/j.rser.2015.01.042

M. Arooj, S. Han, S. Kim, D. Kim, and H. Shin, Sludge characteristics in anaerobic SBR system producing hydrogen gas, Water Research, vol.41, issue.6, pp.1177-84, 2007.
DOI : 10.1016/j.watres.2006.11.052

R. Rafieenia, A metabolic model for investigation of the fermentative hydrogen production by Clostridium butyricum w5 grown on xylose, Asian J Exp Biol Sci, vol.4, pp.472-477, 2013.

H. Fang and H. Liu, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology, vol.82, issue.1, pp.87-93, 2002.
DOI : 10.1016/S0960-8524(01)00110-9

D. Karadag, A. Mäkinen, E. Efimova, and J. Puhakka, Thermophilic biohydrogen production by an anaerobic heat treated-hot spring culture, Bioresource Technology, vol.100, issue.23, pp.5790-5795, 2009.
DOI : 10.1016/j.biortech.2009.06.035

F. Morsy, CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system, Energy, vol.87, pp.594-604, 2015.
DOI : 10.1016/j.energy.2015.05.044

K. Niu, X. Zhang, W. Tan, and M. Zhu, Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge, International Journal of Hydrogen Energy, vol.35, issue.1, pp.71-80, 2010.
DOI : 10.1016/j.ijhydene.2009.10.071

B. Wang, Y. Yin, R. Cheng, Q. Zhang, L. Wang et al., Effect of Sulfate Concentration on Biohydrogen Production by Enriched Anaerobic Sludge, Advanced Materials Research, vol.884, issue.885, 2014.
DOI : 10.4028/www.scientific.net/AMR.884-885.433

Y. Xiao, X. Zhang, M. Zhu, and W. Tan, Effect of the culture media optimization, pH and temperature on the biohydrogen production and the hydrogenase activities by Klebsiella pneumoniae ECU-15, Bioresource Technology, vol.137, 2013.
DOI : 10.1016/j.biortech.2013.03.109

S. Oh, V. Ginkel, S. Logan, and B. , The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production, Environmental Science & Technology, vol.37, issue.22, pp.5186-90, 2003.
DOI : 10.1021/es034291y

J. Lay, Modeling and optimization of anaerobic digested sludge converting starch to hydrogen, 3<269::AID-BIT5>3.0.CO, pp.269-78, 2000.
DOI : 10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T

Z. Zhang, S. Adav, K. Show, J. Tay, D. Liang et al., Characteristics of rapidly formed hydrogen-producing granules and biofilms, Biotechnology and Bioengineering, vol.22, issue.5, pp.926-962, 2008.
DOI : 10.1002/bit.21956

I. Kim, M. Hwang, N. Jang, S. Hyun, and S. Lee, Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process, International Journal of Hydrogen Energy, vol.29, pp.1133-1173, 2004.
DOI : 10.1016/j.ijhydene.2003.08.017

M. Salerno, W. Park, Y. Zuo, and B. Logan, Inhibition of biohydrogen production by ammonia, Water Research, vol.40, issue.6, pp.1167-72, 2006.
DOI : 10.1016/j.watres.2006.01.024

X. Wang, J. B. Mulcahy, and D. , Impact of carbon and nitrogen sources on hydrogen production by a newly isolated Clostridium butyricum W5, International Journal of Hydrogen Energy, vol.33, issue.19, pp.4998-5005, 2008.
DOI : 10.1016/j.ijhydene.2008.07.078

A. Bisaillon, J. Turcot, and P. Hallenbeck, The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. IHEC 2005 COST Action 841, Final Meet, vol.31, 2006.

D. Reyter, D. Belanger, and L. Roue, Study of the electroreduction of nitrate on copper in alkaline solution, Electrochimica Acta, vol.53, issue.20, pp.5977-84, 2008.
DOI : 10.1016/j.electacta.2008.03.048

S. Carpenter, N. Caraco, D. Correll, R. Howarth, A. Sharpley et al., NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN, Ecological Applications, vol.8, issue.3, pp.559-68, 1998.
DOI : 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

H. Cheng, K. Scott, and P. Christensen, Paired electrolysis in a solid polymer electrolyte reactor???Simultaneously reduction of nitrate and oxidation of ammonia, Chemical Engineering Journal, vol.108, issue.3, pp.257-68, 2005.
DOI : 10.1016/j.cej.2005.02.028

I. Katsounaros, D. Ipsakis, C. Polatides, and G. Kyriacou, Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials, Electrochimica Acta, vol.52, issue.3, pp.1329-1367, 2006.
DOI : 10.1016/j.electacta.2006.07.034

D. Reyter, D. Bélanger, and L. Roué, Optimization of the cathode material for nitrate removal by a paired electrolysis process, Journal of Hazardous Materials, vol.192, issue.2, pp.507-520, 2011.
DOI : 10.1016/j.jhazmat.2011.05.054

D. Reyter, D. Bélanger, and L. Roué, Nitrate removal by a paired electrolysis on copper and Ti/IrO2 coupled electrodes ??? Influence of the anode/cathode surface area ratio, Water Research, vol.44, issue.6, 1918.
DOI : 10.1016/j.watres.2009.11.037

M. Dortsiou and G. Kyriacou, Electrochemical reduction of nitrate on bismuth cathodes, Journal of Electroanalytical Chemistry, vol.630, issue.1-2, pp.69-74, 2009.
DOI : 10.1016/j.jelechem.2009.02.019

H. Doan, J. Wu, and R. Mitzakov, Combined electrochemical and biological treatment of industrial wastewater using porous electrodes, Journal of Chemical Technology & Biotechnology, vol.49, issue.8, pp.1398-408, 2006.
DOI : 10.1002/jctb.1575

K. Bouzek, M. Paidar, A. Sadílková, and H. Bergmann, Electrochemical reduction of nitrate in weakly alkaline solutions, Journal of Applied Electrochemistry, vol.31, issue.11, pp.1185-93, 2001.
DOI : 10.1023/A:1012755222981

C. Chu, L. Tung, and C. Lin, Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture, International Journal of Hydrogen Energy, vol.38, issue.35, pp.15849-55, 2013.
DOI : 10.1016/j.ijhydene.2013.07.088

G. Liu and J. Shen, Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria, Journal of Bioscience and Bioengineering, vol.98, issue.4, pp.251-257, 2004.
DOI : 10.1016/S1389-1723(04)00277-4

M. Morimoto, M. Atsuko, A. Atif, M. Ngan, A. Fakhru-'l-razi et al., Biological production of hydrogen from glucose by natural anaerobic microflora, International Journal of Hydrogen Energy, vol.29, issue.7, pp.709-722, 2004.
DOI : 10.1016/j.ijhydene.2003.09.009

M. Chong, R. Rahim, Y. Shirai, and M. Hassan, Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent, International Journal of Hydrogen Energy, vol.34, issue.2, pp.764-71, 2009.
DOI : 10.1016/j.ijhydene.2008.10.095

H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi et al., Microbial hydrogen production from sweet potato starch residue, Journal of Bioscience and Bioengineering, vol.91, issue.1, pp.58-63, 2001.
DOI : 10.1016/S1389-1723(01)80112-2

H. Yokoi, T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki, Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39, Journal of Fermentation and Bioengineering, vol.80, issue.6, pp.571-575, 1995.
DOI : 10.1016/0922-338X(96)87733-6

H. Cheng, L. Whang, M. Chung, and K. Chan, Biological hydrogen and methane production from bagasse bioethanol fermentation residues using a two-stage bioprocess, Bioresource Technology, vol.210
DOI : 10.1016/j.biortech.2015.12.084

R. Abdallah, A. Amrane, H. Djelal, S. Taha, F. Fourcade et al., Energetic valorization of ammonium resulting from nitrate electrochemical reduction???Feasibility of biohydrogen production, Biochemical Engineering Journal, vol.94, pp.145-52, 2015.
DOI : 10.1016/j.bej.2014.11.019

URL : https://hal.archives-ouvertes.fr/insu-01112001

J. Wang and W. Wan, Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge, International Journal of Hydrogen Energy, vol.33, issue.12, pp.2934-2975, 2008.
DOI : 10.1016/j.ijhydene.2008.03.048

M. Lee, S. Zhang, Y. Cho, J. Park, K. Chang et al., Effects of nitrate concentration on biohydrogen production and substrate utilization in dark-fermentation, Journal of Material Cycles and Waste Management, vol.145, issue.1, pp.27-32, 2015.
DOI : 10.1007/s10163-013-0219-5

J. Van-der-hoek, P. Van-der-ven, and A. Klapwijk, Combined ion exchange/biological denitrification for nitrate removal from ground water under different process conditions, Water Research, vol.22, issue.6, pp.679-84, 1988.
DOI : 10.1016/0043-1354(88)90178-9

J. Kim and M. Benjamin, Modeling a novel ion exchange process for arsenic and nitrate removal, Water Research, vol.38, issue.8, pp.2053-62, 2004.
DOI : 10.1016/j.watres.2004.01.012

R. Abdallah, F. Geneste, T. Labasque, H. Djelal, F. Fourcade et al., Selective and quantitative nitrate electroreduction to ammonium using a porous copper electrode in an electrochemical flow cell, Journal of Electroanalytical Chemistry, vol.727, pp.148-53, 2014.
DOI : 10.1016/j.jelechem.2014.06.016

URL : https://hal.archives-ouvertes.fr/insu-01022586

H. Fang, T. Zhang, and H. Liu, Microbial diversity of a mesophilic hydrogen-producing sludge

Y. Zhang and J. Shen, Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria, International Journal of Hydrogen Energy, vol.31, issue.4, pp.441-447, 2006.
DOI : 10.1016/j.ijhydene.2005.05.006

A. Eaton and M. Franson, Standard methods for the examination of water & wastewater Amer Public Health Assn, 2005.

D. Frear and R. Burrell, Spectrophotometric Method for Determining Hydroxylamine Reductase Activity in Higher Plants, Analytical Chemistry, vol.27, issue.10, pp.1664-1669, 1955.
DOI : 10.1021/ac60106a054

A. Greenberg, L. Clesceri, and A. Eaton, Standard Methods for the Examination of Water and Wastewater, 1992.

J. Tang, Y. Yuan, W. Guo, and N. Ren, Inhibitory effects of acetate and ethanol on biohydrogen production of Ethanoligenens harbinese B49. 11th China Hydrog Energy Conf 2012, pp.741-748

W. Han, D. Liu, Y. Shi, J. Tang, Y. Li et al., Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors, Bioresource Technology, vol.180, pp.54-62, 2015.
DOI : 10.1016/j.biortech.2014.12.067

X. Guo, E. Trably, E. Latrille, H. Carrère, and J. Steyer, Hydrogen production from agricultural waste by dark fermentation: A review, International Journal of Hydrogen Energy, vol.35, issue.19, pp.10660-73, 2010.
DOI : 10.1016/j.ijhydene.2010.03.008

Y. Mu, H. Yu, and G. Wang, Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge, Enzyme and Microbial Technology, vol.40, issue.4, pp.947-53, 2007.
DOI : 10.1016/j.enzmictec.2006.07.033