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[1] The parameters of the nutations are now known with a good accuracy, and the theory
accounts for most of their values. Dissipative friction at the core-mantle boundary (CMB)
and at the inner core boundary is an important ingredient of the theory. Up to now, viscous
coupling at a smooth interface and electromagnetic coupling have been considered. In
some cases they appear hardly strong enough to account for the observations. We advocate
here that the CMB has a small-scale roughness and estimate the dissipation resulting
from the interaction of the fluid core motion with this topography. We conclude that it
might be significant.

Citation: Le Mouël, J. L., C. Narteau, M. Greff-Lefftz, and M. Holschneider (2006), Dissipation at the core-mantle boundary on a

small-scale topography, J. Geophys. Res., 111, B04413, doi:10.1029/2005JB003846.

1. Introduction

[2] The question of the dissipation at the core-mantle
boundary (CMB) (and also at the inner core boundary, but
we focus here on the CMB) is of some importance in global
geodynamics [e.g., Greff-Lefftz and Legros, 1999] but
cannot be said to be fully understood at this time. This
dissipation can be estimated from the estimates of the
coefficients of the nutation series. As a matter of fact, the
main properties of the Earth that affect its rotational
response to a set of periodic gravitational luni-solar torques
are the presence of the fluid core and solid inner core, the
interactions occurring at the core boundaries (CMB and
ICB), the rheological properties of the mantle (including
anelasticity), and the presence of the oceans. Mathews et al.
[2002] model theoretical values from the nutation series,
and, among the geophysical results they obtain from their fit
between observations and theoretical values, are estimates
of the dynamic ellipticity of the Earth and of the fluid core
and of the two complex coupling constants related to the
dissipative power at the CMB and at the ICB.
[3] Herring et al. [2002] estimate the coefficients of the

nutation series with standard deviations ranging from
5 microseconds of arc (mas) for the terms with periods
<400 days to 38 mas for the longest-period terms. The
deviations between the VLBI estimates of the amplitudes
of terms in the nutations series and the theoretical values
from the Mathews et al. [2002] nutation series are at the
level of the standard deviation for nutational terms with
periods <400 days. In particular, the residuals in the out of

phase amplitudes of the retrograde 18.6 year and annual
nutations, which had long remained at 0.5 milliseconds of
arc (mas), are now also reduced to the level of the
uncertainties in the observational estimates. The largest
remaining discrepancy is that in the out of phase prograde
18.6 year nutation (of 72 mas).
[4] Dissipation is due to relative motions of the fluid core

with respect to the mantle. As the fluid core is viscous, and
the lower mantle conducting, resistive torques between the
core and the mantle result from those relative motions, and
power is dissipated. The amount of power dissipated, either
due to core viscosity or to electromagnetic coupling, has
been estimated for long. It depends on the value of the
viscosity and the conductivity model of the mantle. It has
been shown that conductivity models with a weak conduc-
tivity value throughout the mantle could not account for the
observed values of some nutation. Buffett et al. [2002]
called for the presence of a thin conducting layer at the
base of the mantle with a total conductance of 108 S, and a
RMS radial magnetic field at the CMB of about 6.9 gauss,
for simple magnetic field configurations. The total conduc-
tance of weak conductivity models [Shankland et al., 1993],
which do not include such a higher conductivity thin layer,
is 107 S. However, the existence of a high-conductivity
layer is not really supported by independent clues [Poirier
et al., 1998]. Let us also point out that Mathews et al.
[2002] did not take into account the viscosity of the fluid
core; this viscosity can change the coupling constants. More
important, the negative sign of the imaginary part of the
Chandler frequency [Mathews et al., 2002, Table 3a] means
that for the considered model of the Earth, the electromag-
netic torque leads to the excitation of the wobble, not to the
dissipation of energy. For these reasons, search of other
sources of the dissipation at the CMB and at the ICB is very
important.
[5] In a recent paper [Narteau et al., 2001], we advocated

the presence at the CMB of a short-scale topography, or
roughness, resulting from a dynamical physico-chemical
equilibrium at this boundary. We briefly present the results
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of an extension of this model (essentially from two to three
dimensions) and show that the interaction between the core
fluid flow and this roughness may also significantly con-
tribute to the required amount of dissipation. Also, we
discuss some consequences.

2. Poincaré Flows Related to Precession and
Nutation

[6] A number of detailed and complete papers have been
devoted to these flows [e.g., Poincaré, 1910; Stewartson
and Roberts, 1963; Roberts and Stewartson, 1965; Busse,
1968; Stacey, 1973; Toomre, 1974; Loper, 1975; Rochester,
1976; Sasao et al., 1977; Kerswell, 1993; Vanyo, 1991;

Vanyo et al., 1995; Néron de Surgy and Laskar, 1997; Pais
et al., 1999; Tilgner, 1999; Pais and Le Mouël, 2001; Noir
et al., 2001]. We content ourselves here to give a very short
and simplified account of these motions, and the few
formulas necessary for the following.
[7] Precession and nutation of the Earth’s spin axis are

generated by the action of the degree 2 tesseral term of the
luni-solar gravitational potential on the Earth’s equatorial
bulge [e.g., Bretagnon and Capitaine, 1997]. Precession,
the Earth’s rotation axis describes a cone of 23.5� half angle
in 26000 years, is due to the constant part (k1) of the luni-
solar torque. In addition, as the Moon and Sun orbits with
respect to the Earth present various periodic perturbations,
the luni-solar torque presents the same periodicities and

Figure 1. Precession and nutation of the Earth’s spin axis. The precession cone (red) and two nutation
cones (green) are highlighted (from Greff [2004] with permission from Pour la Science).
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generates small motions of the Earth’s rotation axis around
its mean direction which itself precesses on the precession
cones (Figure 1). Let us consider a single nutation of
angular frequency ew, jej � 1, in absolute space. The spin
axis W describes a small cone around Wm, the mean value of
the spin, over a period 2p/jewj = t, Wm itself precessing on
the precession cone. In other words, W has an equatorial
component W? in the plane (Wm, W), rotating with period t,
W? = w? e2 (Figure 2). A quasi-solid rotation D of the core
with respect to the mantle results, around the same axis e2
(approximately). It happens that D is amplified with respect
to W?:

D ¼ W? f :

The amplification factor f would be simply 1/(e + e) in the
case of a rigid mantle, e = (c � a)/a, c and a being the polar
and equatorial semiaxes, respectively, of the ellipsoidal
core. However, the mantle elasticity has to be taken into
account. It comes [Greff-Lefftz and Legros, 1999]

D ¼ W?
1� qo=2að Þhc

eþ e� qoh
1
c=2

� � ;
where hc = 1.137 and hc

1 = 0.356 are Love numbers
(computed for a stratified PREM model) characterizing the
CMB deformation induced by the mantle and the core
rotational potentials, a is the dynamical flattening of the
core and

q0 ¼
w2R

go
¼ 1

289:9

is the geodetic constant (R the Earth’s mean radius, g0 the
gravity at the Earth’s surface). In the case of the annual

retrograde Y1 tidal wave, e = �(1/366.25), and it comes f =
�590.
[8] A friction torque results

& ¼ �kD� k0 e1 
 e2ð Þ 
 D

or, using complex notations,

G1 þ iG2 ¼ � kþ ik0ð Þ d1 þ id2ð Þ

and a power dissipated by friction:

P ¼ kd2

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22

q
, k is a friction coefficient

k ¼ kv þ km

sum of a viscous coefficient and an electromagnetic
coefficient. The expression of the viscous coefficient has
been computed by Roberts [1965], Busse [1968], and Loper
[1975]:

kv ¼ 2:62Cn

ffiffiffiffiffiffiffiffi
n*w

p

Rc

Cn is the axial inertia momentum of the core (Cn 

8.9 
 1036 kg m2), Rc is the mean core radius (Rc 
 3.5 

106 m), and n* is the core liquid kinematic viscosity. For
n* 
 10�7 m2 s�1, kv = 0.18 
 1026 kg m2 s�1. This value
is an estimate of the molecular viscosity of the liquid core,
computed from general considerations on the transport
properties of iron in the core pressure and temperature
conditions. In other questions, values of an effective, e.g.,
turbulent, viscosity are considered, spanning orders of
magnitude.
[9] The constant of electromagnetic coupling km has been

computed by MacDonald and Ness [1961] in a plane
geometry and by Buffett [1992] in a spherical geometry
for a constant conductivity sm of the lower mantle and an
insulating upper mantle (the skin depth for a daily frequency
is smaller than the thickness of the lower conductive layer).
Considering the field dipolar and sc � sm:

km ¼ 32p
15

R6

R2
c

g�1
� �2 ffiffiffiffiffiffiffiffi

2sm
mw

s

where R is the mean Earth’s radius, sm is the electrical
conductivity of the lower mantle (sc is the core conductiv-
ity), g�1 is the axial dipolar Gauss coefficient, and m is the
permeability of void (m = 4p 10�7). Taking g1

0 = 3 
 10�5 T
and sm = 10 (W m)�1 (weak conductivity model, but see
section 3), we obtain km = 0.15 
 1026 kg m2 s�1. With
these values of the parameters, kv and km have the same
order of magnitude.
[10] The daily angular frequency w enters both the

expressions of kv and km for the following reason; D is
moving slowly in the absolute space (2p/ew � 1 day), so it
is moving with a nearly diurnal frequency with respect to
the rotating Earth. Whereas the motion of the core with
respect to the mantle is a simple rotation in the frame (e1, e2,

Figure 2. Annual retrograde nutation. The e1 and e2 are in
the Earth’s equatorial plane rotating with W?, and D is the
angular rotation of the core with respect to the mantle in the
(e1, e2, W) frame.
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e3) of Figure 2, the liquid flow field as viewed from the
rotating mantle shows a periodic oscillation with a period
close to 1 day with a complex structure (see, e.g., Pais and
Le Mouël [2001] for an illustration of this flow).

3. Annual Retrograde Nutation

[11] The annual retrograde nutation is generated by the Y1

tidal wave whose period in an absolute frame is �ew, and
�w(1 � e) in a frame linked to the mantle [e.g., Bretagnon
and Capitaine, 1997; Greff-Lefftz and Legros, 1999]. VLBI
observations provide a fairly accurate determination of the
annual retrograde nutation parameters, i.e., the amplitude of
the in-phase and out-of-phase components of W? (the phase
being reckoned from the forcing tidal term). As indicated in
section 1, Buffett [1992] and Buffett et al. [2002] showed
that the measured amplitude of the out of phase component
requires a very efficient magnetic torque acting at the CMB
to correct for the discrepancy between the observed and the
theoretical curves which remains after taking into account
the ocean tide and mantle anelasticity.
[12] More precisely, in addition to considering multipole

terms of the magnetic field at the CMB, Buffet proposed an
enhanced conductivity at the bottom of the mantle, which he
modeled as a 500 m layer with a conductivity of 5 
 105 (W
m)�1, the conductivity of the core. However, the existence
of such a layer has been discussed by Poirier and Le Mouël
[1992], Le Mouël et al. [1997], and Poirier et al. [1998].
They argued that neither partial melting nor infiltration of
the lower mantle by core iron could account for such an
enhanced conductivity, and concluded in favor of a low
conductivity (s < 10 (W m)�1) throughout the mantle. More
recently, Buffett et al. [2000] proposed, instead of this high-
conductivity layer in the lower mantle, a thin layer of
silicate sediment which accumulates at the top of the core
as the Earth cools and could have the required conductance
of 1.7 
 108 S. The existence of such a layer of silicate
sediment is not firmly established, neither its coupling with
the mantle well understood.
[13] Before moving to the very subject of the present

paper, let us recall the power dissipated at the CMB by the
motion linked to the retrograde annual nutation (Y1), kd

2,
for both the weak conductivity model (s = 10 (W m)�1

throughout the 2000 km of the lower mantle) and the high
conductivity model of Buffet [Greff-Lefftz and Legros,
1999, Table 1], assuming first an axial dipolar magnetic
field (with a Gauss coefficient g1

0 = 3 
 10�5 T):

weak conductivity P ¼ 2:7
 104 W

strong conductivity P ¼ 6:9
 105 W:

[14] The magnetic power dissipated at the CMB varies as
the square of the amplitude of the magnetic field. Thus these
values may be increased if assuming a more complex
magnetic field [Buffett et al., 2002]. Nevertheless, they are
still smaller than 4.7 
 106 W, the dissipated power
estimated from the frictional constants determined by
Mathews et al. [2002]. So there is room for looking at
alternative or complementary mechanisms.
[15] Wewill argue that a power of the order of 106Wmight

be provided by the friction of the Poincaré flow on a small-

scale topography likely to exist at the CMB, adding, as
announced in the introduction, another source of dissipation.

4. Small-Scale Topography (Roughness) of the
CMB

[16] Narteau et al. [2001] argued that there may be a small
roughness at the CMB, invisible to seismology. There is a
striking contrast between the mantle and the core; the mantle
is rocky, composed mostly of crystalline silicate perovskite
and magnesiowüstite with a density of 5600 kg m�3 near the
core-mantle boundary, whereas the core consists of a dense
(104 kg m�3) molten iron alloy with a small viscosity. The
CMB is expected to be the seat of physical-chemical inter-
actions between core and mantle [Le Mouël et al., 1997]. The
hot liquid core can corrode the overlying mantle, preferen-
tially dissolving the silicates and oxides along the grain
boundaries and infiltrating upward into the mantle by capil-
larity [Knittle and Jeanloz, 1989; Poirier and Le Mouël,
1992]. The thickness of the infiltrated layer cannot exceed a
few meters, which corresponds to the height for which the
weight of the intergranular thin sheets of dense liquid is
equilibrated by the interfacial tension between crystals and
molten iron [Le Mouël et al., 1997]. On that scale the grains
of the crystalline mantle surrounded by liquid can be
loosened, float at the top of the core, and go on dissolving
in the core fluid undersaturated in the light elements consti-
tutive of mantle minerals (mostly oxygen and silicon). The
core fluid is consequently enriched in these light elements,
and may become locally saturated; the light elements may
then diffuse from the saturated toward the still unsaturated
fluid. The saturated alloy, enriched in elements lighter than
the bulk of the core fluid, is buoyant and tends to float upward
near the CMB. Two competing processes take place at the
CMB: crystals of the mantle are loosened and dissolved in the
fluid, while crystalline matter is redeposited at other places.
The small-scale roughness of the CMB is therefore due to the
dynamic equilibrium between dissolution and redeposition.
This can be compared to what happens on the atomic scale in
the case of a crystal surface in equilibrium with a saturated
solution or saturating vapor: atoms are continually dissolved
(evaporated) and deposited (condensed) on the surface,
imparting to it a roughness on the atomic scale.
[17] Thus the CMB does not move upward or downward

but may acquire a roughness on scales larger than the grain
size of the mantle material, superimposed to the topography
at the scale of hundreds to thousands kilometers, due to
mantle convection.
[18] Narteau et al. [2001] applied a cellular automaton

method to model the short-scale topography according to
the principles recalled above. The transition from a two-
dimensional (2-D) to a 3-D model has been implemented
recently to insure that the properties of the calculated
topography remain. Cubic cells, with a characteristic length
scale of the size of grains of the mantle material, can be in
one of three states corresponding to mantle silicate or oxide,
core fluid saturated in light element, and unsaturated core
fluid, respectively. The model depends essentially on three
parameters: the grain size d, the diffusion coefficient D of
the light element in the liquid alloy, and the difference
between the concentration of light element at saturation, fsat,
and the concentration f0 in the unsaturated alloy (the bulk of
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the core). Realizations of the model have been computed for
d = 1 cm, D = 3 
 10�9 m2 s�1 and different values of fsat
ranging from 1.25f0 to 3f0 [Narteau et al., 2001]. No
constraint on the scale of the topography is given a priori.
[19] For fsat = 2f0, Figure 3 shows a vertical section of cells

(Figure 3a) and the density of mantle cells (Figure 3b) at the
meter scale of the modelled CMB. Representations at larger
scales are given by Narteau et al. [2001]. Characteristic
length scales of tens of meters have been observed in 2-D

computations. In the 3-D computation, hs(i, j, t) being the
ordinates of the boundary between the solid mantle and
the saturated liquid alloy (i and j are counted in units of d, the
grain size, t is time), we define the roughness of the CMB as

Ru tð Þ ¼ 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i¼1

XL
j¼1

hs i; j; tð Þ � hs i; j; tð Þ
� �2vuut ; ð1Þ

Figure 3. (a) Vertical section of the cellular automaton on a meter scale (red, white, and black are
nonsaturated liquid iron, saturated liquid iron and solid silicate, respectively). (b) Density of mantle cells
in a 3-D representation (this density is estimated locally within a 5 
 5 
 5 windows).
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where

hs tð Þ ¼

XL
i¼1

XL
j¼1

hs i; j; tð Þ

L2

and L is, in cell side units, the length of the side of the square
over which the topography has been computed. Starting from
a flat interface with L = 1.6 103, Figure 4 represents a
smoothed version of the small-scale topography obtained
400 years later at the surface of the CMB. This example
shows that coupled with diffusion, dissolution and crystal-
lization processes lead to a rough surface over which bumps
and holes occur on a wide range of spatial scales. In order to
describe in an another way such an irregular shape, Figure 5

shows the evolution of the roughness Ru(t) over the last
30 years. Given the permanent fluctuation of the topography,
there is no stable state, and the plateau observed at the end of
the computation is not the upper limit of the roughness.
Nevertheless, the short-scale topography reaches already a
vertical extent of �1 m, which is larger than the thickness of
the thermal and Ekman boundary layers [Narteau et al.,
2001]. Longer computations in two dimensions show that
although some kind of statistical mean value of Ru can be
reached, extreme values are more likely to occur.

5. Dissipation on the Small-Scale Topography

[20] Let us then assume that the CMB presents a small-
scale topography, or roughness, with the characteristics

Figure 4. Small-scale topography of a smoothed section of the CMB which covers a surface of 256 m2.
Computations are made in a regular rectangular parallelepiped mesh of L 
 L 
 H cells with L = 1600
and H = 200. The depth is measured from the upper limit of this computation grid.
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given in section 4. How much dissipation can be generated
by the interaction between this topography and a laminar
flow (Poincaré flows, as already said, are nearly rigid body
oscillations of the fluid core with respect to the mantle, with
a quasi-daily period)? There is no way to compute this
interaction in any details; we will just try to get rough orders
of magnitude of the dissipated power.
[21] For that, we will first simplify the problem to the

extreme. We consider a plane model, which is not a
serious limitation. Let h(x, y) be the short-scale topogra-
phy, and v be the velocity of the laminar flow beneath the
CMB, uniform in the bulk of the fluid (Figure 6).
Equivalently, let us consider that the solid half-space
with its roughness is moved with respect to the bulk of
the fluid with velocity �v(t); v is parallel to the x axis in
the plane of the mean interface: v = vx x. As indicated in
section 2,

v ¼ v0 sin
2p
T

t

� 

;

where T 
 24 hours.
[22] First, we apply the Newton’s method to obtain a

rough estimate of the possible dissipation. In this approach,
after taking a simplified model of the short-scale topogra-
phy, the interaction between the topography and the fluid is
estimated as the energy transfer per unit time necessary to
accelerate the liquid from rest up to the velocity of the
moving topography. This approximation is justified if the
flow is fully turbulent behind the obstacles or if the change
in the velocity profile generates waves, which may be
dissipated over the entire outer core. In any case this method
will give an upper bound for the interaction between the
modelled topography and the flow.
[23] Let the velocity at time t be v(t) > 0 and consider a

domain D of the boundary (CMB). The volume of fluid

which is to be displaced above D, during the time unit, and
then accelerated from velocity 0 to velocity v is

_V tð Þ ¼ v tð Þ
Z
D

n � xH n � xð ÞdS; ð2Þ

where n is the unit vector normal to the topography,
oriented toward the fluid, and H is the Heaviside function.
This volume gets the kinetic energy 1/2 rv2 per unit volume.
Let us write that the kinetic energy gained by _V is equal to
the work made in this time unit by the liquid-topography
interaction force FD acting on the portion D of the interface:

1

2
rv2 _V ¼ vFD ð3Þ

or

FD ¼ 1

2
rv2

Z
D

n � x H n � xð ÞdS: ð4Þ

The work of FD over a period T is

WD ¼ 8

3p
rv30T

Z
D

n � x H n; xð ÞdS: ð5Þ

[24] Then, to estimate the integral, we assume (a rough
simplification) that the relief is made of regular pyramids
with square bases of side A and height h. D being large
compared to A2, it comes

Z
D

n � x H n; xð ÞdS ¼ h

A
SD;

SD being the area of D. Finally, replacing SD by the surface
of the CMB, we obtain the power given by the interaction
force at the CMB:

P ¼ 32

3
rv30

h

A
R2
c ; ð6Þ

Rc being the core radius.
[25] We compute D for the case of the retrograde annual

nutation, assuming a hydrostatic stratified Earth model
(PREM), and we deduce the magnitude of the velocity of

Figure 5. Evolution of the rugosity of the surface of a
section of the CMB over 30 years, starting from a flat
surface. The small-scale topography at t = 28 years is shown
in Figure 4.

Figure 6. Schematic representation of the CMB on a
meter scale. The parameters v and n are the velocity of the
laminar flow beneath the CMB and the unit vector normal
to the topography, respectively.
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the fluid with respect to the mantle: v0 
 0.7 
 10�4 m s�1.
Taking h/A = 1, it comes

P ¼ 5
 105 W:

[26] As stressed above, the dissipation problem should
also take into account turbulent transport of energy in the
outer core, and the Newton’s method applied without
considering the retroaction of the fluid motion on the
boundary behind the obstacles gives an overestimation of
the dissipated power. On the contrary, our simplification of
the topography in the form of an array of pyramids leads to
an underestimation of the effective resistive surface (see
section 5).
[27] Let us make another estimate starting with the theory

of the motion of ships, which has been the object of a lot of
work [e.g., Sedov, 1977]. The determination of the resis-
tance of the ship to the motion relies on the practical
possibility to split the resistance into two components, one
due to the viscosity, the second one to the ponderability,W =
W1 + W2. The first term is the friction term and writes

W1 ¼ Cf Reð Þr Sv
2

2
; ð7Þ

where S is the wet surface of the ship, v is its velocity, r the
density of water, Re = UL/n is the Reynolds number where
U is the ship velocity, L a characteristic dimension of the
ship and n is the kinematic viscosity of water. Note that
equation (7) comes readily from dimensional analysis.
However, the expression of Cf needs more work. It comes
[Sedov, 1977]

Cf ¼
0:455

log Reð Þ2:58
:

[28] Here, taking again our model of pyramids, we con-
sider that all of them are keels of a multikeel ship. So we take
L = A 
 1 m, U = v (v = vo sin[(2p/T)t] as before), n = 6 

10�7 m2 s�1 [Poirier, 2000]. For these values, Cf 
 0.07.
[29] For a given surface of the CMB, SD, the wet surface

is

2SD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ h

A

� 
2
s

:

It comes for the dissipated power, following the same
computation as before

Pf ¼
64

3
Cf Reð Þrv30R2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ h

A

� 
2
s

: ð8Þ

[30] For h/A = 1, Pf 
 0.15 P (see equation (6)). This
is the estimate for smooth pyramids. Adding the short-
scale rugosity of our fractal relief, Pf could be much
larger in the same way as when dealing with a ship, ‘‘the
resistance is much increased when considering rugged
keels’’ [Sedov, 1977, p. 74]; unfortunately, much is not
quantified. Let us elaborate on this point. Computing
rigorously the interaction of the moving fluid with our
fractal relief is out of reach, as already said. We saw that
with the regular pyramids model, Pf depends on the ratio
h/A. Instead of considering a single scale pyramids, we
can consider the superposition of pyramids of different
scales k 2 [1, 2, .., K] with constant aspect ratio h/A and
hk�1/hk = R (see the Koch curve on Figure 7, where R = 3).
The friction coefficient and Pf would be expected to be
multiplied by the number K of scales. Of course, there is a
limit for K beyond which the reasoning is no longer valid,
which may be when hk is of the order of d, the thickness of the
Ekman layer computed with the value of the molecular
viscosity. Again, this simple model does not exhaust
the complexity of the reliefs of Figure 4. Of course, all
of this amounts to take a larger value of CF. Taking directly
Cf = 1.33, apparently a maximum for values found in
literature in the case of smoother obstacles, would give
Pf � 1.5 
 106 W. So, friction on a small-scale topography
might contribute for an amount of 106 W, or even more, to
the 4.7 
 106 W required by astronomical observations
[Mathews et al., 2002].

6. Discussion and Conclusion

[31] The above estimate of the dissipated power through
friction on a small-scale topography is crude. An approxi-

Figure 7. Koch curve at different levels. In this well-
known example of a self-similar fractal pattern, the
topography appears equally detailed at all scales. Note that
the ratio hi/Ai does not depend on the level i of
magnification.
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mation of the relief in the form of a regular pavement of
square pyramids makes the free parameter h/A appear, the
aspect ratio of the pyramids. That allows an estimate of the
effect of more intricate topographies, closer to the ones
computed in section 4. The contribution of this mechanism
to the dissipation at the CMB could be significant in the
case of the annual retrograde nutation, as large as the ohmic
dissipation in the high-conductivity model advocated by
Buffett et al. [2002], possibly larger but probably not big
enough by itself
[32] We consider that the power approximated through

equations (6) and (8) is entirely dissipated, however, not
necessarily in a close vicinity of the CMB. Such a situation is
well known in meteorology, when studying the interaction of
wind and Earth’s surface relief. Recently, it was discovered
that the motion of the deep ocean water on the sea bottom
irregular topography contributed strongly to the tidal dissi-
pation and that the perturbations of the flow generated by
this relative motion could be observed at the ocean surface
[Le Provost and Lyard, 1997; Egbert and Ray, 2000].
[33] If it appears that friction on CMB roughness could

provide a significant amount of dissipation, it should not
either provide a much bigger one, which could conversely
put some constraints on the topography parameters. The
discussion and statements of Buffett et al. [2002] hold
indeed in the same terms, wether we get the required
dissipative power calling for CMB roughness or for elec-
tromagnetic friction (with an enhanced conductivity in the
mantle and an enhanced energy of the magnetic field in the
vicinity of the CMB). Let us point out that the topography
was computed by Narteau et al. [2001] without any
consideration of the friction problem.
[34] Of course, roughness friction also holds for preces-

sion (k1). To account for his observations of late Precam-
brian glaciogenic sequences, Williams [1993] assumed a big
change in Earth’s obliquity in the 650–430 Ma time
interval, from 60� to 26�. This change was attributed to
dissipative core-mantle coupling, a mechanism first sug-
gested by Aoki [1969]. However, Pais et al. [1999] argued
that the viscous and electromagnetic torques, even with the
high conductivity model, fail by 4 orders of magnitude to
account for such a large change of obliquity. Furthermore,
as first shown by Néron de Surgy and Laskar [1997], a big
change in obliquity would be accompanied by a big change
in the length of the day, which is not observed. Friction on
small-scale topography does not bring anything new to this
problem.
[35] Another flow exists in the core, responsible for the

dynamo action and for the observed secular variation of the
geomagnetic field. The effect of this flow on Earth’s
rotation has been the object of quite a lot of work [e.g.,
Jault and Le Mouël, 1990; Hinderer et al., 1990; Jault and
Le Mouël, 1993; Jackson et al., 1993; Holme, 1998; Holme
and de Viron, 2005]. The influence of a CMB small-scale
topography on the core-mantle coupling should be also
considered in the case of this main flow, although it seems
small at first sight. Furthermore, the configuration of this
flow in the vicinity of the CMB might be less simple than
the Poincaré flow one.
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Institut de Physique du Globe de Paris, 4, Place Jussieu, Paris, Cedex 05,
F-75252, France. (narteau@ipgp.jussieu.fr)
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