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ABSTRACT 

 Up until now, only a small number of studies have been dedicated to the binding 

processes of As(III) with organic matter (OM) via ionic Fe(III) bridges; none was interested in 

Fe (II). Complexation isotherms were carried out with As(III), Fe(II) or Fe(III) and Leonardite 

humic acid (HA). Although PHREEQC/Model VI, implemented with OM thiol groups, 

reproduced the experimental datasets with Fe(III), the poor fit between the experimental and 

modeled Fe(II) data suggested another binding mechanism for As(III) to OM. 

PHREEQC/Model VI was modified to take various possible As(III)-Fe(II)-OM ternary complex 

conformations into account. The complexation of As(III) as a mononuclear bidentate complex 

to a bidentate Fe(II)-HA complex was evidenced. However, the model needed to be 

improved since the distribution of the bidentate sites appeared to be unrealistic with regards 

to the published XAS data. In the presence of Fe(III), As(III) was bound to thiol groups which 

are more competitive with regards to the low density of formed Fe(III)-HA complexes. Based 

on the new data and previously published results, we propose a general scheme describing 

the various As(III)-Fe-MO complexes that are able to form in Fe and OM-rich waters.  
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1 Introduction 

 Arsenic (As) is a strong contaminant of water and soil worldwide (Word Health 

organization), mainly as arsenite - As(III) - or arsenate - As(V) - depending on the redox 

conditions [1]. Iron (Fe) speciation exerts a strong control on the As fate in the environment, 

as oxidized Fe species are known for their capacity to bind high concentrations of As(III,V) 

[2,3]. Organic matter (OM) seems to be an important direct and indirect controlling factor, 

especially in floodplains and wetlands where As concentrations can be high [4–6]. Organic 

matter act (i) as a source of C for bacterial metabolic activity, especially Fe(III) and As(V) 

reducing-bacteria, (ii) as a sorbent of Fe(III,II)/Fe(III)-oxyhydroxides [7–11], and as an As(III, 

V) competitor for its binding to Fe(III)-oxyhydroxides [12–16]. More recently, several studies 

demonstrated that OM may directly bind As(III,V). Different mechanisms were put forward to 

describe As-OM binding, including As(III, V) complexation with OM carboxylic and phenolic 

groups [17,18], or As(III) binding with OM thiol groups [19–21]. However, most of the As 

bound to OM generally occurs as As-Fe-OM ternary complexes in several systems, such as 

peatland, riparian wetlands, streams, groundwaters [13,22–27]. The high affinity of As for 

Fe(III)-oxyhydroxides and of Fe(III)/Fe(III)-oxyhydroxides for OM explains this behavior 

[14,23,25,28–31]. These studies were predominantly performed under oxidizing conditions 

and therefore concerned As(V). The situation is much less clear regarding the possible 

predominance of As(III)-Fe-OM ternary complexes. Using SEC-ICP-MS coupling and 

ultrafiltration, some authors provided evidence that As(III) could also form ternary complexes 

with OM via Fe(III) bridges, even though they failed to identify the nature of the Fe(III) 

bridges: Fe(III) ions or Fe(III)-oxyhydroxides [31]. Hoffmann et al. [26] who studied the As(III) 

binding to natural peat via ionic Fe(III) showed an increasing binding with increasing Fe(III) 

concentrations. Using EXAFS records, they suggested that As(III) binding could occur either 

through mononuclear bidentate or binuclear monodentate complexes with Fe(III). They 

argued that the stability constants for ternary complexes were probably lower than those for 

the direct As(III) binding to peat thiol groups. However, the high experimental concentrations 

required for the XAS measurements were quite far off from those generally expected in the 
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environment, especially ionic Fe(III) concentrations which generally precipitate in such 

conditions. Finally, no study were interested in potential As(III) binding to OM via Fe(II), 

although these bridges are expected to be dominant in anoxic conditions, notably in wetlands 

and floodplains where OM, Fe and As concentrations are high [32]. 

 The aim of this study was to evaluate the potentiality to form As(III)-Fe-OM ternary 

complexes via ionic Fe(II) and Fe(III) bridges at concentrations prevailing in natural waters. 

As a result, we developed a combined experimental and modeling approach to (i) 

discriminate between the controlling binding mechanisms involved in the formation of As(III)-

Fe-OM ternary complexes and (ii) provide stability constants to quantify which of these 

mechanisms are likely to be dominant in natural waters. The major advantage of the 

modeling approach is to test mechanisms at lower Fe amounts than those required by 

spectroscopic methodologies.  

2 Experimental section 

2.1 Experimental setup 

 All of the aqueous solutions were prepared with analytical grade Milli-Q water. The 

As(III), Fe(II) and Fe(III) stock solutions were prepared with sodium arsenite (NaAsO2), iron 

chloride tetrahydrate (FeCl2.4H2O) and iron nitrate nonahydrate (Fe(NO3)3.9H2O), 

respectively. The used humic acid (HA) was the standard HA Leonardite from the 

International Humic Substance Society. It was purified by removing the HA molecules < 10 

kDa using a Labscale TFF system equipped with a Pellicon XL membrane. The composition 

of the purified HA could be probably slightly modified by this purification as compared to the 

initial HA. All binding experiments (except Fe(III), see below) were conducted in a Jacomex 

isolator glove box (< 5 ppm of O2) to prevent the oxidation of As(III) and Fe(II). The ionic 

strength was fixed at 0.05 M with NaCl for all experiments. 

 As(III)-Fe(II)-HA experiments. Three adsorption isotherm experiments were carried 

out at 50 mg L-1 DOC (dissolved organic carbon). The first adsorption isotherm was 

performed at pH 6 with 50 µg L-1 of As(III) and 0.8-12 mg L-1 of Fe(II). The second and third 
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isotherms were carried out at pH 6 and 5, respectively, with 5-50 µg L-1 of As(III) and 5-6 mg 

L-1 of Fe(II). Arsenic and Fe(II) solutions were added simultaneously to humic acid solution, 

and were then stirred for 48 h to reach equilibrium. 

 As(III)-Fe(III)-HA experiments. Three standard batch equilibrium experiments were 

carried out with DOC and Fe3+ concentrations of 50 and 0.5 mg L-1, respectively. The Fe(III) 

stock solution was prepared at pH 1.5 and the Fe3+ concentration used was adjusted to 

prevent oxyhydroxide precipitation. Using PHREEQC-Model VI and the minteq.v4 database 

modified with respect to Fe(III)-HA binding [9,33], the model showed that precipitation was 

only expected to occur for Fe(III) concentrations > 1.2 mg L-1. The pH was fixed at 4, 5 and 6 

with sub boiling HCl and NaOH for the three isotherms, respectively. Experimental solutions 

were stirred for 24h to reach equilibrium between Fe3+ and HA. Arsenic(III) was added at 

concentrations ranging from 5 to 50 µg L-1 in a glove box to prevent oxidation. Experimental 

solutions were then stirred for 48h to reach equilibrium.  

 Sampling. For all experiments, 15 mL of solution was sampled and ultrafiltrated at 5 

kDa (Vivaspin VS15RH12, Sartorius) under N2 atmosphere. Ultracentrifugation cells were 

previously washed with Milli-Q water until DOC concentration in the ultrafiltrate was < 1 mg L-

1. All experiments were conducted in duplicate. 

2.2 Chemical analyses 

 All measurements were performed at Géosciences Rennes, France. DOC 

concentrations were measured using an organic carbon analyzer (Shimadzu TOC-V CSH). 

Arsenic and Fe concentrations were determined using an ICP-MS. Instrumental and data 

acquisition parameters can be found in the Supporting Information 1 (SI). To ensure that no 

oxidation occurred during the experiments, the concentrations of As(III) and As(V) were 

monitored using a HPLC-Agilent 1260 Infinity coupled to an Agilent G3154-65001 and FeTOT 

was compared to the Fe(II) measured in the ultrafiltrate (Fe(II)UF) using the 1.10-

phenanthroline colorimetric method (AFNOR, 1982). Because the absorbance of Leonardite 

at 50 mg L-1 is high, the Fe(II) concentration in the Fe(II)-HA solution was not checked. 
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Arsenic(III) and Fe in the ultrafiltrates were assumed to be inorganic whereas As(III) and Fe 

bound to HA were considered to be in the fraction > 5 kDa.  

2.3 Modeling 

2.3.1 Model description 

 Because As(III) can bind to OM thiol groups, the modeling calculations were 

performed using a modified version of the PHREEQC/Model VI allowing this particular 

binding to be taken into account [21]. In the modified PHREEQC-Model VI, the ions 

complexation occurs through 12 discrete sites: four carboxylic groups (sites A), four phenolic 

groups (sites B) and four thiol groups (sites S). The abundances, intrinsic acidity constant for 

A, B and S sites and their distribution term are denoted as nA, nB, nS, pKA, pKB, pKS, ΔpKA, 

ΔpKB and ΔpKS, respectively. Only monodentate complexes of As(III) with thiols are defined 

[21]. The fraction of proton sites that can form bidentate and tridentate complexes are named 

fB and fT, respectively [34]. All values of the parameters used for modeling calculations are 

given in supporting information Table S7. The strength of the interaction between one site 

and one ion is defined by the complexation constant log K. Considering the 12 sites that can 

generate bidentates and tridentates, 84 equations are needed to describe the interaction 

between one ion and the 84 HA sites (further information is given in section 2.2 of the 

supporting information). The specific complexation parameters for the carboxylic, phenolic 

and thiol groups are log KMA, log KMB and log KMS, respectively. The CCM model was used to 

model the electrostatic interactions. Ion accumulation in the vicinity of HA is calculated with 

the Donnan model. Further information can be found elsewhere [21]. 

2.3.2 Binding parameters and modeling strategy  

 Binary complexes. The binding parameters describing As(III) complexation by HA 

were previously determined using modified PHREEQC/Model VI including As(III)-thiol 

complexes [21]. The binding parameters used for the Fe(II)-HA binary complexes were 

determined using an earlier PHREEQC/Model VI version without thiol groups implementation 
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[7]. These parameters therefore had to be re-evaluated using the present dataset and the 

new model version. To keep same proportions of monodentates, bidentates and tridentates 

the ΔLK2 value used and the relationship between log KMA and log KMB were the same as 

those previously used [7], ΔLK2 = 3.90 and                    . All binding parameters 

calculated here are presented in supporting information Table S 8. All equations describing 

Fe(II) binding with each OM site were described in a previous study [7]. 

 Ternary complexes. The experimental data were fitted using the PHREEPLOT 

program coupled with the modified version of PHREEQC/Model VI [7]. The 84 sites, their 

acidity constants and the binding parameters for Fe(II) and As(III) were added into the 

"minteq.v4" database. No previous study exists on the binding of As(III) to Fe(II)-HA 

complexes. The nature of the complexes formed had to be deduced from our experimental 

dataset and/or literature data. Only one study was dedicated to the characterization of the 

binding mechanisms of As(III) to Fe(III) as ion bound to peat [26]. Using EXAFS records, this 

study showed that for low Fe(III) concentrations, As(III) bound with Fe(III) as mononuclear 

bidentate complexes, whereas for high Fe(III) concentrations, As(III) bound with Fe(III) either 

as mononuclear bidentate complexes or as binuclear monodentate complexes. Jönsson and 

Sherman [35] suggested the formation of binuclear monodentate complexes for As(III) 

binding to green rust, fougerite and magnetite. However, Ona-Nguema et al. [36] rejected 

this hypothesis and proposed the formation of As(III) polymers. Thoral et al. [37] suggested 

that As(III) might form binuclear monodentate complexes with Fe(OH)2 oxides under anoxic 

conditions. With respect to Fe(II), the modeling calculations performed earlier showed that 

Fe(II) bound with OM mainly through bidentate complexes [7], confirming this spectroscopic 

data [26]. 

 Based on these proposed mechanisms, the modified PHREEQC/Model VI was first 

tested without Fe ternary complexes. They were implemented only when the model failed to 

reproduce the experimental datasets. From the spectroscopic data, six O atoms are bound to 

both Fe(II) and Fe(III) as FeO6 octahedra [36,38]. Furthermore, the distance between As(III) 

and Fe(III) when As(III) is bound to Fe(III) oxides as corner-sharing bidentate complexes is 
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between dAs(III)-Fe(III) = 3.4-3.58 Å and dAs(III)-Fe(II) = 3.51 Å for Fe(OH)2 [36,38]. All the complex 

conformations for As(III)-Fe(II) were thus deduced from the As(III)-Fe(III) spectroscopic 

datasets. The complexation of As(III) to monodentate Fe(II)-OM complexes was described 

either as mononuclear bidentate complexes (Eq. 1) or as binuclear bidentate complexes (Eq. 

2). With regards to the As(III) binding to bidentate Fe(II)-OM complexes, As(III) complexation 

was described either as mononuclear bidentate complexes (Eq. 3) or as binuclear bidentate 

complexes (Eq. 4). Although Fe(III)-OM tridentate complexes were calculated in Model VI, 

the possibility to form complexes with As(III) was low considering their negative charge.  

 Eq. 1 

 Eq. 2 

 Eq. 3 

Eq. 4 

 All of these equations were first tested separately, then by pairs (i.e. Eqs. 1+2, or Eqs. 

3+4), and last all together. All runs were finally compared to each other using their RMSE 

(Root Mean Square Deviation) calculated as                             , with logµ(exp) 

and logµ(cal) representing the logarithm of the measured and modeled As(III) bound 

concentrations, respectively. 
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3 Results 

3.1 As(III)-Fe(II)-HA experimental and modeling data 

 No Fe(II) and As(III) oxidation occurred in the experiments. The binding parameters 

log KMA (2.34) and log KMB (4.78) for Fe(II) binding to HA, determined by fitting the 

experimental datasets using the modified PHREEQC/Model VI, were close to the log KMA 

(2.19) and log KMB (4.46) determined without the thiol sites implementation [7]. Since the 

relationship between log KMA, log KMB and ΔLK2 was kept, the same proportions of 

monodentate, bidentate and tridentate complexes were calculated than previously [7]. 

Bidentates were the most abundant complexes formed between Fe(II) and HA. The 

experimental and modeled adsorption isotherm of Fe(II) binding to HA are presented in 

supporting information Figure S1.  

 The adsorption isotherms of As(III) by Fe(II)-HA (log[As(III)-HA] relative to 

log[As(III)UF]) are displayed in Figure 1a, b and c. Figure 1a showed that, for the same As(III) 

concentrations but increasing Fe(II) concentrations, the amount of bound As(III) increased. 

For adsorption isotherms at pH 5 and 6, no plateau was reached, i.e. no saturation was 

obtained (Figure 1b and c). The model that did not take ternary complexes into account (e.g. 

As(III)-S-HA complexes) could not reproduce the experimental datasets (RMSE = 0.87). 

Therefore, the presence of Fe(II) modified the binding behavior of As(III) to HA and had to be 

taken into account in the model hypothesis. No Fe(II) oxides precipitated as evidenced by the 

saturation index calculated using PHREEQC/Model VI. Therefore, As(III) speciation was 

mainly controlled by direct As(III)-S-HA and indirect As(III)-Fe(II)-HA complexes. 

 Model fits obtained using one or more of the four equations described in section 2.3.2 

are displayed in supporting information Figures S9-13. When only one equation was used, 

Eqs. 3 and 4 were the most reliable as shown by the low RMSE (RMSE = 0.18 and 0.19 

respectively, Table 1 and Figures S5, 6). When a pair of equations were used (Eq. 1 + Eq. 2 

or Eq. 3 + Eq. 4), the equation that yielded the smallest RMSE obtained in the single model 

(i.e. one equation) dominated the binding mechanism (Table 1). This result can be explained 
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by the fact that the fitting program works based on the smallest statistical parameters. When 

Fe(II) binding to HA was considered to occur via monodentate complexes, Eq. 1 dominated 

over Eq. 2, leading to a comparatively much higher log K: log K = 4.15 for Eq. 3 versus -1.33 

for Eq. 2. Note that the log K obtained for Eq. 1 was similar to the one obtained with Eq. 1 

only (Table 1). For the models that used both Eqs 3 and Eqs 4 (RMSE = 0.18, Table 1) and 

all equations together (supporting information Figure S8), the dominant equation was Eq. 3 

(mononuclear bidentate complexation of As(III) with bidentate Fe(II)-HA complexes), with 

RMSE = 0.18. 

 The adsorption isotherms of As(III) to Fe(III)-HA (log[As(III)-HA] relative to 

log[As(III)UF]) are displayed in Figure 1d, e and f. No plateau was reached at pH 5 and 6 

(Figure 1e and f), by contrast with pH 4 (Figure 1d). The proportion of bound As(III) at the 

different pH was similar, suggesting a minor role of pH in As(III) binding. The model that only 

considered the binding of As(III) to thiol groups correctly reproduced the experimental data 

(Figure 1d, e and f and total RMSE = 0.52). The high RMSE was due to the dispersion of the 

experimental points. In our experimental conditions, Fe(III) did not seem to influence the 

binding of As(III) to HA.  

4 Discussion 

4.1 Monodentate or bidentate Fe(II)-HA sites: which ones complex As(III) most 

efficiently? 

 As shown by their lowest RMSE, Eqs. 3 and 4 better fit the experimental dataset 

(RMSE = 0.18 and 0.19, Table 1). However in PHREEQC/Model VI, the fraction of sites that 

can make bidentate Fe(II)-OM complexes was determined from the geometry of the OM 

molecules. The minimal distance between two sites was fixed at 0.3 nm for a sphere with a 

radius of 0.8 nm. If the distance between two sites ranged between 0.3 and 0.45 nm, the 

sites were defined as bidentate sites [39]. In our simulations, Eq. 4 represents the binding of 

As(III) to two Fe atoms, each forming bidentate complexes with OM. The distance between 

each Fe atom was dFe-Fe ≈ (0.3-0.45)*2 = 0.6-0.9 nm = 6-9 Å (Figure 2a). Spectroscopic data 
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demonstrated that the distance between As and the neighbor O (dAs-O) varied from 1.70 to 

1.79 Å [26,36,37,40]. The distance between Fe(III) and O atoms (dFe-O) varied from 1.94 to 

1.99 Å [26,40] and from 1.99 to 2.14 Å for Fe(II)-O and Fe(II)-As(III) systems [36,37,41]. The 

maximal distance between As and Fe bound via an O (dAs-O-Fe) was therefore equal to dAs-O-

Femax = dAs-Omax + dFe-Omax = 1.79 + 2.14 = 3.93 Å which was << 6-9 Å (dFe-Fe for two 

bidentate sites). Thus, the binding of As to Fe through O with distances of 6-9 Å between two 

Fe atoms seemed impossible (Figure 2a). Therefore, although PHREEQC/Model VI allowed 

the binding of As(III) to HA through Fe(II) bidentate sites, for geometrical reasons, in 

experimental and natural conditions, this possibility was expected only when Fe dimer and 

trimer appeared [25,26,42,43]. 

 Equation 2, which assumed the As(III) binding to two Fe(II)-MO monodentates, poorly 

reproduced the experimental datasets (RMSE = 0.58, Table 1). The fit was poor (RMSE = 

0.71, supporting information Figure S3) for the isotherm at pH 5. According to PHREEQC-

Model VI, the abundance of the Fe(II)-OM monodentate complexes would be quite low, 

ranging between 0.02 and 18% versus 74 and 83% for the Fe(II)-OM monodentate and 

bidentate complexes, respectively. This low abundance of the Fe(II)-OM monodentate 

complexes likely explained why Eq. 2 failed to satisfactorily reproduce the experimental data. 

A critical point was that in PHREEQC-Model VI, monodentate sites were assumed to be 

separated from each other by more than 4.5 Å whereas in the Fe(OH)2 oxides, when As(III) 

was bound to Fe, dFe-Fe was smaller at 3.26 Å (Figure 2b). Therefore, Eq. 2 was impossible 

with the common hypothesis used in PHREEQC/Model VI. Hoffmann et al. [26] showed that 

As(III) could form binuclear monodentates with Fe(III) complexed to HA. As discussed above, 

the complexation of As(III) by bidentate Fe(II)-OM complexes was not reliable for geometrical 

reasons and as a result, only Fe(II)-OM monodentate could bind As(III). These observations 

suggested that a part of the bidentate sites, defined in the model as spaced apart by 3 to 4.5 

Å, possibly bound Fe(II) in a monodentate mode (e.g. Ha-ab(Fe)2 versus Ha-abFe). 

 Hoffmann et al. [26] showed that As(III) was bound as binuclear monodentate 

complexed to Fe(III)-OM. Using PHREEQC/Model VI and their experimental conditions, we 
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calculated that Fe(III) was able to recover between 0.75 and 5.95% of the HA sites. The 

coupling of the spectroscopic [26] and modeled datasets demonstrated that As(III) binuclear 

monodentate complexes were formed from a recovery of 5.95%. In our experiments, the 

surface recovery by Fe(II) ranged between 5 and 38% which support our hypothesis that 

As(III) binding to HA mainly occurred through binuclear monodentate Fe(II)-HA complexes. 

 Although Eq. 1 better reproduced the experimental datasets than Eq. 2, the 

calculated RMSE was higher than for Eqs. 3 and 4 (Table 1). Considering only the atomic 

distances, the binding of As(III) to only one Fe(II)-HA complex is thought to be plausible, but 

in addition, for example, to Eq. 3. 

 As seen previously, when several equations were used together, the model chose the 

equation that provided the smallest RMSE and attributed a negative log K to the other 

equations. With regards to the Fe(II) recovery on HA, and the spectroscopic data in the 

literature, mononuclear bidentate and binuclear monodentate complexes seemed to be the 

most reliable mechanisms involved in As(III) binding by Fe(II)-HA. Used together Eqs. 1 and 

2 described the As(III) binding to Fe(II)-HA monodentate complexes. Regarding the low 

density of Fe(II)-HA monodentates, the model should be able to determine the log K for both 

equations. When Eqs. 3 and 4 were used together, enough Fe(II) bidentate complexes were 

formed. However, none of these coupled equations reasonably fit the experimental datasets. 

In fact, the model was not able to assess the respective weight of each equation. Some 

constraints had to be implemented in PHREEQC/Model VI to improve the quantification of 

each equation relative to the other ones. PHREEQC/Model VI was able to accurately 

discriminate the binding of one ion to the carboxylic and phenolic sites and to determine the 

corresponding binding parameters. In this case, the constraints were imposed by the acidity 

constants which control the density of each site relative to the pH and by the imposed linear 

relationship between the log KMA and log KMB values (log KMB = 3.39 * log KMA) [34]. 

4.2 Instructions to better model As(III)-Fe(II)-HA interactions 
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 To improve the modeling of the data using Eq. 2 – the most probable equation with 

regards to the spectroscopic data [26] - we modified PHREEQC/Model VI by identifying the 

proportion of bidentate sites that can potentially bind two Fe (2-monodentate mode). In 

Model VI, the bidentate Fe(II) sites are distributed between weak, strong, and very strong 

bidentate sites. The differences between each site are defined by the site abundance and the 

ion binding parameters (log KMA, log KMB and ΔLK2). The strong and very strong bidentate 

sites are 10.01 and 100.11 times less abundant, respectively, than the weak bidentate site. 

The log K value for the strong bidentate sites is equal to that of the weak bidentate sites plus 

ΔLK2, the distribution term that modified the strength of the bidentate and tridentate sites. 

Log K for the very strong bidentate sites are equal to those for weak bidentate sites plus 

2*ΔLK2. In a bidentate complex, two sites bind one Fe, whereas in the 2-monodentate mode, 

for each monodentate site, one site binds Fe. In the 2-monodentate mode, log K will be lower 

than the bidentate log K. Therefore, the 2-monodentate could only be developed from the 

weak bidentate group, as strong and very strong bidentate sites have higher binding 

constants. In PHREEQC/Model VI, the binding constant for the weak bidentate group was 

defined as the sum of two monodentate sites; however, the mechanism had to be modified to 

correspond to the required 2-monodentate mode. Equation 5 corresponds to the classical 

equation and Eq. 6 to the equation for the 2-monodentate mode. 

 Ha_ab2- + Fe2+ = Ha_abFe   log k = logk(a) + logk(b)  (Eq. 5) 

 Ha_ab2- + 2Fe2+ = Ha_abFe2
+2 log k = logk(a) + logk(b)  (Eq. 6) 

With regards to the abundance of the sites, it cannot be assumed that all of the weak 

bidentate sites are involved in the 2-monodentate mode. It was also difficult to quantify the 

exact proportion of weak bidentate sites that could bind Fe(II) in the 2-monodentate mode. 

Consequently, tests were performed with a proportion of these weak bidentate sites varying 

from 5 to 90%. When the proportion was 5%, 5% of the weak bidentate sites bound Fe 

following Eq. 2 and 95% following Eq. 3 when fitting the experimental data (supporting 

information Table S13). This procedure was applied to Eqs. 2 and 3 simultaneously, which 

corresponded to a new modeling configuration. The model was not able to determine the log 
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K for the proportions ranging from 5 to 80%. However, for 90% of the bidentate sites that 

used Eq. 3, the fitted log K were equal to 2.86 and 3.95, respectively. Because As(III) was 

only bound to one Fe following this equation versus two Fe in Eq. 2, the log K for Eq. 2 

should be lower than for Eq. 3; 90% of the bidentate sites that used the 2-monodentate mode 

were therefore too large. Thus, it is necessary to experimentally/analytically determine the 

proportions of Fe(II) among the bidentate sites that could possibly be involved in the 2-

monodentate mode (e.g. using spectroscopy). Then, log K between As(III) and the Fe(II)-HA 

complexes should be determined using both binding mechanisms. 

4.3 Interpretation of the As(III)-Fe(III)-HA data  

 The model using thiol groups only reproduced our experimental datasets reasonably 

well. The presence of Fe(III) did not seem to influence the binding of As(III) to the thiol 

groups, suggesting that (i) no competition for thiol groups occurred and (ii) no or negligible 

ternary complexes were formed. However, for their experimental conditions, Hoffmann et al. 

[26] clearly observed this type of ternary associations between As(III), Fe(III) and peat. The 

reason was that the concentrations used were much higher (in [26] 13 g L-1, 20-200 mg L-1 

and 22.5 mg L-1 of DOC, Fe(III) and As(III), respectively versus, here, 50 mg L-1, 0.6 mg L-1 

and 5-50 µg L-1 of DOC, Fe(III) and As(III), respectively), and the pH was different (pH 7, 8.4 

and 8.8 [26] versus 4, 5 and 6 here). At pH 8.4 and 8.8, As(III) occurred as H2AsO3
- implying 

the formation of new complex. The negative charge caused by the higher pH increased the 

binding of As(III) as ternary complexes via Fe(III) bridges as shown by the comparison of the 

isotherms performed for similar Fe(III) and As(III) concentrations but different pH in Hoffmann 

et al. (Figure 2A in [26]). Although the DOC/Fe ratios were equivalent (65-650 for [26] and 83 

here), the As/Fe ratios were different (1.1-0.11 for [26] versus 0.0083-0.001 here). Moreover, 

the Fe(III) concentrations used here were chosen to avoid any Fe(III) precipitation. The S 

content of the peat used by Hoffmann et al. [26] was also very low and did not allow the 

binding of As(III) to peat through thiol sites, by contrast, with the here used HA as previously 

shown [21]. Thus, the thiol sites were able to compete with the Fe(III)-HA complexes, in low 



  

14 
 

amounts, for As(III) binding. At circumneutral pH and intermediate As/C ratio, Hoffmann et al. 

[26] observed that the log Kd (distribution coefficient of As(III) on organic carbon) was higher 

for As(III) bound to peat thiol sites than for As(III) bound to Fe(III)-peat complexes. In our 

experiments, As(III) bound to Fe(III)-HA was probably not present in high enough amounts to 

be detected, particularly in comparison with As(III) bound to S-HA. However, higher 

concentrations of Fe(III) should induce precipitation and the mechanism would be then 

performed with particulate or colloidal Fe(III) oxyhydroxides, which was not the purpose of 

the present study. It is important to note that the experimental conditions used by Hoffmann 

et al. [26] were developed to specifically promote the formation of ternary complexes via ionic 

Fe(III) and to allow the detection of As(III) and Fe(III) using the XAS technique.  

4.4 Environmental implications 

 In floodplains and wetlands, the speciation of the elements depends strongly on the 

redox conditions. In such environments, when the soils are flooded and become water 

saturated, O2 is consumed by bacteria, creating anoxic conditions, whereas when the soils 

are not saturated, oxic conditions prevailed. Under reducing conditions, As is mainly as 

As(III) and Fe as Fe(II), while under moderately reducing conditions As(III), As(V), Fe(II) and 

Fe(III) species can coexist. The speciation of Fe(III) depends on the amount of Fe(III) and on 

the physico-chemical conditions (pH, Eh, OM, competitors, etc.). For high Fe(III) 

concentrations, Fe occurs mostly as particulate or colloidal oxyhydroxides (lepidocrocite, 

ferrihydrite, goethite, etc.) generally bound to OM in organic-rich environments [44]. Iron(III) 

oxyhydroxides are the main sorbent of As(III) and As(V) in the environment. These systems 

are well documented and log K estimates can be found (Hfo_sOH + H3AsO3 = Hfo_sH2AsO3 

+ H2O, log k = 5.41, 5.74 or 4.02 [2,3,45]). In organic-rich environments, As(III) is expected to 

either compete with OM molecules for its binding to Fe(III) oxyhydroxydes, which could 

strongly limit its complexation [13], or to be complexed by Fe(III) oxyhydroxides which are 

themselves bound to OM (Figure 3) [13,23,30,31]. For low Fe(III) concentrations, no 

precipitation occurred and Fe occurs as Fe3+, Fe(OH)2+ and Fe(OH)2
+, depending on the pH. 
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In organic-rich environments, Fe(III) as ion can be bound by the carboxylic and phenolic 

groups of OM [8–10,43], mostly as bidentate complexes. Hoffmann et al. [26] showed that at 

high concentrations of Fe(III), As(III) and OM, ternary complexes can be produced via ionic 

Fe(III) (Figure 3). However, these results were strongly dependent on their experimental 

conditions performed to specifically promote this binding mechanism. In environmental 

conditions, for high amounts of Fe(III) such as those used by Hoffmann et al. [26], Fe(III) 

precipitated as Fe(III) oxyhydroxides and thus sorbed As(III) (high log K). In this case, we 

can consider that the ternary complex occurred through Fe(III) oxides or nano-oxides. In our 

studies, for higher OM thiol amounts and low Fe(III) concentrations, As(III)-Fe(III)-OM ternary 

complexes via ionic Fe(III) were not detected. Therefore, for an environmental level of Fe(III), 

ternary complexes via ionic Fe(III) does not seem possible even in organic-rich waters 

[44,46–48], notably when there is a sufficient number of thiol sites on OM to bind As(III) 

[19,21]. If the S% in OM does not totally correspond to thiol, much of the dissolved OM 

should contain a sufficiently high number of thiol groups to efficiently outcompete As(III) 

complexation by ternary Fe(III)-HA complexes. The competition between thiol binding and 

ternary complexes via ionic Fe(III) probably always occurs in natural OM-mediated 

interactions. 

 In waterlogged floodplains and wetlands, ferric-reducing bacteria reductively 

dissolved Fe(III) oxyhydroxides, thereby releasing Fe(II) into the solution. In such 

environments, high OM concentrations are produced. Catrouillet et al. [7] demonstrated that 

OM can strongly bind Fe2+ and Fe(OH)+, especially at neutral and basic pH. Here, we 

showed that As(III) might be indirectly bound as ternary complexes to OM via ionic Fe(II) 

(Figure 3) and directly bound through OM thiol sites. The dynamics of the As(III) bound to 

OM is therefore controlled by the own OM dynamic. However, in the present work, we 

estimated that As(III) bound to OM by direct and indirect mechanisms could vary from 5% to 

26% of the total As(III). We performed speciation calculations to test the studied mechanism 

in reduced water produced by the anoxic incubation of an organic-rich wetland soil 

(unpublished data). Arsenic(III), Fe(II) and DOC concentrations were measured in the 
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colloidal fraction which corresponded to the concentrations measured by ultrafiltration in the 

> 3kDa fraction, and the truly dissolved concentrations which corresponded to the 

concentrations measured by HPLC-ICP-MS in the < 3kDa fraction. In these calculations, we 

considered that the As(III) measured by HPLC-ICP-MS occurred as free species. This 

experimental dataset was used to test the present model using the following assumptions: 

DOC was only composed of HA (for which the proportion of reactive and non-reactive DOM 

was not known), the thiol groups concentration was equal to that of the Leonardite (0.13 

mmol g-1) and the binding of As(III) to Fe(II)-HA complexes was calculated using only Eq. 2, 

with log K = 3.39. We calculated that 1.2% of As(III) was bound to S-OM and 22.7% to Fe(II)-

OM. These calculations were close to the proportion determined from the analytical 

techniques, i.e. 32% of As(III) bound to OM. The experimental proportions corresponded to 

the difference between AsTOT (determined by ICP-MS) and free As(III) concentrations 

(determined by HPLC-ICP-MS). Therefore, the binding of As(III) with OM as ternary 

complexes via ionic Fe(II) seemed to be potentially important in anoxic environments such as 

floodplains and wetlands, even if the mechanisms and binding constants used for this 

calculation had to be improved. As long as reducing conditions prevail, a large proportion 

(this study > 24-32%) of As(III) was in the solution as labile species, possibly transferred to 

the underlying aquifers. 

 Note that all of these complex conformations investigated in this study were described 

for the As(OH)3 species. However, for pH > 8, As(III) is expected to occur as a negatively 

charged species, namely As(OH)3O. Hoffmann et al. showed that with increasing pH, As(III) 

speciation change should result in a higher proportion of As(III) bound to OM through ternary 

complexes [26]. However, although the binding of ternary complexes seems to be favored for 

As(OH)2O
-, few natural waters have pH > 8 and high enough OM and Fe concentrations. 

This is why these mechanisms were not presented in Figure 3.  
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5 Conclusion and perspectives 

 We provided experimental datasets for As(III) binding to HA as ionic Fe(II) and Fe(III) 

occurred. Arsenic(III) was bound to HA as ternary complexes via ionic Fe(II) and through HA 

thiol sites (4 to 26% of total As(III)). No ternary complexes seem to be formed with Fe(III) in 

our experimental conditions chosen to mimic natural waters Fe(III) and DOM concentrations. 

However, Hoffmann et al. [26], demonstrated the formation of such a complex. As assessed 

by EXAFS record, they showed that As(III) formed mononuclear bidentate and binuclear 

monodentate complexes, Fe(III) being itself bound to peat. The differences outlined in 

between both studies is explained by the lower Fe(III) concentrations and the higher amount 

of HA thiol groups in our experimental conditions. It appeared that Fe(III)-HA complex was 

not enough competitive regards to thiol functional group to succeed in As(III) binding at low 

Fe(III) concentrations. Various complex conformations were indeed tested with 

PHREEPLOT-PHREEQC/Model VI: (i) mononuclear bidentate of As(III) bound to 

monodentate of Fe(II) with OM, (ii) binuclear monodentate of As(III) bound to monodentate of 

Fe(II) with OM, (iii) mononuclear bidentate of As(III) bound to bidentate of Fe(II) to OM (iv) 

monodentate binuclear of As(III) to bidentate of Fe(II) to OM. The complex conformation 

involving binuclear monodentate of As(III) bound to bidentate of Fe(II) with OM was not 

possible regards to the atomic distances, deduced from the spectroscopic data available in 

literature and to their abundances. The complex conformation involving mononuclear 

bidentate of As(III) bound to bidentate of Fe(II) with OM was possible and fitted well the 

experimental datasets. The binding conformation based on binuclear monodentate of As(III) 

bound to monodentate of Fe(II) with OM was impossible in its current form with 

PHREEQC/Model VI. The atomic distances required a new binding mode for the bidentate 

sites described by Tipping [34], namely the formation of Fe(II) 2-monodentate complexes in 

the group of weak bidentates sites. PHREEQC/Model VI was not able actually to correctly 

model ternary complexes. Finally, the binding conformation involving mononuclear bidentate 

of As(III) bound to monodentate of Fe(II) with OM was possible but, unfortunately did not 
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correctly fit the experimental data. Even if ternary complexes were possible using ionic Fe(III, 

II), the percentage of As(III) bound to OM remained low. Most part of As(III) stayed labile and 

therefore is easily transferable to environment. The amount of As(III) bound to OM is 

however less mobile and its ability to be transferred in environment will depend on which in 

between particulate or colloidal OM this species is bound to. These results raise now the 

crucial question of the fate of this As(III) either labile or bound to OM when the conditions 

become oxidizing? 
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Legend: 

 

  

Figure 1: (a) As(III)-Fe(II)-HA binding experiments and modeled data using only the thiol 
binding parameters according to the [Fe(II)] concentration, (b) at pH 6, (c) pH 5, (d) As(III)-
Fe(III)-HA binding experiments and modeled data using only the thiol binding parameters at 
pH 4, (e) pH 5, (f) pH 6. 
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Figure 2: Complexes formed with (a) Eq. 6 and (b) Eq. 4. Fe-O and As-O distances (in red) 
were determined from the Fe(OH)2 oxides and As(OH)3, respectively [36]. The distances in 
blue are defined in PHREEQC-Model VI [34]. 
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Figure 3: Schematic model describing the complexes that may form between As(III) Fe(II) 
and/or Fe(III) and dissolved organic matter (DOM), with regards to the redox status of Fe, 
and Fe and the DOM concentrations. This scheme may apply to what happens in floodplain 
and wetland waters [21,25,26]. 
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Table 1: Binding parameters and RMSE for the different tested mechanisms. 

Mechanism Log k RMSE 

Eq. 1 4.15 0.38 
Eq. 2 4.33 0.58 
Eq. 3 3.39 0.18 
Eq. 4 2.27 0.19 

Eq. 1 + Eq. 2 4.15 -1.33 0.38 
Eq. 3 + Eq. 4 3.39 -1.94 0.18 

Eq. 1 + Eq. 2+ Eq. 3 + Eq. 4 -1.56 -1.32 3.39 -2.09 0.18 
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