Solar Wind Interaction with Lunar Magnetic Anomalies: Vertical vs. Horizontal Dipole - Archive ouverte HAL Access content directly
Conference Papers Year :

Solar Wind Interaction with Lunar Magnetic Anomalies: Vertical vs. Horizontal Dipole

(1, 2) , (3, 4) , (1, 2) , (5) , (6) , (7) , (1, 2)
1
2
3
4
5
6
7

Abstract

A detailed understanding of the solar wind interac- tion with lunar magnetic anomalies (LMAs) is essen- tial to identify its implications for both robotic and human exploration and to enhance our physical under- standing of the particle dynamics in partially and/or fully magnetized plasmas. We present three- dimensional full-kinetic and electromagnetic simula- tions of the solar wind interaction with both a vertical and a horizontal dipole model, resembling a medium- size LMA. We find that, in contrast to a horizontal dipole, a vertical dipole twists its field lines and cannot form a mini-magnetosphere. Instead, it creates a ring- shaped weathering pattern and reflects up to 21% of the incoming solar wind ions, that is ~4 times more than the horizontal case. We deliver hereby a vital piece to fully comprehend and interpret lunar observa- tions as we find the amount of reflected ions to be a tracer for the underlying field structure. Observing more reflected ions, however, does not necessarily point to the existence of a (larger) density cavity. This work was supported by NASA’s SSSERVI/IMPACT and by the Swedish National Space Board, Grant No. 136/11. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Ad- vanced Supercomputing (NAS) Division at Ames Re- search Center. Test simulations utilized the Janus su- percomputer, supported by NSF (CNS-0821794) and CU Boulder.
Not file

Dates and versions

insu-01286513 , version 1 (10-03-2016)

Identifiers

  • HAL Id : insu-01286513 , version 1

Cite

Jan Deca, A. Divin, X. Wang, Bertrand Lembège, S. Markidis, et al.. Solar Wind Interaction with Lunar Magnetic Anomalies: Vertical vs. Horizontal Dipole. 47th Lunar and Planetary Science Conference, Mar 2016, The Woodlands, Texas, United States. ⟨insu-01286513⟩
141 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More