W. Liang, L. Zhan, L. Piao, and C. , Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite, Materials Science and Engineering: B, vol.176, issue.13, pp.1010-1014, 2011.
DOI : 10.1016/j.mseb.2011.05.036

L. Dong, Z. Zhu, Y. Qiu, and J. Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chemical Engineering Journal, vol.165, issue.3, pp.827-834, 2010.
DOI : 10.1016/j.cej.2010.10.027

X. Chen, J. V. Wright, J. L. Conca, and L. M. Peurrung, Effects of pH on Heavy Metal Sorption on Mineral Apatite, Environmental Science & Technology, vol.31, issue.3, pp.624-631, 1997.
DOI : 10.1021/es950882f

M. Miyake, K. Ishigaki, and T. Suzuki, Structure refinements of Pb2+ ion-exchanged apatites by x-ray powder pattern-fitting, Journal of Solid State Chemistry, vol.61, issue.2, pp.230-235, 1986.
DOI : 10.1016/0022-4596(86)90026-5

J. Garcia-leston, J. Mendez, E. Pasaro, and B. Laffon, Genotoxic effects of lead: An updated review, Environment International, vol.36, issue.6, pp.623-636, 2010.
DOI : 10.1016/j.envint.2010.04.011

S. H. Jang, Y. G. Jeong, B. G. Min, W. S. Lyoo, and S. C. Lee, Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels, Journal of Hazardous Materials, vol.159, issue.2-3, pp.294-299, 2008.
DOI : 10.1016/j.jhazmat.2008.02.018

T. Suzuki, K. Ishigaki, and M. Miyake, Synthetic hydroxyapatites as inorganic cation exchangers. Part 3.???Exchange characteristics of lead ions (Pb2+), Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.80, issue.11, pp.3157-3165, 1984.
DOI : 10.1039/f19848003157

Q. Y. Ma, S. J. Traina, T. J. Logan, and J. A. Ryan, In situ lead immobilization by apatite, Environmental Science & Technology, vol.27, issue.9, pp.1803-1810, 1993.
DOI : 10.1021/es00046a007

Y. P. Xu and F. W. Schwartz, Lead immobilization by hydroxyapatite in aqueous solutions, Journal of Contaminant Hydrology, vol.15, issue.3, pp.187-206, 1993.
DOI : 10.1016/0169-7722(94)90024-8

S. K. Lower, P. A. Maurice, and S. J. Traina, Simultaneous dissolution of hydroxylapatite and precipitation of hydroxypyromorphite: direct evidence of homogeneous nucleation, Geochimica et Cosmochimica Acta, vol.62, issue.10, pp.1773-1780, 1998.
DOI : 10.1016/S0016-7037(98)00098-2

E. Mavropoulos, A. M. Rossi, A. M. Costa, C. A. Perez, J. C. Moreira et al., Studies on the Mechanisms of Lead Immobilization by Hydroxyapatite, Environmental Science & Technology, vol.36, issue.7, pp.1625-1629, 2002.
DOI : 10.1021/es0155938

E. Deydier, R. Guilet, and P. Sharrock, Beneficial use of meat and bone meal combustion residue: ???an efficient low cost material to remove lead from aqueous effluent???, Journal of Hazardous Materials, vol.101, issue.1, pp.55-64, 2003.
DOI : 10.1016/S0304-3894(03)00137-7

N. Arnich, M. C. Lanhers, F. Laurensot, R. Podor, A. Montiel et al., In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite, Environmental Pollution, vol.124, issue.1, pp.139-149, 2003.
DOI : 10.1016/S0269-7491(02)00416-5

P. K. Chaturvedi, C. S. Seth, and V. Misra, Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite), Chemosphere, vol.64, issue.7, pp.1109-1114, 2006.
DOI : 10.1016/j.chemosphere.2005.11.077

A. Corami, S. Mignardi, V. Ferrini, and J. Colloid, Cadmium removal from single- and multi-metal () solutions by sorption on hydroxyapatite, Journal of Colloid and Interface Science, vol.317, issue.2, pp.402-408, 2008.
DOI : 10.1016/j.jcis.2007.09.075

Y. Xu, F. W. Schwartz, and S. J. Traina, Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces, Environmental Science & Technology, vol.28, issue.8, pp.1472-1480, 1994.
DOI : 10.1021/es00057a015

A. G. Leyva, J. Marrero, P. Smichowski, and D. Cicerone, Sorption of Antimony onto Hydroxyapatite, Environmental Science & Technology, vol.35, issue.18, pp.3669-3675, 2001.
DOI : 10.1021/es0009929

J. A. Gómez-del-río, P. J. Morando, and D. S. Cicerone, Natural materials for treatment of industrial effluents: comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: batch experiments, Journal of Environmental Management, vol.71, issue.2, pp.169-177, 2004.
DOI : 10.1016/j.jenvman.2004.02.004

J. Jeanjean, U. Vincent, and M. Fedoroff, Structural Modification of Calcium Hydroxyapatite Induced by Sorption of Cadmium Ions, Journal of Solid State Chemistry, vol.108, issue.1, pp.68-72, 1994.
DOI : 10.1006/jssc.1994.1010

I. Smiciklas, A. Onjia, S. Raicevic, D. Janackovic, and M. Mitric, Factors influencing the removal of divalent cations by hydroxyapatite, Journal of Hazardous Materials, vol.152, issue.2, pp.876-884, 2008.
DOI : 10.1016/j.jhazmat.2007.07.056

F. Monteil-rivera and M. Fedoroff, Encyclopedia of Surface and Colloid Science, pp.1-26, 2002.

L. Q. Ma, Factors Influencing the Effectiveness and Stability of Aqueous Lead Immobilization by Hydroxyapatite, Journal of Environment Quality, vol.25, issue.6, pp.1420-1429, 1996.
DOI : 10.2134/jeq1996.00472425002500060036x

D. Dieterich, E. Grigat, W. Hahn, H. Hespe, and H. G. Schmelzer, Principles of polyurethane chemistry and special applications, Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties, pp.11-31, 1994.

C. Y. Kim, H. J. Kim, and J. S. Nam, Removal of lead ions from solution by phosphosilicate glass, Journal of Hazardous Materials, vol.153, issue.1-2, pp.173-178, 2008.
DOI : 10.1016/j.jhazmat.2007.08.044

Q. Y. Ma, T. J. Logan, and S. J. Traina, Lead Immobilization from Aqueous Solutions and Contaminated Soils Using Phosphate Rocks, Environmental Science & Technology, vol.29, issue.4, pp.1118-1126, 1995.
DOI : 10.1021/es00004a034