Skip to Main content Skip to Navigation
New interface
Journal articles

European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background

Lindley Lentati 1 Stephen R. Taylor 2, 3 Chiara M. F. Mingarelli 4, 2 Alberto Sesana 5, 4 Sotiris A. Sanidas 6 Alberto Vecchio 5 R. Nicolas Caballero 7 K. J. Lee 8, 7 Rutger van Haasteren 2 Stanislav Babak 4 Cees G. Bassa 6 Patrick Brem 4 Marta Burgay 9 David J. Champion 7 Ismaël Cognard 10, 11 Gregory Desvignes 7 Jonathan R. Gair 1 Lucas Guillemot 11, 10 Jason W. T. Hessels 12, 13 Gemma H. Janssen 6 Ramesh Karuppusamy 7 Michael Kramer 7, 14 Antoine Lassus 10, 15 Patrick Lazarus 4 Kuo Liu 16 Stefan Osłowski 17, 7 Delphine Perrodin 9 Antoine Petiteau 15 Andrea Possenti 9 Mark B. Purver 6 Pablo A. Rosado 4, 18 Roy Smits 19 Ben Stappers 6 Gilles Theureau 11, 10 Caterina Tiburzi 9 Joris P. W. Verbiest 7 
Abstract : We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95$\%$ upper limit on the dimensionless strain amplitude $A$ of the background of $A<3.0\times 10^{-15}$ at a reference frequency of $1\mathrm{yr^{-1}}$ and a spectral index of $13/3$, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to $\Omega_\mathrm{gw}(f)h^2 < 1.1\times10^{-9}$ at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of $\sim 5\times10^{-9}$~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95$\%$ upper limits on the string tension, $G\mu/c^2$, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit $G\mu/c^2<1.3\times10^{-7}$, identical to that set by the {\it Planck} Collaboration, when combining {\it Planck} and high-$\ell$ Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of $\Omega^\mathrm{relic}_\mathrm{gw}(f)h^2<1.2 \times10^{-9}$, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.
Complete list of metadata
Contributor : Nathalie ROUCHON Connect in order to contact the contributor
Submitted on : Thursday, March 16, 2017 - 11:43:56 AM
Last modification on : Wednesday, May 11, 2022 - 12:44:02 PM
Long-term archiving on: : Saturday, June 17, 2017 - 1:36:26 PM


Publisher files allowed on an open archive



Lindley Lentati, Stephen R. Taylor, Chiara M. F. Mingarelli, Alberto Sesana, Sotiris A. Sanidas, et al.. European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background. Monthly Notices of the Royal Astronomical Society, 2015, 453 (3), pp.2576-2598. ⟨10.1093/mnras/stv1538⟩. ⟨insu-01263821⟩



Record views


Files downloads