In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

To cite this version:

HAL Id: insu-01285053
https://hal-insu.archives-ouvertes.fr/insu-01285053
Submitted on 8 Mar 2016
In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

M. Beekmann1, A. S. H. Prévôt2, F. Drewnick3, J. Sciare4,a, S. N. Pandis5, H. A. C. Denier van der Gon6, M. Crippa7, F. Freutel3, L. Poulain7, V. Ghersi8, E. Rodriguez9, S. Beirle10, P. Zotter2,b, S.-L. von der Weiden-Reinmüller3, M. Bressi4, C. Fountoukis4, H. Petetin1,8, S. Szidat11, J. Schneider3, A. Rosso6, I. El Haddad2, A. Megaritis5, Q. J. Zhang1,12, V. Michoud4,20, J. G. Slowik2, S. Moukhtar8, P. Kolmonen9, A. Stohl13, S. Eckhardt13, A. Borbon1, V. Gros5, N. Marchand14, J. L. Jaffrezo15, A. Schwarzenboeck16, A. Colomb1,16, A. Wiedensohler7, S. Borrmann3,17, M. Lawrence18,c, A. Baklanov19, and U. Baltensperger2

1LISA/IPSL, Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC) et Université Paris Diderot (UPD), Créteil, France
2Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, PSI, Villigen, Switzerland
3Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
4Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Laboratoire CEA-CNRS-UVSQ, Gif-sur-Yvette, France
5Institute of Chemical Engineering Sciences (ICEHT), Foundation for Research and Technology Hellas (FORTH), Patra, Greece
6Department of Climate, Air and Sustainability, TNO, Utrecht, the Netherlands
7Leibniz Institute for Tropospheric Research, Leipzig, Germany
8AIRPARIF, Agence de Surveillance de la Qualité de l’Air, Paris, France
9Climate Change Unit, Finnish Meteorological Institute, 00101, Finland
10Max Planck Institute for Chemistry, Satellite Group, Mainz, Germany
11Department of Chemistry and Biochemistry & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
12Aria Technologies, Boulogne Billancourt, France
13NILU – Norwegian Institute for Air Research, Kjeller, Norway
14Laboratoire Chimie Provence, Equipe Instrumentation et Réactivité Atmosphérique (IRA), Université d’Aix-Marseille-CNRS, Marseille, France
15Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Université Joseph Fourier, CNRS, Grenoble, France
16Laboratoire de Météorologie Physique (LaMP), Université Blaise Pascal, CNRS, Aubière, France
17Institute of Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany
18Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
19Danish Meteorological Institute (DMI), Research Department, Copenhagen, Denmark
20Mines de Douai, Douai, France
anow at: Energy Environment Water Research Center (EEWRC), The Cyprus Institute, Nicosia, Cyprus
bnow at: Lucerne School of Engineering and Architecture, Bioenergy Research, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland
cnow at: Institute for Advanced Sustainability Studies, Potsdam, Germany

Correspondence to: M. Beekmann (matthias.beekmann@lisa.u-pec.fr)

Received: 21 January 2015 – Published in Atmos. Chem. Phys. Discuss.: 23 March 2015
Revised: 25 July 2015 – Accepted: 4 August 2015 – Published: 27 August 2015

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70% of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20% in winter and 40% in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

1 Introduction

Megacities, defined as agglomerations with a population above 10 million inhabitants (Gurjar and Lelieveld, 2005) often concentrate in a small area a substantial part of a country’s population, economic activities, and thus air pollutant emissions. Emitted primary and subsequently formed secondary gas- or particulate-phase pollutants cause substantial health problems especially in megacities with rapidly growing industry and low pollution control (e.g., Gurjar et al., 2010). The impact of local emissions on air quality in many of these megacities was shown to be large (see, e.g., Molina and Molina, 2004, for a general overview; Hand et al., 2011, and Parrish et al., 2011, for Los Angeles; Molina et al., 2010, for Mexico City; Chan and Yao, 2008, for Chinese megacities). In addition to the local contribution, levels of gaseous species and of fine particulate matter (fine PM, with an aerodynamic diameter below 2.5 µm, PM$_{2.5}$) are also affected by long-range transport from outside the cities. This important role of pollutant transport has been first shown for sulfate in New York City, a megacity located in a highly industrialized belt in the northeastern US (Rahn and Lowenthal, 1985; Dutkiewicz et al., 2004; Quin et al., 2006). Indeed, as a secondary aerosol component, sulfate needs some time to be formed from SO$_2$ emissions by gaseous- or aqueous-phase oxidation pathways (Seinfeld and Pandis, 2006), important SO$_2$ emissions of industrial origin are often located outside of a megacity. For nitrate, another important secondary inorganic aerosol component, and for organic aerosol (OA; both of primary and secondary origin), only few explicit estimations of the local versus advected contributions to their burden in megacities are available. While for Chicago (with about 8.75 million inhabitants is nearly a megacity) the advected part for both nitrate and OA is dominant (about 60% (Hand et al., 2011)), it is only minor for New York City (about 30–40%) (Lall and Thurston, 2006; Hand et al., 2011). Important contributions to nitrate from advection were qualitatively estimated for London (Harrison et al., 2012).

Inorganic secondary particulate species are directly related to their precursor gases SO$_2$, NO$_x$, and NH$_3$, with rather well known sources mostly related to fossil fuel burning (SO$_2$, NO$_x$) and agriculture (NH$_3$). By contrast, sources of organic aerosol are widespread (road transport, residential heating including wood burning, open biomass burning, cooking activities, secondary formation from biogenic as well as anthropogenic volatile organic compound (VOC) precursors) and their relative contributions remain uncertain (Hallquist et al., 2009). Early source apportionment work on PM was based on the analysis of daily filter samples and analysis of correlations between organic aerosol and tracers for specific sources using different statistical methods (for a review of methods and results, see Viana et al., 2008). In these earlier studies the secondary OA was often determined as the part of OA which could not be attributed to primary sources.

More recently, the combination of aerosol mass spectrometer (AMS) measurements (DeCarlo et al., 2006; Drewnick et al., 2005) and factor analysis techniques (e.g., positive matrix factorization, PMF, Paatero and Tapper, 1994; Lanz et al., 2007; Ulbrich et al., 2009) has improved the high temporal resolution of source apportionment of primary and secondary OA (e.g., Jimenez et al., 2009; Zhang et al., 2011). Nevertheless, the biogenic versus anthropogenic origin of secondary aerosol in megacities and in megacity plumes is still an open question (Hallquist et al., 2009). The combination of radiocarbon (14C) measurements and AMS based source apportionment can provide valuable insights about the share of fossil fuel and contemporary organic aerosol sources (Lanz et al., 2007; Minguillon et al., 2011; El-Haddad et al., 2013; Zotter et al., 2014). Despite this progress, sources of organic aerosol in megacities with respect to their local versus advected and fossil fuel versus contemporary contribution are...
still highly uncertain. Comprehensive data sets are needed to better quantify these sources.

Here, we report measurements of air pollution of fine particles in the Paris agglomeration, a mid-latitude, post-industrial megacity with 10.84 million inhabitants (United Nations, 2015). We conducted two intensive field campaigns in the Greater Paris area during July 2009 and from mid-January to mid-February 2010 as part of the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLLution and climate effects, and Integrated tools for assessment and mitigation) project (Butler, 2008; Bblanov et al., 2010). In addition, for 1 year (September 2009–September 2010), daily PM$_{2.5}$ chemical composition measurements were performed at one urban background and several rural sites during the PARTICULES (Source Apportionment Of Airborne Particles In The Ile-de-France Region) project (Gheres et al., 2010; Bressi et al., 2013, 2014). Our major aim is to quantify the contribution of local versus advected sources of fine aerosol in a post-industrial megacity, with a special focus on organic aerosol sources. This will be addressed by combining observations from both the MEGAPOLI and PARTICULES campaigns, and also considering results from chemical transport modeling and satellite observations. The analysis of organic aerosol sources will be addressed by a synthesis of AMS, radiocarbon and tracer measurements. Finally, we will place results found for Paris in a larger context of particulate matter origin in other selected megacities.

2 Measurements and methods

In Sect. 2.1, we will present the sites and measurements used for this study during the MEGAPOLI and PARTICULES campaigns. The processing of the measurements will be described in Sect. 2.2. The analysis for attribution of local versus advected contributions is outlined in Sect. 2.3. Details of the combined use of 14C and AMS data are given in the Supplement in Sect. S1. Additional data sets used in this study are described in the Supplement: satellite data sets (aerosol optical depth (AOD) from the Advanced Along Track Scanning Radiometer (AATSR), NO$_2$ columns from the SCIAMACHY instrument, both on the ENVISAT platform) in Sect. S2, black carbon (BC) and elemental carbon (EC) observations from other megacities than Paris in Sect. S3, emission inventories in Sect. S4 and modeling simulations with the PMCAMx and the CHIMERE models in Sect. S5.

2.1 Sampling sites and strategy

MEGAPOLI summer and winter campaigns took place from 1 to 31 July 2009 and 15 January to 15 February 2010. The measurement design included three primary and several secondary sites (Crippa et al., 2013b; Freutel et al., 2013), mobile platforms (Royer et al., 2011; von der Weiden-
with the accelerator mass spectrometry system MICADAS (MIni CArbon DAting System) (Synal et al., 2007). The French PARTICULES project (Ghersi et al., 2010; Bressi et al., 2013) was designed to identify the major sources of PM$_{2.5}$ in the city of Paris and document their geographical origin in order to better define effective local abatement strategies. A 1-year survey of the daily PM$_{2.5}$ chemical composition (from 11 September 2009 to 10 September 2010) was performed at five background locations in the region of Paris (Fig. 1): one urban background, one suburban background (not used in this study), and three rural background sites at about 70 km distance from the city center. Additional measurements (not used in this study) were performed at two traffic sites. Each site was equipped with two automated low-volume samplers (Leckel SEQ47/50) collecting 24 h PM$_{2.5}$ samples (from midnight to midnight) in order to determine the concentrations of PM$_{2.5}$, elemental carbon (EC), organic carbon (OC), the major water-soluble inorganic ions, metals, and selected organic tracers such as levoglucosan (a marker for wood burning) as described in Bressi et al. (2013). From filter samples, total PM$_{2.5}$ mass was obtained from gravimetric measurements. Chloride, nitrate, sulfate, sodium, ammonium, potassium, magnesium and calcium concentrations were determined by Ion Chromatography (IC). EC and OC were determined by a thermal-optical method using a Sunset Laboratory Carbon Analyzer (Sunset Lab., OR, USA) and the EUSAAR 2 protocol defined by Cavalli et al. (2010).

2.2 Aerosol measurements processing

AMS measurements provide the chemical speciation (sulfate, nitrate, ammonium, chloride, and the organic fraction) of the non-refractory fraction of aerosols with a diameter below 1 μm (PM$_{1}$). The uncertainty in these measurements has been estimated at about 30 % (Crippa et al., 2013b; Freutel et al., 2013). Positive matrix factorization (PMF) (Paatero and Tapper, 1994; Lanz et al., 2007; Ulbrich et al., 2009) allows deconvolution of the OA mass spectra into several factors that can be assigned most of the time to specific OA sources. Error analysis for PMF output is performed by varying the algorithm parameters (seeds, fpeak). A relative uncertainty for different factors of usually several tens of percent has been obtained (Freutel et al., 2013). The PMF analysis was applied here to the AMS measurements at the three primary MEGAPOLI sites indicated in Fig. 1. For the summer campaign a three-factor solution comprising HOA (hydrocarbon-like organic aerosol), OOA (oxygenated organic aerosol) and COA (cooking-related organic aerosol) was selected (Freutel et al., 2013). For the winter campaign a four-factor solution with an additional BBOA (biomass-burning-related organic aerosol) component was selected (Crippa et al., 2013b).

The combination of radiocarbon (14C) analysis with PMF analysis of AMS measurements allows quantification of the fossil fuel and modern fractions of different OA sources (Minguillón et al., 2011; El Haddad et al., 2013; Zotter et al., 2014). All PMF factors (as obtained with a three-factor analysis by Freutel et al., 2013) are attributed a priori to fossil fuel or modern (non-fossil fuel) carbon. HOA, which largely originates from road transport, was assumed to be 100 % fossil fuel, thus neglecting the small biofuel contribution. COA and BBOA were assumed to be 100 % non-fossil fuel. Only for OOA is this attribution not possible a priori, but it is obtained as a result of the combined 14C/AMS-PMF analysis. For a more detailed description of this analysis, see Sect. 1 of the Supplement.

The measurement setup, data processing, and the data sets obtained from the PARTICULES project are described in detail in Bressi et al. (2013). Chemical mass closure was successfully achieved at all sites leading to a large quality controlled aerosol data set (Bressi et al., 2013).

2.3 Data processing for determining local versus advected contributions

The geographical origins of the various PM components measured during the PARTICULES campaign were determined assuming that the difference in PM chemical composition between the urban background site and the appropriate upwind rural site can be attributed to the emissions within the agglomeration (Lenschow et al., 2001). Backward trajectories calculated with the HYSPLIT model (Draxler and Hess, 1997) have been used to choose the convenient rural background site upwind of the agglomeration among the three sites located at the northeast, northwest and south of the agglomeration (as described in more details in Petetin et al., 2014). Uncertainties in the annual advected fractions are below 5 % (Petetin et al., 2014).

3 Aerosol origin: regional or local?

3.1 MEGAPOLI intensive campaign perspective

A first striking result is that PM$_{1}$ levels in the Paris agglomeration were much lower during the MEGAPOLI summer campaign in July 2009 than during the winter campaign (in January/February 2010): average PM$_{1}$ levels were between 5.3 and 7.5 μg m$^{-3}$ and between 15.2 and 18.5 μg m$^{-3}$ in summer and winter, respectively, at the three primary sites (Table S1 in Supplement; Freutel et al., 2013, Crippa et al., 2013b). This seasonal variation of PM$_{1}$ is confirmed at the SW suburban site by 2-year (June 2011–June 2013) combined Q-ACSM (Quadripole Aerosol Chemical Speciation Monitor, Aerodyne, MA, USA) and Aethalometer measurements (Petit et al., 2015): summer PM$_{1}$ were on average 4.4 μg m$^{-3}$ while winter reached on average 14.5 μg m$^{-3}$. Also, on a longer-term perspective, PM levels in the Paris megacity appear moderate, when compared to the European background: average urban background PM$_{2.5}$ concentrations levels in and near Paris suburbs over the period 2007–2013 are about 18 μg m$^{-3}$ (Petit, 2014). This value is similar to the median
value of the annual PM$_{2.5}$ means of 17 µg m$^{-3}$ derived from eight European rural background sites (Putaud et al., 2010). Nevertheless, Paris urban PM$_{2.5}$ background exceeds the WHO health guideline of 10 µg m$^{-3}$ on an annual average; also European PM$_{10}$ standards are exceeded for traffic sites. Average PM$_{2.5}$ levels in Paris are rather close to European background levels, suggesting a strong regional contribution to the Paris background urban fine PM burden which needs to be confirmed by quantitative analysis presented here.

Firstly, time series were analyzed (Crippa et al., 2013b; Freutel et al., 2013). For all major aerosol components except black carbon, the average concentrations (Table S1 in the Supplement) and their temporal variability are rather similar between the urban LHVP and the NE and SW suburban sites, located at the edge of Paris. This similarity implies indeed a major regionally controlled fine PM burden.

Second, we compared levels of different PM$_1$ components and NO$_x$ at the NE suburban site for air masses originating from (see Sect. S6 in the Supplement): (1) the NE sector coming from central Europe and (2) the SW sector and after passing over the Paris agglomeration before reaching the measurement site. Inorganic ions (sulfate, nitrate and ammonium) and OA levels were substantially higher for air masses originating from the NE sector both during summer and winter (Fig. 2). This increase is less apparent for OA in winter because AMS measurements were not available during 26 to 28 January when heavily polluted air masses were transported to the agglomeration, and absent for BC and NO$_x$, both primary pollutants. Thus contrary to intuitive expectations, PM levels for most components are larger in air masses advected to the agglomeration (from NE) than in air masses (from SW) leaving Paris and having accumulated urban emissions while crossing the city.

3.2 One-year measurements perspective

The dominance of regional pollution for fine PM levels was additionally quantified by the analysis of the year-long measurements from the PARTICULES project. Using the appropriate upwind rural site (see Sect. 2.2, Fig. 1) as background, we estimated that on an annual basis more than 70 % of the urban PM$_{2.5}$ was advected to Paris from outside (Fig. 3). Results from this analysis are very similar for the summer (JJA) and winter (DJF) seasons (72 and 71 %, respectively). During the polluted periods (PM$_{2.5}$ $>$ 40 µg m$^{-3}$ at the urban site), especially during spring, the regional contribution can even be larger, around 90 %. Thus the variability of fine PM levels in Paris background atmosphere is mostly controlled by advection from outside.

The three major fine aerosol species sulfate, nitrate and organic aerosol at the urban background site on average constituted 13, 19 and 36 %, respectively, of total PM$_{2.5}$. The predominance of advected aerosol compounds is observed as expected for sulfate (nearly 95 % of total fine PM), but also for nitrate (nearly 80 %) and for organic matter (about 70 %). Such an important advected fraction of OA has to our knowledge not yet been shown before for a megacity. Possible reasons for this behavior will be discussed in Sect. 5.

![Figure 2. PM$_1$ components (µg m$^{-3}$) and NO$_x$ (ppb × 10) at the NE suburban site for air masses arriving from SW (red bars) and NE sectors (blue bars); air masses originating from the SW sector sample emissions from Paris, those from the NE sector represent continental type air masses moving towards Paris: (a) for summer and (b) for winter.](image1)

![Figure 3. Local (hatched) and imported contributions to PM$_{2.5}$ in Paris (PARTICULES urban background site) for the period September 2009 to September 2010, for different PM$_{2.5}$ levels. An uncertainty range of ±5 % (absolute value) is estimated for the local and imported PM$_{2.5}$ contribution.](image2)
3.3 Satellite observations

The homogeneous regional distribution of fine PM is also apparent from satellite AOD measurements, showing no significant gradient around Paris, in contrast to tropospheric NO$_2$ column measurements (derived from SCIAMACHY measurements on ENVISAT), which are clearly enhanced over the Paris agglomeration (Fig. 4). This strong gradient in NO$_2$ is directly related to NO$_x$ emissions in the Paris agglomeration and is enhanced due to its short lifetime of several hours during daytime and summer (Beirle et al., 2011).

Figure 4 also shows the AOD results obtained with the Advanced Along Track Scanning Radiometer (AATSR) instrument on ENVISAT (Veefkind et al., 1998) over western Europe from March to October 2009. Around Paris (from 48.70 to 49.0°N and from 2.10 to 2.55°E) AOD has a value of around 0.15 ± 0.04, while the average over northern France (from 49 to 50°N and from 2 to 6°E) was 0.14 ± 0.04. Thus, unlike NO$_2$, AOD is not affected by the Paris agglomeration. Therefore a megacity such as Paris does not significantly change the local AOD, which confirms results from surface observations of long-range transport dominance of the aerosol burden over the Paris area.

3.4 Modeling results

Results from chemical transport model (CTM) simulations (for model descriptions, see Sect. S5 in the Supplement) for the MEGAPOLI campaign and the year of PARTICULES measurements confirm the dominant advective contribution to PM levels over the Paris agglomeration. Simulations with the PMCAMx model show only 15 and 25 % fine PM of local origin during the summer and winter campaign periods, respectively (Fig. 5). These values are about 10, 20 and 10 % for sulfate, nitrate and OA, respectively, during summer. For winter, the respective local contributions are more than 20, 5 and 20 % for the same compounds (Fig. 6). These values are obtained by comparing simulations with and without emissions from the Paris region. They are similar to those obtained by Skyllakou et al. (2014) for Paris using a specific tagging method imbedded in their PMCAMx model simulations, capable of discerning the geographical origin of fine...
PM. Also, simulations with the Polair3D/Polyphemus chemistry transport model (Sartelet et al., 2007) show a minor local contribution for OA (30–38 %) for the Paris urban background during the MEGAPOLI summer campaign (Couvidat et al., 2013).

Year-round simulations with the CHIMERE model also show, consistently with the observation-based estimates, that around 65 % of the fine PM$_{2.5}$ over Paris is advected to the megacity from other areas (Petetin et al., 2014). For individual compounds larger errors of different sign occur, for instance the advected part of OA is underestimated by CHIMERE by about a factor of 2, while nitrate is overestimated by a factor of 1.5. The strong underestimation of OA is most pronounced during wintertime and is thought to be related both to underestimated regional wood-burning emissions and missing formation pathways in the model (Petetin et al., 2014). In conclusion CTM simulations are able to reproduce and confirm the general picture of a dominant advected fine PM burden over the Paris domain, although errors can occur for individual aerosol species.

4 Sources and origin of organic and inorganic aerosols

The MEGAPOLI campaign results also provide important insights into specific sources of carbonaceous PM (the sum of OA and BC), which represents on average almost 70 % (summer) and 43 % (winter) of PM$_1$ at the urban background site. Radiocarbon (14C) analysis clearly shows a dominant non-fossil fuel fraction of carbonaceous PM$_1$: $\sim 62\% \pm 8\%$ (uncertainty) during summer and $\sim 78\% \pm 14\%$ during winter (Fig. 7). These values are much higher than those for other megacities reported in Hodzic et al. (2010), where contributions from non-fossil fuel carbon are about 30 and 40 %, respectively, during summer and winter for Tokyo, about 30 % during summer for Los Angeles, about 30 % during spring in Mexico City for days without significant contribution of wild-fires, and about 50 and 30 % in summer and winter in Beijing, respectively. Thus sources of non-fossil fuel carbon are much more important for Paris than for many other megacities.

Cooking-related OA (e.g., modern carbon) constitutes up to 30 % of carbonaceous PM$_1$ in summer and nearly 15 %
It should also be noted that alternative PMF calculations of

tained during the summer campaign (Freney et al., 2014).

in winter. The high values at the urban site could be partly
due to a large number of restaurants nearby, although the
cooking source has also been identified at the SW suburban
site (Crippa et al., 2013b) and in the Paris pollution plume
(von der Weiden-Reinmüller et al., 2014a, b). This finding
for Paris is consistent with the importance of cooking con-
tributions found in several other cities (London (Allan et al.,
2010), Barcelona (Mohr et al., 2012), Beijing (Huang et al.,
2010), New York City (Sun et al., 2011), and Toronto (Slowik
et al., 2010)).

During summer, the PMF OOA factor, a proxy for sec-
ondary organic aerosol (SOA), accounted for nearly 40 %
of OA. Combined 14C/AMS-PMF analysis suggests that more
than 90 % of this OOA is of non-fossil fuel origin with an
uncertainty range between 60 and 100 % (Fig. 7). Secondary
organic aerosol formation from non-fossil fuel precursors
is thus clearly the dominant source for SOA advected to
the Paris megacity during summer. Modeling results using
CHIMERE including the volatility basis set (description in
Sect. S5) confirm the origin of SOA: more than 60 % of
SOA is of non-fossil fuel and mostly biogenic origin, which
is within, albeit at the lower end of, the experimentally de-

erived range of values (see Fig. 8). The simulations indicate
two transport patterns during high SOA periods in Paris: ei-
ther transport from the northeast with SOA of mixed an-
thropogenic and biogenic origin, or transport from the south
with predominantly biogenic SOA, from large biogenic VOC
emissions over southwestern France and northeastern Spain
(Zhang et al., 2013). Apparently, rapid SOA formation from
anthropogenic VOC precursors, as for example observed in
Mexico City (e.g., Volkamer et al., 2006), is not strong and
fast enough within the Paris agglomeration to compete with
the imported biogenic SOA fraction. However, SOA within
the Paris pollution plume at about 100 km downwind of the
city is enriched with anthropogenic SOA after several hours
of processing time, based on the analysis of aircraft data ob-
tained during the summer campaign (Freney et al., 2014).
It should also be noted that alternative PMF calculations of
summer campaign AMS data slightly alter the results. For
instance, the five-factor PMF analysis for the urban back-
ground site shows an additional factor related to biogenic
marine emissions with high sulfur content and contributing
a little more than 10 % to summer PM1 OA (Crippa et al.,
2013c).

During winter, PMF analysis of AMS measurements di-
rectly attributes 12 % of carbonaceous PM1 to wood burning.
A large fraction (44 %) of carbonaceous PM1 is attributed

to OOA (Fig. 7), similar to other megacities during win-
ter (New York City and Tokyo (Zhang et al., 2007)). From
the combined 14C/AMS-PMF analysis, at least about 80 %
of this fraction is estimated to be of non-fossil fuel origin
(Fig. 7). This points to either strong contributions of aged or-

ganic aerosol from wood burning or of SOA formation from
biogenic VOCs, even if in wintertime biogenic emissions are
expected to be much lower than during summer. Estimated
wood burning contributions to OA from the Aethalometer
model (Sandradewi et al., 2008) and a tracer approach (using
levoglucosan as a tracer for wood-burning emissions) for this
period are also compatible with a part of the identified OOA
fraction originating from wood-burning emissions, within
their large error bars (Crippa et al., 2013a). For instance
Grieshop et al. (2009) and Heringa et al. (2011) showed that
domestic wood-burning emissions from wood stoves form
significant amounts of secondary organic aerosol. A question
arises of the local versus regional origin of wood-burning OA
in the Paris agglomeration since the dominant OA fraction
was assigned to advection from outside in Sect. 3.1. The re-

gional origin of primary or secondary wood-burning emis-
sions is made evident by the strong correlation and similar
levels of levoglucosan between the urban background and ru-

dal (southern) Paris sites of the PARTICULES project (Fig. 9).

Figure 9. Daily levoglucosan values observed during the PAR-

ticules project from September 2009 to September 2010 at the

downtown urban and southern rural sites. The rural site is located

distant from direct sources. Levoglucosan is a tracer for wood-burning

emissions. The similar values at both sites ($R^2 = 0.83$, slope rural

vs. downtown site 0.84) suggest a strong regional control of wood-
burning-related organic aerosol.

Figure 8. Contributions to secondary organic aerosol during
the MEGAPOLI summer campaign period, simulated with the
CHIMERE model: BGOA (background organic aerosol), BSOA
(biogenic SOA), ASOA (anthropogenic SOA), OPOA (oxidized pri-
mary OA of anthropogenic origin). BSOA and BGOA are consid-
ered as of non-fossil fuel, ASOA and OPOA as of fossil fuel origin.
Grenoble agglomeration in the French Alps (~650,000 inhabitants) (Favez et al., 2010). In general, in Alpine valleys, wood-burning contributions to OA around 50% were found (Herich et al., 2014). Crippa et al. (2014) showed that wood- and biomass-burning-related organic aerosol concentrations were significant across Europe even in spring and autumn.

Fossil fuel EC and HOA constitute about 20 and 15%, respectively, of the carbonaceous PM1 in summer, and about 20 and 10%, respectively, in winter (Fig. 7). According to emissions inventories like those developed by MACC (Monitoring Atmospheric Composition and Climate, Pouliot et al., 2012) and EMEP (European Monitoring and Evaluation Program, Vestreng et al., 2007), the major contributor to this fossil-fuel-related fraction is road transport. Unlike biomass burning emissions, these contributions are expected to be dominated by local emissions within the agglomeration. This is confirmed for example by simulations with the PMCAMx model which attribute about 60% of EC to emissions within the agglomeration (during the MEGAPOLI summer campaign).

The secondary inorganic aerosol fraction, mostly associated with regional transport (>70%, see Sect. 3.2), represents about 30% of PM1 during summer (19% sulfate, 6% nitrate and 7% ammonium) and more than 50% during winter (16% sulfate, 28% nitrate and 12% ammonium). Again, MACC and EMEP emission inventories (Pouliot et al., 2012; Vestreng et al., 2007) indicate that inorganic aerosol precursors SO2, NOx, and NH3 are mainly of anthropogenic origin. SO2 is mostly emitted by industrial sources (including energy production) and shipping. NOx emissions are dominated by transportation including shipping, while NH3 is mainly emitted by agriculture. Thus, unlike for organic aerosol with major non-fossil sources, transport- and industry-related fossil fuel combustion strongly contributes to fine inorganic PM. The dominant advected fraction of inorganic aerosol is explained by two factors: first, major source areas of its gaseous precursors are located outside the agglomeration (especially for SO2 and NH3); second, the time necessary for oxidation of the precursors does not allow for efficient aerosol formation from emissions within the megacity (as for nitrate formation from NOx emissions).

5 Comparison to other megacities

The strong regional control of fine PM in Paris is here compared to the situation in other megacities. We use BC as a tracer for the local megacity contribution to fine PM. A compilation of urban background BC and EC measurements in several megacities (Fig. 10 and Table 1) shows that values for Paris (1.8 µg m~3~) are at the lower end, within a cluster of megacities like Los Angeles, London, or New York City (1–2 µg m~3~). Several American and Asian megacities have intermediate BC levels (Rio de Janeiro, Mexico City, Seoul, 3–5 µg m~3~), while Asian megacities in fast-developing countries (Beijing, Delhi, etc.) and Cairo display the largest values (>6 µg m~3~). Despite uncertainties due to different measurement protocols (Bond et al., 2013; Petzold et al., 2013) and site representativeness (approximately a factor of 2, Sect. S2), the general tendency towards lower values in post-industrial megacities is clear. Nevertheless, since BC and associated compounds like polycyclic aromatic hydrocarbons are known to have strong adverse health effects (e.g., Janssen et al., 2012), BC still represents an important air quality problem even for megacities with lower concentrations like the densely populated Paris agglomeration.

During specific pollution episodes, high PM concentrations can also be encountered in the Paris agglomeration. For instance, during March 2014 (for 10 days from 7 to 18 March), exceptionally high PM10 concentrations exceeded pollution alert levels (daily average of 80 µg m~3~) on several occasions. During this episode, anticyclonic conditions led to regional PM accumulation over northwestern Europe. ACSM measurements at the SIRTA site showed a prevailing contribution of ammonium nitrate (~50% of PM1) and ammonium sulfate (~15%) suggesting a strong advective impact from outside the agglomeration, in line with the results of our study (Sciare, 2014). In addition, low dispersive conditions during this period also favored additional local pollution build-up.

London is another European megacity with expected low average local contributions to PM levels. Indeed, the regional contribution for organic aerosol, nitrate and sulfate was found to dominate based on observations during the REPARTEE (REgents PARk and Tower Environmental Experiment) campaigns in autumns 2006 and 2007 (Harrison et al., 2012), although a quantitative assessment could not be

Figure 10. Concentrations of BC (black) and EC (grey) observed in megacities across the world. Note that Bangkok, Barcelona, Chicago, Chongqing, Hyderabad and London have fewer inhabitants (Table 1) than the 10 million accepted as a limit for megacities. The uncertainty due to differences in the measurement methods and in the representativeness for urban background conditions is estimated to be approximately 50% (Sect. S3 in the Supplement). References for the studies used here are given in Table 1.
Table 1. Origin of black and elemental carbon data and observation periods used in Fig. 10, and megacity population in year 2015.

<table>
<thead>
<tr>
<th>City</th>
<th>Observation period</th>
<th>Reference</th>
<th>Population in 2015 (in 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangkok</td>
<td>Apr 2008–Mar 2008</td>
<td>Sahu et al. (2011)</td>
<td>9.27</td>
</tr>
<tr>
<td>Barcelona</td>
<td>Jan–Dec 2009</td>
<td>Reche et al. (2011)</td>
<td>5.26</td>
</tr>
<tr>
<td>Beijing</td>
<td>Aug 2004</td>
<td>Gros et al. (2007)</td>
<td>20.38</td>
</tr>
<tr>
<td>Cairo</td>
<td>Mar–Apr 2005</td>
<td>Favez et al. (2008)</td>
<td>18.77</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Nov 2000–Feb 2001</td>
<td>Ho et al. (2006)</td>
<td>7.31</td>
</tr>
<tr>
<td>London</td>
<td>Jan–Dec 2009</td>
<td>Reche et al. (2011)</td>
<td>10.31</td>
</tr>
<tr>
<td>Mexico City</td>
<td>Mar 2006</td>
<td>Aiken et al. (2008)</td>
<td>21.0</td>
</tr>
<tr>
<td>Paris</td>
<td>Sep 2009–Sep 2010</td>
<td>This study</td>
<td>10.84</td>
</tr>
</tbody>
</table>

made with the available data at only one central London site. These dominant regional and correspondingly smaller local emission contributions to urban background PM levels are reflected in recently revised emission inventories. For both the Paris and London agglomerations, bottom-up emission inventories using geographically specific information on activity and emission factors yield about a factor of 3 lower per capita emission values for BC and PM than for national averages (Timmermans et al., 2013), due to lower per capita fuel consumption for large cities with increased population density (Grimm et al., 2008), and possibly also due to lower emission factors.

In contrast, Mexico City is a good example of a megacity with larger local pollution impact. PMCAMx simulations for the MILAGRO campaign in March 2006 (Molina et al., 2010) indicated a much higher contribution of local emissions to fine PM for Mexico City (60 % for PM$_{2.5}$, 60 % for OA, 80 % for nitrate, less than 10 % for sulfate (Karydis et al., 2011)) than for Paris (Figs. 5 and 6). Mexico City is surrounded by mountain ridges, leading to less favorable dispersion conditions with average summer wind speed of about 4 m s$^{-1}$ during MILAGRO at about 300 m a.g.l. (Fast et al., 2007) as compared to about 8 m s$^{-1}$ in Paris during both the MEGAPOLI summer and winter campaign (from SODAR measurements at the SW suburban site at 200 m a.g.l.). Also, increased radiation intensity (enhancing the build-up of secondary pollutants already within the agglomeration), and higher per capita emissions than for Paris (consistent with larger BC values, Fig. 10) contribute to this enhanced local pollution impact. These different conditions result in a local PM$_{2.5}$ contribution of about 1.4 µg m$^{-3}$ per million inhabitants for Mexico City with 21 million inhabitants (United Nations, 2015) simulated during MILAGRO, but only 0.3 µg m$^{-3}$ per million inhabitants for Paris (with 10.84 million inhabitants), observed on an annual average basis during PARTICULES. Thus, in terms of local versus advected contributions to PM, these two megacities might be two extremes.

6 Conclusions

Analysis of the MEGAPOLI and PARTICULES campaign observations of satellite data and of modeling results have allowed for the quantification of the advected/regional versus local origin of particulate matter (PM) and especially carbonaceous aerosol in the Paris agglomeration. On average over 1 year, about 70 % of the fine PM mass is transported into the megacity from upwind regions of France and continental Europe. Note that this number refers to urban background. For traffic sites, the local contribution would be larger. For organic aerosol (OA) and nitrate, also more than
70% of their urban background concentrations, respectively, are advected to Paris. For high PM periods, the advected fractions can be even larger. At a measurement site located at the NE edge of the agglomeration, the strong advective source caused higher PM levels for air masses originating in the NE sector (continental origin) than those originating in SW, and thus having crossed the agglomeration before arriving at the site. Satellite AOD measurements and chemistry-transport modeling simulations further confirm these results.

In contrast to other megacities, primary fossil fuel combustion emissions constitute little of carbonaceous fine PM: less than about 20% in winter and less than 40% in summer. Instead, cooking activities and, during winter, residential wood burning are the major primary organic PM sources and contribute to non-fossil fuel aerosol. From combined 14C and PMF analysis of AMS data, a mainly non-fossil fuel origin of secondary organic aerosol can be inferred both during summer and winter, either due to formation of secondary aerosol from biogenic VOC precursors or to processing of wood-burning emissions.

Low BC/EC levels (in comparison to those at other megacities worldwide, and not precluding large episodic BC and PM levels) are consistent with relatively low emissions in a post-industrial megacity such as Paris. Indeed, more efficient per capita energy use, and lower emission factors than on national average contribute to these low emissions. Other post-industrial, mid-latitude, flat terrain megacities like New York City, London, and Tokyo probably show a similar type of behavior, while local sources prevail for megacities such as Mexico City or Los Angeles, affected by one or several factors such as larger local emissions, dispersion limited by orography and larger radiation.

The Supplement related to this article is available online at doi:10.5194/acp-15-9577-2015-supplement.

Acknowledgements. This research in the context of the MEGAPOLI project is financially supported by the European Community’s Framework Program FP/2007-2011 under grant agreement no. 212520. Support from the French ANR project MEGAPOLI – PARIS (ANR-09-BLAN-0356), from the CNRS-INSU/FEFE via l’ADEME (no. 0962c0018) and via support of national average contribute to these low emissions. Other post-industrial, mid-latitude, flat terrain megacities like New York City, London, and Tokyo probably show a similar type of behavior, while local sources prevail for megacities such as Mexico City or Los Angeles, affected by one or several factors such as larger local emissions, dispersion limited by orography and larger radiation.

The Supplement related to this article is available online at doi:10.5194/acp-15-9577-2015-supplement.

Acknowledgements. This research in the context of the MEGAPOLI project is financially supported by the European Community’s Framework Program FP/2007-2011 under grant agreement no. 212520. Support from the French ANR project MEGAPOLI – PARIS (ANR-09-BLAN-0356), from the CNRS-INSU/FEFE via l’ADEME (no. 0962c0018) and via support of local sources prevail for megacities such as Mexico City or Los Angeles, affected by one or several factors such as larger local emissions, dispersion limited by orography and larger radiation.

The Supplement related to this article is available online at doi:10.5194/acp-15-9577-2015-supplement.

References

Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR proto-

Gros, V., Sciare, J., and Tong Yu: Air-quality measurements in megacities: Focus on gaseous organic and particulate pollutants

Evidence for a dominant regional contribution to fine particulate matter levels

M. Beekmann et al.

