M. Ali, A. Fiori, and D. Russo, A comparison of travel-time based catchment transport models, with application to numerical experiments, Journal of Hydrology, vol.511, issue.0, pp.605-618, 2014.
DOI : 10.1016/j.jhydrol.2014.02.010

I. E. Amin and M. E. Campana, A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems, Journal of Hydrology, vol.179, issue.1-4, pp.1-4, 1996.
DOI : 10.1016/0022-1694(95)02880-3

S. Bayari, TRACER: an EXCEL workbook to calculate mean residence time in groundwater by use of tracers CFC-11, CFC-12 and tritium, Computers & Geosciences, vol.28, issue.5, pp.621-630, 2002.
DOI : 10.1016/S0098-3004(01)00094-2

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

F. Begemann and W. F. Libby, Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium, Geochimica et Cosmochimica Acta, vol.12, issue.4, pp.277-2960016, 1957.
DOI : 10.1016/0016-7037(57)90040-6

P. Benettin, A. Rinaldo, and G. Botter, Kinematics of age mixing in advection-dispersion models, Water Resources Research, vol.39, issue.11, pp.8539-8551, 2013.
DOI : 10.1002/2013WR014708

D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, The fractional-order governing equation of L??vy Motion, Water Resources Research, vol.32, issue.12, pp.1413-1423, 2000.
DOI : 10.1029/2000WR900032

B. Berkowitz, J. Klafter, R. Metzler, and H. Scher, Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations, Water Resources Research, vol.65, issue.5/6, pp.9-10, 2002.
DOI : 10.1029/2001WR001030

C. M. Bethke and T. M. Johnson, Paradox of groundwater age: Correction1, 030<0386:POGAC>2.0.CO, pp.385-3880091, 2002.
DOI : 10.1130/0091-7613(2002)030<0386:POGAC>2.0.CO;2

C. M. Bethke and T. M. Johnson, Groundwater Age and Groundwater Age Dating, Annual Review of Earth and Planetary Sciences, vol.36, issue.1, pp.121-152, 2008.
DOI : 10.1146/annurev.earth.36.031207.124210

K. J. Beven, Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models, Hydrological Processes, vol.86, issue.12, pp.1537-1547, 2010.
DOI : 10.1002/hyp.7718

N. Bockgård, A. Rodhe, and K. A. Olsson, Accuracy of CFC groundwater dating in a crystalline bedrock aquifer: Data from a site in southern Sweden, Hydrogeol J, vol.12, issue.2, pp.171-183, 2004.

G. Botter, E. Bertuzzo, and A. Rinaldo, Transport in the hydrologic response: Travel time distributions, soil moisture dynamics, and the old water paradox, Water Resources Research, vol.123, issue.11, 2010.
DOI : 10.1029/2009WR008371

G. Botter, E. Bertuzzo, and A. Rinaldo, Catchment residence and travel time distributions: The master equation, Geophysical Research Letters, vol.19, issue.11, 2011.
DOI : 10.1029/2011GL047666

R. N. Bracewell, The Fourier Transform and Its Applications. Electrical engineering series, 2000.

L. F. Burbery, M. J. Flintoft, and M. E. Close, Application of the re-circulating tracer well test method to determine nitrate reaction rates in shallow unconfined aquifers, Journal of Contaminant Hydrology, vol.145, pp.1-9, 2013.
DOI : 10.1016/j.jconhyd.2012.11.006

W. C. Burton, L. N. Plummer, E. Busenberg, B. D. Lindsey, and W. J. Gburek, Influence of Fracture Anisotropy on Ground Water Ages and Chemistry, Valley and Ridge Province, Pennsylvania, Ground Water, vol.26, issue.1, pp.40-242, 2002.
DOI : 10.1029/96WR00600

M. E. Campana, Generation of Ground-Water Age Distributions, Ground Water, vol.69, issue.6, pp.51-58, 1987.
DOI : 10.1016/0022-1694(82)90147-0

M. B. Cardenas, Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of T??th flow, Geophysical Research Letters, vol.33, issue.10, 2007.
DOI : 10.1029/2006GL025747

M. B. Cardenas, Surface water-groundwater interface geomorphology leads to scaling of residence times, Geophysical Research Letters, vol.34, issue.5, 2008.
DOI : 10.1029/2008GL033753

J. Carrera, On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeology Journal, vol.6, issue.1, pp.178-190, 1998.
DOI : 10.1007/s100400050143

J. Carrera and M. Varni, On the use of environmental tracers to characterize flow and transport parameters, p.467, 2000.

M. C. Castro, P. Goblet, E. Ledoux, S. Violette, and G. De-marsily, Noble gases as natural tracers of water circulation in the Paris Basin: 2. Calibration of a groundwater flow model using noble gas isotope data, Water Resources Research, vol.31, issue.2, pp.2467-2483, 1998.
DOI : 10.1029/98WR01957

Z. Chen, W. Wei, J. Liu, Y. Wang, and J. Chen, Identifica????o das fontes de recarga e da idade das ??guas subterr??neas na plan??cie de Songnen (Nordeste da China), utilizando is??topos ambientais, Hydrogeology Journal, vol.21, issue.1, pp.163-176, 2011.
DOI : 10.1007/s10040-010-0650-9

O. A. Cirpka, Analyzing Bank Filtration by Deconvoluting Time Series of Electric Conductivity, Ground Water, vol.12, issue.4, pp.318-328, 2007.
DOI : 10.1029/96WR03753

O. A. Cirpka and P. K. Kitanidis, Travel-Time Based Model of Bioremediation Using Circulation Wells, Ground Water, vol.44, issue.6, pp.422-432, 2001.
DOI : 10.1029/94WR01045

T. P. Clement, M. J. Truex, and B. S. Hooker, Two-Well Test Method for Determining Hydraulic Properties of Aquifers, Ground Water, vol.3, issue.6, pp.698-703, 1997.
DOI : 10.1029/95WR01947

P. Cook and J. Böhlke, Determining Timescales for Groundwater Flow and Solute Transport Environmental Tracers in Subsurface Hydrology, pp.1-30978, 2000.

F. Cornaton and P. Perrochet, Groundwater age, life expectancy and transit time distributions in advective???dispersive systems: 1. Generalized reservoir theory, Advances in Water Resources, vol.29, issue.9, pp.1267-1291, 2006.
DOI : 10.1016/j.advwatres.2005.10.009

F. J. Cornaton, Transient water age distributions in environmental flow systems: The time-marching Laplace transform solution technique, Water Resources Research, vol.47, issue.4, 2012.
DOI : 10.1029/2011WR010606

V. Cvetkovic, A general memory function for modeling mass transfer in groundwater transport, Water Resources Research, vol.247, issue.B8, pp.10-1029, 2012.
DOI : 10.1029/2011WR011657

P. V. Danckwerts, Continuous flow systems. Distribution of residence times, Chemical Engineering Science, vol.2, issue.96, pp.9-250981810, 1953.

E. J. Delhez, J. Campin, A. C. Hirst, and E. Deleersnijder, Toward a general theory of the age in ocean modelling, Ocean Modelling, vol.1, issue.1, pp.17-27, 1999.
DOI : 10.1016/S1463-5003(99)00003-7

M. Dentz, A. Cortis, H. Scher, and B. Berkowitz, Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport, Advances in Water Resources, vol.27, issue.2, pp.155-173, 2004.
DOI : 10.1016/j.advwatres.2003.11.002

C. J. Duffy, Dynamical modelling of concentration-age-discharge in watersheds, Hydrological Processes, vol.37, issue.2, pp.1711-1718, 2010.
DOI : 10.1002/hyp.7691

S. M. Eberts, J. K. Böhlke, L. J. Kauffman, and B. C. Jurgens, Compara????o de modelos de rastreio de part??culas e de par??metros agregados de distribui????o de idade para avalia????o da vulnerabilidade ?? contamina????o de po??os de produ????o, Hydrogeology Journal, vol.19, issue.2, pp.263-282, 2012.
DOI : 10.1007/s10040-011-0810-6

N. B. Engdahl, T. R. Ginn, and G. E. Fogg, Non-Fickian dispersion of groundwater age, Water Resources Research, vol.43, issue.6, 2012.
DOI : 10.1029/2012WR012251

N. B. Engdahl, T. R. Ginn, and G. E. Fogg, Using groundwater age distributions to estimate the effective parameters of Fickian and non-Fickian models of solute transport, Advances in Water Resources, vol.54, pp.11-21, 2013.
DOI : 10.1016/j.advwatres.2012.12.008

N. B. Engdahl and R. M. Maxwell, Approximating groundwater age distributions using simple streamtube models and multiple tracers, Advances in Water Resources, vol.66, issue.0, pp.19-31, 2014.
DOI : 10.1016/j.advwatres.2014.02.001

N. B. Engdahl and R. M. Maxwell, Quantifying changes in age distributions and the hydrologic balance of a high-mountain watershed from climate induced variations in recharge, Journal of Hydrology, vol.522, issue.0, pp.522-152, 2015.
DOI : 10.1016/j.jhydrol.2014.12.032

E. Eriksson, The Possible Use of Tritium' for Estimating Groundwater Storage, Tellus, vol.10, issue.4, pp.472-478, 1958.

D. Etcheverry, Une approche déterministe des distributions des temps de transit de l'eau souterraine par la théorie des réservoirs -PhD thesis, p.pp, 2001.

D. Etcheverry and P. Perrochet, Direct simulation of groundwater transit-time distributions using the reservoir theory, Hydrogeology Journal, vol.8, issue.2, pp.200-208, 2000.
DOI : 10.1007/s100400050006

M. N. Fienen, J. Luo, and P. K. Kitanidis, A Bayesian geostatistical transfer function approach to tracer test analysis, Water Resources Research, vol.35, issue.2, 2006.
DOI : 10.1029/2005WR004576

A. Fiori and D. Russo, Travel time distribution in a hillslope: Insight from numerical simulations, Water Resources Research, vol.26, issue.6, 2008.
DOI : 10.1029/2008WR007135

T. R. Ginn, On the distribution of multicomponent mixtures over generalized exposure time in subsurface flow and reactive transport: Foundations, and formulations for groundwater age, chemical heterogeneity, and biodegradation, Water Resources Research, vol.31, issue.45, pp.1395-1407, 1999.
DOI : 10.1029/1999WR900013

T. R. Ginn, H. Haeri, A. Massoudieh, and L. Foglia, Notes on Groundwater Age in Forward and Inverse Modeling, Transport in porous media, pp.117-134, 2009.
DOI : 10.1007/s11242-009-9406-1

P. Goderniaux, P. Davy, E. Bresciani, J. De-dreuzy, L. Borgne et al., Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments, Water Resources Research, vol.7, issue.1, pp.2274-2286, 2013.
DOI : 10.1002/wrcr.20186

URL : https://hal.archives-ouvertes.fr/insu-00841206

J. D. Gomez and J. L. Wilson, Age distributions and dynamically changing hydrologic systems: Exploring topography-driven flow, Water Resources Research, vol.43, issue.4, pp.1503-1522, 2013.
DOI : 10.1002/wrcr.20127

P. Gouze, Y. Melean, L. Borgne, T. Dentz, M. Carrera et al., Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion, Water Resources Research, vol.93, issue.11, 2008.
DOI : 10.1029/2007WR006690

URL : https://hal.archives-ouvertes.fr/insu-00373705

C. T. Green, Y. Zhang, B. C. Jurgens, J. J. Starn, and M. K. Landon, Accuracy of travel time distribution (TTD) models as affected by TTD complexity, observation errors, and model and tracer selection, Water Resources Research, vol.19, issue.1, pp.6191-6213, 2014.
DOI : 10.1002/2014WR015625

D. B. Grove and W. A. Beetem, Porosity and Dispersion Constant Calculations for a Fractured Carbonate Aquifer Using the Two Well Tracer Method, Water Resources Research, vol.1544, issue.5, pp.128-134, 1971.
DOI : 10.1029/WR007i001p00128

R. Haggerty and S. M. Gorelick, Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media with Pore-Scale Heterogeneity, Water Resources Research, vol.24, issue.8, pp.2383-2400, 1995.
DOI : 10.1029/95WR10583

R. Haggerty, S. M. Wondzell, and M. A. Johnson, Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream, Geophysical Research Letters, vol.38, issue.1, pp.29-47, 2002.
DOI : 10.1029/2002GL014743

H. M. Haitjema, On the residence time distribution in idealized groundwatersheds, Journal of Hydrology, vol.172, issue.1-4, pp.127-1460022, 1995.
DOI : 10.1016/0022-1694(95)02732-5

C. J. Harman, Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed, Water Resources Research, vol.47, issue.4, pp.1-30, 2015.
DOI : 10.1111/j.1745-6584.2008.00550.x

M. Hrachowitz, C. Soulsby, D. Tetzlaff, I. A. Malcolm, and G. Schoups, Gamma distribution models for transit time estimation in catchments: Physical interpretation of parameters and implications for time-variant transit time assessment Use of chlorofluorocarbons in hydrology : a guidebook, Water Resources Research International Atomic Energy Agency, vol.46, issue.227, p.pp, 2006.

S. Ivey, R. Gentry, D. Larsen, and J. Anderson, Inverse Application of Age-Distribution Modeling Using Environmental Tracers H3 ??? He3, Journal of Hydrologic Engineering, vol.13, issue.11, pp.13-1002, 2008.
DOI : 10.1061/(ASCE)1084-0699(2008)13:11(1002)

J. Jódar, L. J. Lambán, A. Medina, and E. Custodio, Exact analytical solution of the convolution integral for classical hydrogeological lumped-parameter models and typical input tracer functions in natural gradient systems, Journal of Hydrology, vol.519, 2014.
DOI : 10.1016/j.jhydrol.2014.10.027

J. W. Kirchner, X. Feng, and C. Neal, Fractal stream chemistry and its implications for contaminant transport in catchments, Nature, vol.1, issue.6769, pp.403-524, 2000.
DOI : 10.1038/35000537

J. W. Kirchner, X. Feng, and C. Neal, Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations, Journal of Hydrology, vol.254, issue.1-4, pp.1-4, 2001.
DOI : 10.1016/S0022-1694(01)00487-5

L. Knowles, . Jr, B. Katz, and D. Toth, Utiliza????o de m??ltiplos indicadores qu??micos para a caracteriza????o e data????o das ??guas subterr??neas de nascentes seleccionadas do Grupo de Silver Springs, Fl??rida central, EUA, Hydrogeology Journal, vol.9, issue.10, pp.18-1825, 2010.
DOI : 10.1007/s10040-010-0669-y

S. J. Kollet and R. M. Maxwell, Demonstrating fractal scaling of baseflow residence time distributions using a fully-coupled groundwater and land surface model, Geophysical Research Letters, vol.34, issue.13, p.35, 2008.
DOI : 10.1029/2008GL033215

A. Kreft and A. Zuber, On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions, Chemical Engineering Science, vol.33, issue.11, pp.1471-14800009, 1978.
DOI : 10.1016/0009-2509(78)85196-3

K. R. Lassey, Unidimensional solute transport incorporating equilibrium and rate-limited isotherms with first-order loss: 1. Model conceptualizations and analytic solutions, Water Resources Research, vol.41, issue.SA2, pp.343-350, 1988.
DOI : 10.1029/WR024i003p00343

A. Lenda and A. Zuber, Tracer dispersion in groundwater experiments, Isotope Hydrology 1970, pp.619-641, 1970.

S. Leray, Temporal evolution of age data under transient pumping conditions, Journal of Hydrology, vol.511, pp.555-566, 2014.
DOI : 10.1016/j.jhydrol.2014.01.064

URL : https://hal.archives-ouvertes.fr/insu-00952724

S. Leray, J. R. De-dreuzy, O. Bour, T. Labasque, and L. Aquilina, Contribution of age data to the characterization of complex aquifers, Journal of Hydrology, vol.464, issue.465, pp.464-465, 2012.
DOI : 10.1016/j.jhydrol.2012.06.052

URL : https://hal.archives-ouvertes.fr/insu-00756566

O. Levenspiel, Compartment Models Chemical reaction engineering, p.10, 1999.

Z. Liao, K. Osenbrück, and O. A. Cirpka, Non-stationary nonparametric inference of river-to-groundwater travel-time distributions, Journal of Hydrology, vol.519, pp.3386-3399, 2014.
DOI : 10.1016/j.jhydrol.2014.09.084

G. A. Lindgren, G. Destouni, and A. V. Miller, Solute transport through the integrated groundwater-stream system of a catchment, Water Resources Research, vol.39, issue.3, 2004.
DOI : 10.1029/2003WR002765

A. J. Long and L. D. Putnam, Translating CFC-based piston ages into probability density functions of ground-water age in karst, Journal of Hydrology, vol.330, issue.3-4, pp.3-4, 2006.
DOI : 10.1016/j.jhydrol.2006.05.004

A. J. Long and L. D. Putnam, Age-distribution estimation for karst groundwater: Issues of parameterization and complexity in inverse modeling by convolution, Journal of Hydrology, vol.376, issue.3-4, pp.3-4, 2009.
DOI : 10.1016/j.jhydrol.2009.07.064

J. Luo and O. A. Cirpka, Traveltime-based descriptions of transport and mixing in heterogeneous domains, Water Resources Research, vol.36, issue.11, 2008.
DOI : 10.1029/2007WR006035

J. Luo, M. Dentz, O. A. Cirpka, and P. K. Kitanidis, Breakthrough curve tailing in a dipole flow field, Water Resources Research, vol.38, issue.12, 2007.
DOI : 10.1029/2006WR005600

J. Luo and P. K. Kitanidis, Fluid residence times within a recirculation zone created by an extraction???injection well pair, Journal of Hydrology, vol.295, issue.1-4, pp.1-4, 2004.
DOI : 10.1016/j.jhydrol.2004.03.006

J. Luo, A Nested-Cell Approach for In Situ Remediation, Ground Water, vol.31, issue.2, pp.266-274, 2006.
DOI : 10.1016/0169-7722(95)00017-P

K. H. Luther and H. M. Haitjema, Numerical experiments on the residence time distributions of heterogeneous groundwatersheds, Journal of Hydrology, vol.207, issue.1-2, pp.1-17, 1998.
DOI : 10.1016/S0022-1694(98)00112-7

P. Ma?oszewski and A. Zuber, Determining the turnover time of groundwater systems with the aid of environmental tracers, Journal of Hydrology, vol.57, issue.3-4, pp.3-4, 1982.
DOI : 10.1016/0022-1694(82)90147-0

A. H. Manning and J. S. Caine, Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development, Water Resources Research, vol.167, issue.6, 2007.
DOI : 10.1029/2006WR005349

J. Marçais, J. R. De-dreuzy, T. R. Ginn, P. Rousseau-gueutin, and S. Leray, Inferring transit time distributions from atmospheric tracer data: Assessment of the predictive capacities of Lumped Parameter Models on a 3D crystalline aquifer model, Journal of Hydrology, vol.525, issue.0, pp.525-619, 2015.
DOI : 10.1016/j.jhydrol.2015.03.055

A. D. Martin, Interpretation of residence time distribution data, Chemical Engineering Science, vol.55, issue.23, pp.5907-5917, 2000.
DOI : 10.1016/S0009-2509(00)00108-1

A. Massoudieh, Inference of long-term groundwater flow transience using environmental tracers: A theoretical approach, Water Resources Research, vol.240, issue.3-4, pp.8039-805210, 2013.
DOI : 10.1002/2013WR014548

A. Massoudieh, S. Leray, and J. De-dreuzy, Assessment of the value of groundwater age time-series for characterizing complex steady-state flow systems using a Bayesian approach, Applied Geochemistry, vol.50, pp.240-251, 2014.
DOI : 10.1016/j.apgeochem.2013.10.006

URL : https://hal.archives-ouvertes.fr/insu-01083782

A. Massoudieh, S. Sharifi, and D. K. Solomon, Bayesian evaluation of groundwater age distribution using radioactive tracers and anthropogenic chemicals, Water Resources Research, vol.240, issue.3-4, 2012.
DOI : 10.1029/2012WR011815

R. M. Maxwell, C. Welty, and A. F. Tompson, Streamline-based simulation of virus transport resulting from long term artificial recharge in a heterogeneous aquifer, Advances in Water Resources, vol.26, issue.10, pp.26-1075, 2003.
DOI : 10.1016/S0309-1708(03)00074-5

J. L. Mccallum, N. B. Engdahl, T. R. Ginn, and P. G. Cook, Nonparametric estimation of groundwater residence time distributions: What can environmental tracer data tell us about groundwater residence time?, Water Resources Research, vol.47, issue.4, pp.2022-2038, 2014.
DOI : 10.1002/2013WR014974

J. J. Mcdonnell and K. Beven, Debates-The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph, Water Resources Research, vol.43, issue.8, pp.5342-5350, 2014.
DOI : 10.1002/2013WR015141

J. J. Mcdonnell, How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes, pp.1745-1754, 2010.

K. J. Mcguire and J. J. Mcdonnell, A review and evaluation of catchment transit time modeling, Journal of Hydrology, vol.330, issue.3-4, pp.3-4, 2006.
DOI : 10.1016/j.jhydrol.2006.04.020

K. J. Mcguire, The role of topography on catchment-scale water residence time, Water Resources Research, vol.86, issue.11, 2005.
DOI : 10.1029/2004WR003657

E. B. Nauman, Residence Time Theory, Industrial & Engineering Chemistry Research, vol.47, issue.10, pp.3752-3766, 2008.
DOI : 10.1021/ie071635a

S. P. Neuman and D. M. Tartakovsky, Perspective on theories of non-Fickian transport in heterogeneous media, Advances in Water Resources, vol.32, issue.5, pp.670-680, 2009.
DOI : 10.1016/j.advwatres.2008.08.005

R. B. Neumann, E. M. Labolle, and C. F. Harvey, The Effects of Dual-Domain Mass Transfer on the Tritium???Helium-3 Dating Method, Environmental Science & Technology, vol.42, issue.13, pp.4837-4843, 2008.
DOI : 10.1021/es7025246

B. D. Newman, Dating of ???young??? groundwaters using environmental tracers: advantages, applications, and research needs, Isotopes in Environmental and Health Studies, vol.97, issue.3, pp.259-278, 2010.
DOI : 10.1029/2000JD900141

A. Nir, On the interpretation of tritium ???age??? measurements of groundwater, Journal of Geophysical Research, vol.25, issue.1, pp.2589-2595, 1964.
DOI : 10.1029/JZ069i012p02589

A. Nir, Tracer relations in mixed lakes in non-steady state, Journal of Hydrology, vol.19, issue.1, pp.33-410022, 1973.
DOI : 10.1016/0022-1694(73)90091-7

K. Osenbrück, Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany, Water Resources Research, vol.19, issue.10, 2006.
DOI : 10.1029/2006WR004977

N. N. Ozyurt and C. S. Bayari, LUMPED Unsteady: a Visual Basic?? code of unsteady-state lumped-parameter models for mean residence time analyses of groundwater systems, Computers & Geosciences, vol.31, issue.3, pp.31-329, 2005.
DOI : 10.1016/j.cageo.2004.09.024

J. C. Parker and M. T. Van-genuchten, Flux-Averaged and Volume-Averaged Concentrations in Continuum Approaches to Solute Transport, Water Resources Research, vol.40, issue.7, pp.866-872, 1984.
DOI : 10.1029/WR020i007p00866

R. A. Payn, Comparison of instantaneous and constant-rate stream tracer experiments through non-parametric analysis of residence time distributions, Water Resources Research, vol.43, issue.1, 2008.
DOI : 10.1029/2007WR006274

V. Ponsin, B. Coulomb, Y. Guelorget, J. Maier, and P. Höhener, In situ biostimulation of petroleum hydrocarbon degradation by nitrate and phosphate injection using a dipole well configuration, Journal of Contaminant Hydrology, vol.171, pp.22-31, 2014.
DOI : 10.1016/j.jconhyd.2014.10.003

URL : https://hal.archives-ouvertes.fr/hal-01456421

W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 2007.

P. Queloz, Transport of fluorobenzoate tracers in a vegetated hydrologic control volume: 2. Theoretical inferences and modeling, Water Resources Research, vol.48, issue.6, pp.2793-280610, 2015.
DOI : 10.1002/hyp.10372

M. Quintard and S. Whitaker, Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment, Chemical Engineering Science, vol.48, issue.14, pp.48-2537, 1993.
DOI : 10.1016/0009-2509(93)80266-S

P. A. Raats, Steady flow patterns in saturated and unsaturated, isotropic soils, Journal of Hydrology, vol.2174, issue.4, pp.357-369, 1974.

P. A. Raats, Convective transport of solutes by steady flows I. General theory, Agricultural Water Management, vol.1, issue.3, pp.201-218, 1977.
DOI : 10.1016/0378-3774(77)90001-4

P. A. Raats, Convective transport of solutes by steady flows II. Specific flow problems, Agricultural Water Management, vol.1, issue.3, pp.219-232, 1977.
DOI : 10.1016/0378-3774(77)90002-6

A. Rinaldo, Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes, Water Resources Research, vol.39, issue.11, pp.4840-484710, 2015.
DOI : 10.1029/2003WR002331

A. Russian, M. Dentz, L. Borgne, T. Carrera, J. Jimenez-martinez et al., Temporal scaling of groundwater discharge in dual and multicontinuum catchment models, Water Resources Research, vol.24, issue.7, pp.8552-856410, 1002.
DOI : 10.1002/2013WR014255

URL : https://hal.archives-ouvertes.fr/insu-00952537

W. Sanford, Calibra????o de modelos atrav??s do uso da idade da ??gua subterr??nea, Hydrogeology Journal, vol.17, issue.1, pp.13-16, 2011.
DOI : 10.1007/s10040-010-0637-6

H. Scher, G. Margolin, R. Metzler, J. Klafter, and B. Berkowitz, The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times, Geophysical Research Letters, vol.403, issue.6, pp.5-6, 2002.
DOI : 10.1029/2001GL014123

R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer, Fractal mobile/immobile solute transport, Water Resources Research, vol.124, issue.6, pp.10-1029, 2003.
DOI : 10.1029/2003WR002141

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. W. Schwartz, Ambiguous Hydraulic Heads and 14C Activities in Transient Regional Flow, Ground Water, vol.26, issue.2, pp.366-379, 2010.
DOI : 10.1111/j.1745-6584.2009.00655.x

M. Schwientek, P. Maloszewski, and F. Einsiedl, Effect of the unsaturated zone thickness on the distribution of water mean transit times in a porous aquifer, Journal of Hydrology, vol.373, issue.3-4, pp.3-4, 2009.
DOI : 10.1016/j.jhydrol.2009.05.015

U. Seeboonruang and T. R. Ginn, Upscaling heterogeneity in aquifer reactivity via exposure-time concept: Forward model, Journal of Contaminant Hydrology, vol.84, issue.3-4, pp.3-4, 2006.
DOI : 10.1016/j.jconhyd.2005.12.011

N. T. Sheahan, Injection/Extraction Well System-A Unique Seawater Intrusion Barriera, Ground Water, vol.2, issue.2, pp.32-50, 1977.
DOI : 10.1111/j.1745-6584.1977.tb03150.x

O. Silva, A general real-time formulation for multi-rate mass transfer problems, Hydrology and Earth System Sciences, vol.13, issue.8, pp.1399-141110, 2009.
DOI : 10.5194/hess-13-1399-2009

D. K. Solomon, D. P. Genereux, L. N. Plummer, and E. Busenberg, Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers, Water Resources Research, vol.78, issue.6, 2010.
DOI : 10.1029/2009WR008341

S. S. Soltani and V. Cvetkovic, On the distribution of water age along hydrological pathways with transient flow, Water Resources Research, vol.47, issue.4, pp.5238-5245, 2013.
DOI : 10.1002/wrcr.20402

B. J. Stolp, Age dating base flow at springs and gaining streams using helium-3 and tritium: Fischa-Dagnitz system, southern Vienna Basin, Austria, Water Resources Research, vol.2004, issue.5233, 2010.
DOI : 10.1029/2009WR008006

A. Suckow, Lumpy?an interactive lumped parameter modeling code based on MS access and MS excel, 2012.

A. Suckow, The age of groundwater ??? Definitions, models and why we do not need this term, Applied Geochemistry, vol.50, pp.222-230, 2014.
DOI : 10.1016/j.apgeochem.2014.04.016

G. Tang, D. B. Watson, J. C. Parker, and S. C. Brooks, A Spreadsheet Program for Two-Well Tracer Test Data Analysis, Groundwater, vol.32, issue.2, pp.614-620, 2012.
DOI : 10.1111/j.1745-6584.2011.00841.x

A. F. Tompson, S. F. Carle, N. D. Rosenberg, and R. M. Maxwell, Analysis of groundwater migration from artificial recharge in a large urban aquifer: A simulation perspective, Water Resources Research, vol.420, issue.7, pp.35-2981, 1999.
DOI : 10.1029/1999WR900175

C. Turnadge and B. D. Smerdon, A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation, Journal of Hydrology, vol.519, pp.3674-3689, 2014.
DOI : 10.1016/j.jhydrol.2014.10.056

J. V. Turner and C. J. Barnes, Modeling of Isotope and Hydrogeochemical Responses in Catchment Hydrology, 1998.
DOI : 10.1016/B978-0-444-81546-0.50028-8

Y. Van-der-velde, P. J. Torfs, S. E. Van-der-zee, and R. Uijlenhoet, Quantifying catchment-scale mixing and its effect on time-varying travel time distributions, Water Resources Research, vol.41, issue.12, 2012.
DOI : 10.1029/2011WR011310

M. Varni and J. Carrera, Simulation of groundwater age distributions, Water Resources Research, vol.158, issue.44, pp.3271-3281, 1998.
DOI : 10.1029/98WR02536

A. Visser, H. P. Broers, R. Purtschert, J. Sültenfuß, and M. De-jonge, Ar), Water Resources Research, vol.19, issue.1, pp.7778-7796, 2013.
DOI : 10.1002/2013WR014012

J. C. Vogel, Investigation of groundwater flow with radiocarbon, Isotopes in Hydrology. IAEA, Vienna, p.15, 1967.

H. Von-buttlar and W. F. Libby, Natural distribution of cosmic-ray produced tritium. II, Journal of Inorganic and Nuclear Chemistry, vol.1, issue.1-2, pp.75-91, 1955.
DOI : 10.1016/0022-1902(55)80070-X

G. S. Weissmann, Y. Zhang, E. M. Labolle, and G. E. Fogg, Dispersion of groundwater age in an alluvial aquifer system, Water Resources Research, vol.72, issue.2, pp.16-17, 2002.
DOI : 10.1029/2001WR000907

N. Wiener, Extrapolation, interpolation, and smoothing of stationary time series, 1949.

D. Wolf and W. Resnick, Residence Time Distribution in Real Systems, Industrial & Engineering Chemistry Fundamentals, vol.2, issue.4, pp.287-293, 1963.
DOI : 10.1021/i160008a008

Y. Zhang, B. Baeumer, and D. A. Benson, Relationship between flux and resident concentrations for anomalous dispersion, Geophysical Research Letters, vol.123, issue.1, 2006.
DOI : 10.1029/2003WR002141

K. Zouari, R. Trabelsi, and N. Chkir, Utiliza????o de indicadores geoqu??micos para investigar os processos de mistura de ??gua subterr??nea e os tempos de resid??ncia no sistema aqu??fero de Djeffara de Medenine (sudeste da Tun??sia), Hydrogeology Journal, vol.36, issue.9, pp.209-219, 2011.
DOI : 10.1007/s10040-010-0673-2

A. Zuber, K. Ró?a?ski, J. Kania, and R. Purtschert, Methodische Grundlagen und Probleme bei der Anwendung von Umwelttracern zur Parametrisierung von Grundwassersystemen und zur Kalibrierung von Fliess- und Transportmodellen, Hydrogeology Journal, vol.19, issue.5, pp.53-69, 2011.
DOI : 10.1007/s10040-010-0655-4