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Highlights 
•Water and isoproturon losses at 45-cm depth were monitored for 6 years. 

•Compost addition to soil reduced water and isoproturon losses. 

•Isoproturon losses occur due to preferential flow events shortly after application. 

•HYDRUS-2D described water flow accurately in all three plots. 

•Model reproduced isoproturon dynamics except large preferential flow events. 

 

 

Abstract 

Compost amendments and tillage practices can modify soil structure and create 

heterogeneities at the local scale. Tillage affects soil physical properties and consequently 

water and solute transport in soil, while compost addition to soil influences pesticide sorption 

and degradation processes. Based on the long-term field experiment QualiAgro (a INRA–

Veolia partnership), a modeling study was carried out using HYDRUS-2D to evaluate how 

two different compost types combined with the presence of heterogeneities due to tillage 

affect water and isoproturon dynamics in soil compared to a control plot. A municipal solid 

waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have 

been applied to experimental plots. In each plot, wick lysimeters, TDR probes, and 

tensiometers were installed to monitor water and solute dynamics. In the plowed layer, four 

zones differing in their structure were identified: compacted clods, non-compacted soil, 

interfurrows, and the plow pan. From 2004 to 2010, the unamended control (CONT) plot had 

the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and 

SGW plot (979 mm). After calibration, the model was able to describe cumulative water 

outflow for the whole 2004–2010 period with a model efficiency value of 0.99 for all three 

plots. The CONT plot had the largest isoproturon cumulated leaching (21.31 μg) while similar 

cumulated isoproturon leaching was measured in the SGW (0.663 μg) and MSW (0.245 μg) 

http://www.sciencedirect.com.insu.bib.cnrs.fr/science/article/pii/S001670611630009X


plots. The model was able to simulate isoproturon leaching patterns except for the large 

preferential flow events that were observed in the MSW and CONT plots. The timing of these 

preferential flow events could be reproduced by the model but not their magnitude. Modeling 

results indicate that spatial and temporal variations in pesticide degradation rate due to tillage 

and compost application play a major role in the dynamics of isoproturon leaching. Both types 

of compost were found to reduce isoproturon leaching on the 6 year duration of the 

experiment. 

Keywords : Soil heterogeneity; Compost amendments; Conventional tillage; Water 

flow; Isoproturon; HYDRUS-2D 
 

1. Introduction 

Compost application to soils is getting more importance due to its benefits in improving crop 

productivity and soil quality. It has been accepted as an ecological method for the disposal of 

organic wastes, while maintaining or increasing soil fertility at the same time (Diacono and 

Montemurro, 2010). Many types of compost made from municipal solid waste, sewage sludge 

or farmyard manure are applied nowadays to agricultural soils. These various compost 

ingredients can be mixed together in different amounts and may generate different impacts on 

agroecosystems. Compost addition to soil tends to affect soil physical properties by increasing 

soil aggregate stability (Annabi et al., 2011), plant available water and soil porosity (Curtis 

and Claassen, 2005), and by decreasing bulk density in the same time (Wong et al., 1999). In 

European conventional agriculture, compost is incorporated to soil by moldboard plowing. In 

addition to compost application, tillage can also affect soil hydraulic properties (Strudley et 

al., 2008 and Alletto et al., 2010). Schneider et al. (2009) found that tillage had greater 

influence on soil saturated hydraulic conductivity than urban waste compost addition. 

Combining compost addition with moldboard plowing can create compacted soil zones next 

to non-compacted soil zones containing large amounts of organic material. Large differences 

in soil hydraulic properties can be expected between these different soil zones, which can 

have significant effects on water and solute distribution within as well as beneath the tilled 

layer (Coquet et al., 2005a). 

In addition to their effects on soil hydraulic properties, compost amendments have been 

shown to impact pesticide transport in soil. Pesticide mobility in soil can be decreased by 

increased sorption on compost material (Filipe et al., 2010) depending on pesticide properties 

and compost type. According to other authors (Yang et al., 2005 and Cabrera et al., 2007), 

pesticide mobility can be increased due to the higher content of dissolved organic carbon 

caused by soil organic matter addition. 
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Dolaptsoglou et al. (2007) showed that addition of poultry compost
and urban sewage sludge in a clay loam soil reduces terbuthylazine deg-
radation compared to non-amended soils, while the addition of corn
straw did not modify it. Kodešová et al. (2012) found that chlortoluron

to a depth of 28 cm (plowing width of 40 cm). A detailed calendar of ag-
ronomic practices can be found in Filipović et al. (2014). The field had
been divided into 40 experimental plots (45× 10m)with five treatments
replicated four times in a randomized complete block design (Fig. 1a).

Table 1
Average soil properties for the SGW, MSW and CONT plots (mean of 4 replicate plots)a.

Treatment Depth of soil
horizon

C org C/N pH Clay Silt Sand CEC

(cm) g kg−1 % mol kg−1

SGW LA horizon 0–28 15.14 10.7 6.86 13.5 79.5 7.0 0.999
Plow pan 28–38 11.23 9.8 6.94 15.5 78.1 6.4 0.877
E horizon 38–50 4.78 8.2 7.15 21.6 73.5 4.9 0.991
BT horizon 50–90 3.20 7.1 7.29 29.4 67.1 3.5 1.425

MSW LA horizon 0–28 13.53 11.6 7.51 14.1 78.9 7.0 1.019
Plow pan 28–38 11.22 10.2 7.64 15.9 78.0 6.1 0.936
E horizon 38–50 4.78 8.4 7.63 19.8 74.2 6.0 1.003
BT horizon 50–90 2.91 6.8 7.67 29.6 67.4 3.0 1.476

CONT LA horizon 0–32 10.12 10.7 6.63 14.5 79.0 6.5 0.738
Plow pan 32–43 9.20 9.8 6.84 17.5 76.2 6.3 0.773
E horizon 43–50 4.40 7.9 7.03 20.5 73.8 5.7 0.828
BT horizon 50–90 2.87 6.8 7.27 30.1 66.6 3.3 1.075

a The plow layer of each of the 20 plots of the field experiment (5 treatments × 4 repeti-
tions— see Fig. 1a) has been sampled after the experiment in March 2010. A campaign had
been dedicated to sub-layers from the 28 to 90 cm depth, with a similar objective, i.e., one
representative sample per plot, prepared from about 30 drillings.
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mobility in a Luvic Chernozem soil decreased up to a compost content in
soil of 6%, and then increasedwith larger compost contents (7% and 8%).

Pesticide fate in soil is controlled by sorption and degradation
processes that can have large spatial variability in soil at the field scale
(Beck et al., 1996; Benoit et al., 1999). One of the most frequently
used herbicides in European agriculture is isoproturon (IPU) [3-(4-
isopropylphenyl)-1,1-dimethylurea] which is used to control weeds in
cereal crops (such as wheat and barley) and is one of the most detected
herbicides in surface and ground waters, especially in France (SOeS,
2012). Consequently, its dynamics and fate in soil need to be clarified
through laboratory and more importantly field experiments. Vieublé-
Gonod et al. (2009) conducted a research on the spatial and temporal het-
erogeneity of IPU biodegradation at the decimetric scale in relation to the
spatial distribution of organic matter originating from urban waste com-
post application. Data showed that the interfurrows resulting from the in-
corporation of stubble and compost into the soil by plowing and located
between the furrows created by the plow constituted a special local envi-
ronment with the highest level of IPUmineralization. Isoproturonminer-
alization in the interfurrows depended on the amendment type: it was
more pronounced for municipal solid waste compost than for a sewage
sludge and greenwaste co-compost,while the control plot had the lowest
mineralization rate (Vieublé-Gonod et al., 2009).

Numerical models can be used to study the effect of compost incorpo-
ration on pesticide fate in soil. Coquet et al. (2005b) used HYDRUS-2D to
simulatewaterflow and bromide transport in a soil profile that contained
compacted and non-compacted soil zones. Filipović et al. (2014) used a
similar method for simulating water flow and isoproturon dynamics in
a heterogeneous soil profile receiving a co-compost of sewage sludge
and green wastes during a multiannual period. After calibration of the
soil hydraulic parameters and optimization of the isoproturon degrada-
tion rate on a limited period of time (9 months), HYDRUS-2D was able
to successfully reproduce water and isoproturon dynamics during the
whole 6-year period of study.

The objective of our work was to evaluate how the application of
two different types of urban compost – amunicipal solidwaste compost
(MSW) and a sewage sludge and green waste co-compost (SGW) – to a
plowed soil impacts water flow and isoproturon dynamics during a
6 year time period. The HYDRUS-2D model was used to simulate
water flow and isoproturon fate in plots receiving each of these two
composts and in a control plot (CONT) without compost addition.

2. Materials and methods

2.1. Site and compost characteristics

The field experiment was set up in Feucherolles (Yvelines, France) as
part of the QualiAgro long-term study (Houot et al., 2002). The soil is an
Albeluvisol (World Reference Base classification, IUSS, 2014) containing
19% clay, 75% silt, and 6% sand on average in its tilled layer. The soil profile
was composed offive horizonswhichwere determined on thefield site: a
tilled loamy LA horizon, an eluviated silt loamE horizon, an illuviated silty
clay loam BT horizon, a transitional silty clay loam BT/IC horizon, and a
silty loam structure-less decarbonated loess IC horizon, with some small
variations in thickness of the soil horizons depending on the plot. The
basic soil characteristics are presented in Table 1. The field has been culti-
vated since 1998 with a biannual rotation of winter wheat (Triticum spp.)
and maize (Zea mays L.). Exception was made in 2006/07 when barley
(Hordeum vulgare L.) was grown due to corn rootworm (Diabrotica
virgifera virgifera L.) infestation. Urban waste composts were applied
over wheat or barley stubble and disking was immediately carried out
to incorporate composts and stubbles within the upper soil layer (first
25 cm). A four-furrowmoldboard plowwas used for tillage every autumn
Four different organic amendments have been applied: a municipal
solid waste compost (MSW) made from residual municipal wastes after
the selective collection of dry and clean packaging a biowaste compost
(BIO)made from the selectively collected fermentable fractions ofmunic-
ipal wastes co-composted with green wastes; a compost resulting from
the co-composting of sewage sludge and green wastes (SGW); and a
farmyard manure (FYM) obtained from a dairy farm. These four organic
treatmentswere compared to a control treatment (CONT) that did not re-
ceive compost amendment. The composts have been applied every sec-
ond year (a supplementary compost application was made in
September 2007 after the barley crop) starting 1998 in an amount of 4 t
of organic carbon per ha.

For this modeling study three plots have been selected: one plot re-
ceiving the MSW compost (average analytical characteristics for the
1998–2009 period corresponding to seven compost applications:
pHMSW = 7.4 ± 0.4, OMMSW = 562 ± 99 g kg−1, C/NMSW = 16.0 ±
2.8), one plot receiving the SGW compost (pHSGW = 7.6 ± 0.7,
OMSGW = 454 ± 65 g kg−1, C/NSGW = 10.8 ± 2.3), and a control plot.
The three plots were selected close to one another (Fig. 1) for monitor-
ing water and pesticide transport. The soil physical and chemical prop-
erties in the plowed layer (0–28 cm)weremeasured at the beginning of
the agronomic experiment in 1998 (Table 2) and confirmed the homo-
geneity of the field site. In addition, an electrical resistivity prospection
has been performed in 2004 (Fig. 1b) and showed that the field site was
homogeneous and that the largest variations of apparent electrical re-
sistivity were found at the edges of the field. The selected plots had sim-
ilar ranges of electrical resistivity variation.

In December 2004 large soil pits (45 cm deep and 2 m wide) were
dug in each of the three plots and were described according to
Manichon's (1982) method (Fig. 2). This method is used to describe
the soil structure of the tilled layer of agricultural fields. It is based on
the visual observation of soil macroscopic features on the vertical face
of a large soil pit oriented perpendicular to the tillage direction
(Coutadeur et al., 2002; Roger-Estrade et al., 2000). The soil profile
was divided into vertical and horizontal compartments according to
the effects of the tillage implements and the internal structure of each
of these compartments. Three types of compartments were distin-
guished in the tilled layer (Fig. 2):

– The furrows— correspond to the soil which has been cut and rotated
by the moldboard plow. Macroporous soil zones, noted Γ, and



compacted soil zones, noted Δ could be distinguished within these
furrows. Soil in the Δ zones had smoothly breaking faces and no
structural porosity. Such compacted soil zones were initially located
belowwheel tracks and had been displaced by plowing. The Γ struc-

study we have used the average values from the two lysimeters). Fiber-
glass wicks (Peperell, 1/2 inch) of 70-cm height were untwisted and
mounted on a stainless steel plate that was installed horizontally under
the undisturbed soil. Leachate was collected through thewick lysimeters,

Fig. 1. a) Scheme of the QualiAgro long-term experimental field showing the selected plots (marked in red; plot numbers 201, 202 and 303) equipped with wick lysimeters, TDRs, and
tensiometers for isoproturon fate study (for more information about the experimental site please visit http://www6.inra.fr/qualiagro_eng) and b) soil apparent electrical resistivity
survey map of the field site (0–100 cm depth) performed in February 2004.
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ture is formed by the assembly of macroporous aggregates or clods,
with clearly visible structural porosity.

– The interfurrows (IF)— located between the furrows created by the
moldboard plow. IF contained a large amount of organicmatter orig-
inating from the plant residues of the preceding crop (SGW, MSW,
CONT) and from compost application (SGW,MSW). Theywere char-
acterized by a structural porosity clearly visible by the eye and by a
large amount of organic residues.

– An additional layer corresponding to a plow pan (PP) was identified
between the tilled layer andunderlying untilled E horizon from28 to
~38 cm. This layer was characterized by a continuous Δ structure
and resulted from long-term plowing to the same depth.

2.2. Field and laboratory measurements

Pressure head was measured in the three plots using tensiometers
(SDEC, France) installed at the 20, 40, 60, 80, 100, 130, and 160-cm
depth during 2007/08. Water content was measured from 2004 to 2010
using TimeDomain Reflectometry (TDR) probes (Trase system, SoilMois-
ture Equipment Corp., CA, USA) installed at the 20, 40, 60, 80, and 100-cm
depth. Gravimetric water contents were measured on soil samples taken
with an auger at multiple dates during 2007/2008 andwere used for TDR
calibration. Meteorological daily data (rainfall, air temperature, air hu-
midity, wind speed, and net radiation) were collected at ameteorological
station located near the field experiment (at 500 m). Two passive
capillary-wick lysimeters (25 cm× 25 cm, constructed by INRA, Grignon)
were installed at the 45-cm depth. In each plot two lysimeters were
installed one beside another to ensure more reliable results (in our

Table 2
Average soil characteristics of the tilled layer (0–28 cm) at the beginning of the field ex-
periment in 1998 in the three selected plots (SGW, MSW, and CONT).
Treatment C org C/N pH Clay CEC

g kg−1 % mol kg−1

SGW 9.91 9.62 7.20 13.5 0.922
MSW 11.01 10.39 7.20 14.1 0.962
CONT 10.39 9.54 7.00 14.5 0.923
filtered at 0.45 μm and stored at 4 °C prior to chemical analysis.
Isoproturon concentration was measured by the Institut Pasteur (Lille,
France) using online SPE-LC–MS–MS (QUATTRO Premium 2005; NF EN
ISO 11369). The quantification limit was 0.02 μg L−1. Near-saturated
soil hydraulic conductivity was calculated from steady state infiltration
rates at five soil water potentials (−0.6, −0.4, −0.2, −0.125 and
−0.05 kPa) measured in each plot for each type of soil structure using a
tension disk infiltrometer (SDEC, France) with a 4 cm-diameter base
(Schneider et al., 2009). The base sizewas chosen because of the small lat-
eral dimensions of some of the soil zones to be characterized
(e.g., interfurrows). Water retention values weremeasured in the labora-
tory using Richards' pressure plate apparatus (Klute and Dirksen, 1986)
on 50 cm3 soil samples taken fromeachplot and soil structure type apply-
ing pressures of 1, 3, 10, 30, 100, 310, 1000 and 1580 kPa, successively.
The van Genuchten θr, α, and n parameters of the soil water retention
curve were optimized using the RETC software (van Genuchten et al.,
1991). R2 values varied from 0.81 to 0.99. The bulk density was deter-
mined from samples taken horizontally from each soil observation face
using cylinders of 2.5 cm diam. and 4 cm length. The soil was systemati-
cally sampled at the nodes of a rectangular grid (0.36 m height, 1 m
width) with 4-cm mesh. Soil organic carbon and N contents were deter-
mined using a Carlo Erba Elemental Analyser NA 1500 Series 2 on air-
dried 2mm-sievedhomogenized samplesmadeup from10 to 15 individ-
ual samples taken from each soil zone.

2.3. Isoproturon sorption and degradation parameters

Sorption coefficients, Kd, of IPU (Table 3)weremeasured by Pot et al.
(2011) for each morphological zone (Γ, Δ, IF, PP) in batch using a 14C-
isoproturon solution prepared at 0.51 mg L−1 in calcium chloride
(0.01 M). Each sorption coefficient was calculated as:

Kd ¼ s
c

ð1Þ

where c (mg L−1) and s (−) are the solution and sorbed concentration,
respectively, obtained after 24 h equilibrium.

In January and May 2005, 14C-isoproturon mineralization was
followed under laboratory controlled conditions (28 °C, 80% of

Image of Fig. 1
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water content at pF = 2.5) during 65 days. Trapping solutions were
analyzed for 14C–CO2 concentrations by adding 10 mL of scintillating
liquid (Ultima Gold XR, Packard) and counting 10 min in a Tri-Carb
2100TR scintillation counter (Perkin Elmer Ins., Courtaboeuf,

using Richards' equation:

∂θ ¼ ∂
K KA

ij
∂h þ KA

iz

� �� �
� S ð2Þ

Fig. 2. Field description of the plots receiving either a sewage sludge and greenwaste co-compost (SGW) or amunicipal solidwaste compost (MSW) and the control plot without compost
addition (CONT), showing the different soil structures observed in the first 45 cm depth together with their spatial distribution in the HYDRUS-2D model and the location of the wick
lysimeters. Identified structures are: the non-compacted soil (Γ, blue), the compacted soil (Δ, yellow), the interfurrows (IF, green), the plow pan (PP, light blue), and the E horizon
(orange).
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France). Isoproturon degradation rates were calculated from 14C-
isoproturon mineralization for each soil structure of each of the
three plots. More details about the degradation study can be found
in Vieublé-Gonod et al. (2009).

2.4. Modeling

2.4.1. Water flow and solute transport equations
Water flow and isoproturon transport were simulated using the

HYDRUS-2D software (Šimůnek et al., 2008). Water flow was modeled
∂t ∂xi ∂xi

where θ represents the volumetric water content [L3 L−3], h is the pres-
sure head [L], xi (i = 1,2) are the spatial coordinates [L], t is the time [T],
Kij
A are the components of the dimensionless hydraulic conductivity an-

isotropy tensor (KA) in the two main spatial direction xi (i = 1,2) with
x1 = x and x2 = z, K is the unsaturated hydraulic conductivity [L T−1],
and S represents the root water uptake [L3 L−3 T−1]. The diagonal en-
tries of Kij

A equal to one and the off-diagonal entries zero for an isotropic
medium.

Image of Fig. 2


Solute transport wasmodeled using the advection–dispersion equa-
tion assuming first order kinetics for solute degradation in the liquid
phase and instantaneous and linear sorption onto soil solid surfaces
(Eq. (1)):

degradation rate in the liquid phase [T−1], and R is the retardation factor
[−] written as:

Table 3
Soil hydraulic (aftermanual calibration) and solute transport parameters after for the SGW,MSWandCONTplots for each layer/structure (Γ structure,Δ structure, interfurrows - IF, plough
pan - PP, E, BTI, BTII, BTICI, BTICII, and IC layers).

Parameter

Layer/Structure

Γ Δ IF PP E BTI BTII BTICI BTICII IC

0-28 cm 28-38 cm 38-50 cm 50-70 cm 70-90 cm 90-120 cm 120-145 cm 145-200 cm

SGW

Soil
θr (cm3.cm-3) 0.0002 0 0 0.105 0 0.0006 0.0006 0 0 0
θs (cm3.cm-3) 0.410 0.410 0.461 0.455 0.380 0.370 0.380 0.370 0.360 0.300
α (cm-1) 0.0385 0.0073 0.024 0.042 0.015 0.024 0.028 0.020 0.029 0.032
n 1.14 1.20 1.18 1.1 1.17 1.12 1.12 1.09 1.12 1.10
Ks (cm day-1) 19.6 2.8 353 4.8 14 5.8 7.9 3.8 3.7 8.0
Solute
Kd (L kg-1) 1.49 1.69 2.28 1.05 0.42 0.35 0.35 0.25 0.25 0.25
μ (day-1) 0.0361 0.0513 0.0673 0.0361 0.0062 0.0065 0.0065 0 0 0
DL (cm) 4 4 4 11.9 11.9 11.9 11.9 11.9 11.9 11.9
Basic
ρb (g cm-3) 1.40 1.57 1.26 1.63 1.50 1.50 1.50 1.38 1.38 1.38
Corg (g kg-1) 12.2 12.2 18.05 10.5 3.46 2.03 2.03 1.19 1.19 1.66

Parameter

Layer/Structure

Γ Δ IF PP E BTI BTII BTICI BTICII IC

0-28 cm 28-38 cm 38-50 cm 50-70 cm 70-90 cm 90-120 cm 120-140 cm 140-200 cm

MSW

Soil
θr (cm3.cm-3) 0.0002 0 0.0324 0.105 0 0.0006 0 0 0 0
θs (cm3.cm-3) 0.410 0.426 0.467 0.455 0.380 0.370 0.370 0.370 0.300 0.300
α (cm-1) 0.022 0.013 0.030 0.042 0.045 0.027 0.049 0.020 0.045 0.032
n 1.20 1.20 1.18 1.10 1.17 1.12 1.09 1.09 1.10 1.10
Ks (cm day-1) 10.6 7.2 489 6.0 14 9.0 7.0 3.8 8.0 4.0
Solute
Kd (L kg-1) 1.26 1.42 1.37 0.90 0.42 0.35 0.35 0.25 0.25 0.25
μ (day-1) 0.0282 0.0282 0.1560 0.0301 0.0062 0.0065 0.0065 0 0 0
DL (cm) 4 4 4 11.9 11.9 11.9 11.9 11.9 11.9 11.9
Basic
ρb (g cm-3) 1.53 1.55 1.34 1.51 1.50 1.50 1.50 1.38 1.38 1.38
Corg (g kg-1) 12.4 12.0 13.7 10.35 3.56 2.74 1.74 1.53 1.53 1.54

Parameter

Layer/Structure

Γ Δ IF PP E BTI BTII BTICI BTICII IC

0-32 cm 32-43 cm 43-50 cm 50-70 cm 70-90 cm 90-120 cm 120-140 cm 140-200 cm

CONT

Soil
θr (cm3.cm-3) 0.0002 0 0 0.105 0 0.0006 0.0006 0 0 0
θs (cm3.cm-3) 0.410 0.437 0.432 0.455 0.380 0.370 0.370 0.370 0.300 0.300
α (cm-1) 0.0385 0.0134 0.0134 0.025 0.018 0.024 0.010 0.020 0.072 0.083
n 1.14 1.21 1.18 1.10 1.17 1.12 1.12 1.09 1.09 1.10
Ks (cm day-1) 14.0 13.3 1889 2.0 42 2.8 3.2 3.7 3.7 6.0
Solute
Kd (L kg-1) 1.10 1.26 1.22 0.85 0.42 0.35 0.35 0.25 0.25 0.25
μ (day-1) 0.0211 0.0211 0.0686 0.0239 0.0062 0.0065 0.0065 0 0 0
DL (cm) 4 4 4 11.9 11.9 11.9 11.9 11.9 11.9 11.9
Basic
ρb (g cm-3) 1.35 1.63 1.27 1.70 1.50 1.50 1.50 1.38 1.38 1.38
Corg (g kg-1) 9.4 9.7 10.55 7.55 4.15 2.36 2.36 1.72 1.59 1.60

θr – residual water content, θs – saturated water content, α and n – van Genuchten shape parameters, Ks – saturated hydraulic conductivity, Kd – sorption coefficient, μ – isoproturon deg-
radation rate in liquid phase, DL – longitudinal dispersivity, ρb – bulk density, Corg – organic carbon content.
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∂ Rθcð Þ
∂t

¼ ∂
∂xi

θDij
∂c
∂xi

� �
� ∂ qicð Þ

∂xi
� μθc ð3Þ

where c is the solute concentration in the liquid phase [M L−3], qi is the ith
component of the volumetric water flux density [L T−1], Dij are the com-
ponents of the dispersion coefficient tensor [L2 T−1], μ is the first-order
R ¼ 1þ ρbKd

θ
ð4Þ

where ρb represents soil bulk density [M L−3].
Degradation was assumed to be water content and temperature de-

pendent, assuming Walker's (with an exponent value of 0.38) and Ar-
rhenius' expressions (with an activation energy for degradation of
45 KJ mol−1).



Soil hydraulic functions θ(h) and K(h) were described using the van
Genuchten–Mualemmodel (van Genuchten, 1980), which is defined as
follows:

where θr and θs denote residual and saturated volumetric water content
[L3 L−3], respectively, Ks is the saturated hydraulic conductivity [L T−1],
Se is the effective saturation,α [L−1] and n [−] are the shape parameters,
and l [−] is a pore connectivity parameter. The pore connectivity pa-
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θ hð Þ ¼ θr þ θs � θr
1þ αhj jn� �m for h b 0 ð5Þ

θ hð Þ ¼ θs for h≥0

K hð Þ ¼ KsS
l
e 1� 1� S

1
m
e

� 	m
� �2

ð6Þ

Se ¼ θ� θr
θs�θr

ð7Þ

m ¼ 1� 1
n
;n N1 ð8Þ
Fig. 3.Observed (symbols) vs simulated (line) cumulative lysimeter water outflow during the 2
or a municipal solid waste compost (MSW) and a control plot without compost addition (CON
rameter value was taken from an average for many soils (l = 0.5)
(Mualem, 1976). A modified van Genuchten (1980) model with an
air-entry value of 2 cm was used in all simulations.

2.4.2. Simulation domain, initial and boundary conditions
A two-dimensional square domain (200 × 200 cm)was used to sim-

ulate water flow and solute transport using HYDRUS-2D. The material
distribution in the tilled (LA) layer and in the deeper layers (E, BT, BT/
IC, IC)was determined according to field observations (Fig. 2). Although
the soil was tilled every year, thematerial distribution in the tilled layer
was kept constant. This choicewas supported by the fact that the overall
structure of the tilled layer reaches a steady state within a few years
004–2010 period for plots receiving a sewage sludge and green waste co-compost (SGW)
T).

Image of Fig. 3


under constant agricultural practices (Roger-Estrade et al., 2000)
which was the case in the current experiment. The BT and BT/IC ho-
rizons were divided into two layers in order to correspond with the
field measurements (TDR, tensiometers) installed at two different

the relative magnitude of the residual variance compared to the ob-
served data variance:

∑n
i¼1 Oi � Sið Þ2

35V. Filipović et al. / Geoderma 268 (2016) 29–40
depths within these horizons. The initial condition for water was
set as hydrostatic pressure head distribution with −100 cm at the
bottom of the soil profile. Initial isoproturon concentration in the
whole soil profile was set to zero corresponding to the measured ly-
simeter leachate concentration before the start of the study. An at-
mospheric boundary condition was selected at the top of the soil
profile and a free drainage boundary condition was selected at the
bottom. A seepage face boundary condition with a suction of
−70 cmwas applied at the lysimeter plate. Third type solute bound-
ary conditions were selected for isoproturon transport at top, bottom
and lysimeter plate boundaries. More details about the modeling
method can be found in Filipović et al. (2014). Initial soil hydraulic
parameter values were defined using pressure plate and tension
infiltrometer data (see Section 2.2) for water transport, and using
sorption and degradation data (see Section 2.3) for isoproturon
transport. Soil hydraulic parameters were manually calibrated on
water content, matric potential and lysimeter outflow data for a lim-
ited period of time (from 24 January to 27 October 2008).

To evaluate the numerical simulations, coefficient of determination
(R2) and model efficiency coefficient (E) (Nash and Sutcliffe, 1970)
were calculated. Themodel efficiency coefficient (E, Eq. (9)) determines
Fig. 4. a) Observed IPUmass leached through the lysimeter (symbols) with preferential flow ev
mass during the 2007–2010 period for plots receiving a sewage sludge and green waste co-c
compost addition (CONT). IPU applications are indicated as triangles on the time axis.
E ¼ 1�
∑n

i¼1 Oi � Oð Þ2
ð9Þ

where Oi and Si represent the observed and simulated values, respec-
tively, O represent the average of observed values, and n is the number
of observed/simulated points.

The coefficient of efficiency varies between−∞ and 1, where 1 indi-
cates a perfect model.

3. Results and discussion

3.1. Water flow

Calibration of soil hydraulic parameters was performed after an ini-
tial simulation run usingmeasured soil hydraulic parameters (θs, θr,α, n,
Ks) did not reproduce any outflow. The largemeasured values of the sat-
urated hydraulic conductivities of the upper soil layers, especially the E
horizon, caused water to percolate down to the deeper soil instead of
going into the lysimeter plates. The largest differences between the ini-
tially measured parameters (not shown here) and the calibrated ones
were found for the Ks, α, and n parameters of each structure/layer.
After calibration, the interfurrows had the largest Ks values (Table 3).
ents (circled) during 2006/07, and b) observed (symbols) vs simulated (line) IPU leached
ompost (SGW) or a municipal solid waste compost (MSW) and the control plot without

Image of Fig. 4


Compost application increased organic C contents in both compost
amendment plots compared to the control plot (Table 3). This is visible
in the whole tilled layer where increased values are found for all three
structure types (Γ, Δ, and IF). The largest organic C contents were ob-

water outflow for the SGW (E = 0.79) and MSW plots (E = 0.88)
than for the CONT plot (E= 0.13) over the 2008 calibration period. Ob-
served volumetric water contents were fitted satisfactorily (ESGW =
0.50 to 0.98, EMSW = 0.15 to 0.86, ECONT = 0.62 to 0.93, depending on
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served in the interfurrows of the plots that received compost. The differ-
ence in organic C content between the IF and the Γ andΔ structures was
smaller in the control plot because the IF did not contain any compost
material. Lower bulk density was measured in all three plots in the
interfurrow zones. The largest simulated water content values were
found in the interfurrow zones for all three plots during the whole
6 year period, which could be related to the high organicmatter content
of these zoneswhich caused increasedwater retention. A detailed study
of the effect of compost application on soil organic C content and bulk
density can be found in Schneider et al. (2009) and Houot et al.
(2009). The calibrated model showed better agreement in cumulative
Fig. 5. Isoproturon (a) and bromide (b) concentration distribution andwater velocity vectors (c)
in the control plot without compost addition (CONT).
the soil layer) as well as pressure heads (ESGW = 0.06 to 0.87,
EMSW=0.0012 to 0.90, ECONT=0.17 to 0.90).Water flowwas then sim-
ulated from the 1st of November 2004 until the 19th of October 2010
using the sets of calibrated soil hydraulic parameters derived from the
9-month calibration period (Table 3). After small LAI modifications on
the 2006/07 wheat and 2007 barley crops (Filipović et al., 2014),
water flow simulations showed very good agreement with the mea-
sured water outflow data in all three plots with model efficiency values
of 0.99 (Fig. 3). Similar cumulative water outflows were found in the
SGW and MSW plots (979 mm and 962 mm), while the CONT plot
showed a larger value (1388mm). On the long term (6 years), compost
in the tilled layer on the 27th ofMarch 2008 (401days after the second IPU/Br application)

Image of Fig. 5


application tended to limit downward water flow. This result can be re-
lated to the fact that compost application decreases hydraulic conduc-
tivity at high pressure heads in the tilled layer (Schneider et al., 2009).
The IF Ks in the CONT plot was approximately 4.5 times higher than in

3.2. Isoproturon fate modeling

Measurements of IPU leaching through the lysimeter plates showed
differences between the three selected plots. However, due to the lack
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the compost-amended plots. Water velocity maps showed large differ-
ences between soil zones. On the 7th of October 2007 (after 33.2 mm
of rainfall within the previous 48 h), the maximum water velocity in
the SGW plot was 8 cm day−1 in the IFs compared to 2 cm day−1 in
the Γ zones. In the MSW plot, maximum water velocity was
7.5 cm day−1 in the IFs compared to 1.4 cm day−1 in the Γ zones, and
in the CONT plot maximum water velocity was 10 cm day−1 in the IFs
compared to 3 cm day−1 in the Γ zones. Water content simulations
also showed good agreement with measured values for the 2004–
2010 period, although the quality of the agreement varied among soil
layers (ESGW = 0.23–0.92, EMSW = 0.18–0.89, ECONT = 0.42–0.89)
which could be a result of the variability in time of the soil hydraulic
properties (Alletto et al., 2015). However, HYDRUS-2D was able to
model water flow with high accuracy during a 6-year period from
2004 to 2010 in the SGW, MSW and CONT plots after calibration on a
9-month period only, without considering any change in the structure
of the plowed layer or in its hydraulic properties with time.
Fig. 6. Observed (symbols) vs simulated (line) IPU leached mass during the 2004–2010 per
degradation rate for plots receiving a sewage sludge co-compost and green waste (SGW) or
(CONT). IPU applications are indicated as triangles on the time axis.
of replicated experimental plots because of their cost there is a possibil-
ity that the observed differences might be driven by differences in the
studied plots althoughbasic soil characteristicswere not found tobedif-
ferent among the plots (Table 1, Fig. 1b). The cumulated IPU mass col-
lected with the lysimeter plates during the 2004–2010 period was
0.663, 0.245, and 21.31 μg for the SGW, MSW, and CONT plots, respec-
tively. These differences suggest that compost amendments can limit
pesticide mobility in soils, which is consistent with the higher IPU sorp-
tion coefficient and degradation rate found in the compost-amended
plots (Table 3). There was evidence of preferential flow events in the
MSW plot during 2006 and in the CONT plot during 2006 and 2007,
but not in the SGWplot (Fig. 4a). Three IPU applications have been per-
formed during the studied period, on March 23, 2006, February 20,
2007, and March 31, 2009. In the MSW plot, an IPU leaching of
0.095 μg (38% of total IPU leached) was measured 5 days after the first
IPU application (Fig. 4a). In the CONT plot, 17.5 μg of IPU was leached
(82% of total IPU leached) on the same date corresponding to a
iod excluding preferential flow events and assuming temporal variation of isoproturon
a municipal solid waste compost (MSW) and the control plot without compost addition

Image of Fig. 6


37 mm water outflow promoted by high intensity rainfall events after
the first application. On April 4th 2006, an IPU mass of 0.86 μg was
also leached (4% of total IPU leached) in the CONT plot. Finally, 2.73 μg
(13% of total IPU leached) was measured in the leachate 13 days after

causing low or no IPU mass in the outflow and/or a delay due to IPU
sorption. Fig. 5 presents the concentration distribution of IPU and Br in
the tilled layer along with the velocity vector map in the CONT plot.
The difference in concentration pattern and magnitude is a direct result
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the second IPU application in the CONT plot. The large values of IPU
mass leached short after application suggests preferential flow events.
These IPU leaching events could not be reproduced by HYDRUS-2D
(Fig. 4b) based on the optimized hydraulic parameters and the
laboratory-measured sorption and degradation parameters. Additional
simulations were carried out using bromide (Br) instead of IPU (no
sorption or degradation was considered). These simulations displayed
peak positions of Br leaching just after its application for the MSW and
CONT plots during the 2006–07 period. However the cumulated Br
mass leached after the first application on April 5, 2006 was 0.2% of
total simulated Br leached (94 μg and 130 μg in the CONT and MSW
plots respectively), which remained very small compared to the per-
centage of measured IPU mass leached in both plots (86 and 38% for
CONT and MSW respectively). The amount of Br leached and the time
of leaching simulated right after the first and second applications sug-
gested that the proposed 2D model parameterization with a detailed
spatial description of soil heterogeneity was able to reproduce rapid
flow through the IF zones only partially. Additional macropore prefer-
ential flow is thus suggested to explain the high measured IPU mass
leached in the three events (Fig. 4a). The simulated Br (not shown)
and IPU concentration breakthrough curves had clearly different
leaching times with IPU delayed compared to Br peaks. This difference
may be explained by the sorption coefficients and degradation rates
assigned to the different soil zones, especially for the IF which had
large values of IPU degradation rate and sorption coefficient thus
Fig. 7. Isoproturon concentration distribution in the tilled layer on the 26th of August 2007 (1
green waste (SGW) or a municipal solid waste compost (MSW) and the control plot without c
of the sorption and degradation processes applying to IPU. The snapshot
was selected on a day with 13.2 mm of rainfall (27th of March 2008),
which generated a 10.3 mm simulated water outflow and resulted in
high velocity flows. Velocity vectors indicate that most of the high
flow values occurred in the IF zones, and that Δ clods were either
bypassed or that they directed the flow towards more permeable IF
zones (compare Fig. 5 to Fig. 2). These results supported the observation
that IF zones played a significant role in IPU transport during high inten-
sity rainfalls following application.

The experimental degradation rates from Vieublé-Gonod et al.
(2009) were optimized by a multiplication factor of 10, 2.4 and 4 for
the SGW, MSW and CONT plot, respectively, to be able to reasonably
fit observed values when no preferential flow events occurred
(Fig. 4b). This was done having in mind the column study experiments
performed on the same plots (Pot et al., 2011), which showed shorter
half-lives (1.1 to 1.7 days) than the ones calculated from IPUmineraliza-
tion rates (Vieublé-Gonod et al., 2009). Degradation rate was found to
be a highly sensitive parameter that has a major effect on cumulative
IPU loss (Filipović et al., 2014). The model could not reproduce the IPU
losses measured at the end of the simulation period (2009/2010,
Fig. 4b). To be able to fit the observed data points during this period, ad-
ditional simulations (Fig. 6) were performed assuming temporal varia-
tion in IPU degradation rate related to IPU application history during
the whole simulation period. For herbicides such as isoproturon
(Hussain et al., 2013) or atrazine (Cheyns et al., 2012), it has been
86 days after the second application) for plots receiving a sewage sludge co-compost and
ompost addition (CONT).

Image of Fig. 7


shown that the degradation rate fluctuates with the application fre-
quency and was related to the survival of degrader populations in the
soil between two applications. Therefore, we made the assumption
that the two repeated IPU applications of 2006 and 2007 induced an in-

conductivity. Both SGW and MSW plots showed increased sorption
and degradation of IPU which prevented IPU leaching into the lysimeter
plates. Application of these two compost types to an agricultural field
showed benefits in terms of preventing large preferential IPU leaching.

tems financed by the European Commission FP7 (contract 226536), the

on pesticide fate in soils. A review. Agron. Sustain. Dev. 30, 367–400. http://dx.doi.
org/10.1051/agro/2009018.
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creased degradation rate during that particular period. On the contrary,
the degradation rates were assumed to be lower for the 2009/2010 pe-
riod due to the long lag phase from the former application event
(2 years). Lowering degradation rates for the last IPU application (com-
pared to the 1st and 2nd IPU applications) contributed to enhance
leaching events for this final period. These simulations produced a bet-
ter fit of the model output and produced significant improvement in
model efficiency (Fig. 6). It suggests that temporal variability of pesti-
cide degradation also should be considered in long-termmodeling stud-
ies of pesticide fate in soil.

IPU concentration distribution in the tilled layer showed large spatial
variations due to the presence of the different soil zones (Fig. 7). The
largest concentrations were associated mostly with non-compacted
soil zones in all three plots (Fig. 2), while the compacted soil zones
showed smaller concentrations due to their low permeability.
Interfurrows had small concentrations due to large (optimized) values
of IPU degradation rate (SGWdegIF = 0.673; MSWdegIF = 0.374;
CONTdegIF = 0.274 day−1). There were also large differences between
the three plots. At the selected time (26th of August 2007) represented
in Fig. 7, most of the IPU was already degraded in the SGW plot com-
pared to theMSWplot inwhichhigh concentrationswere still observed.
Increasing the values of the degradation rate, i.e. multiplying it with a
factor of 10 in SGW compared to a factor of 2.4 in MSW, contributed
to a higher final global degradation rate for SGW compared to MSW
plot. Degradation and sorption have a large influence on IPU fate. Both
processes were enhanced by compost application especially in the
interfurrow zones (Table 3). On the 6-year duration of the experiment,
compost addition reduced IPU leaching. Besides the beneficial role of re-
ducing IPU leaching, the two selected compost types showed multiple
additional benefits: increased soil organic C, increased crop yields, in-
creased N availability and soil structure stability (Houot et al., 2005).
However, the fate of the trace metals eventually contained in the com-
posts remains an open question.

4. Conclusions

Two types of compost, a municipal solid waste compost (MSW) and a
co-compost of sewage sludge and green wastes (SGW) have been
confronted to a control treatment (CONT) in terms of cumulative field
water outflow and isoproturon loss through wick lysimeters. Influence
of heterogeneities in soil structure due to compost application and soil till-
age on water flow and isoproturon dynamics was evaluated using
HYDRUS-2D. Measured cumulative lysimeter outflow showed the largest
value for the CONTplot (1388mm) compared to theMSW(962mm) and
SGW(979mm)plots. Themodelwas able to describe cumulative outflow
with high accuracy for all three plots after the calibration. Measured
isoproturon loss had similar behavior in the two amended plots SGW
(0.663 μg) andMSW(0.245 μg) plots, while the CONTplot had the largest
isoproturon leaching (21.31 μg) for thewhole 2004–2010 period. Howev-
er, attributing these differences to compost applications needs caution be-
cause of the lack of replication of the experimental plots although the
analyses of the basic soil properties did not reveal any difference between
them. The timing of the preferential flow events could be simulated, but
the corresponding leached IPU masses were not in the same order of
magnitude as measured data. Additionally, temporal variation of the IPU
degradation rate was assumed to explain the leaching events observed
at the end of the monitoring period. Our findings demonstrate that the
large spatial and temporal variations in degradation rate due to compost
application and soil tillage but also to the frequency of herbicide applica-
tion plays a major role in the dynamics of IPU in soil. Water and IPU
fluxeswere associatedmostlywith non-compacted soil and interfurrows
while compacted clods were bypassed because of their low hydraulic
This study showed that pesticide dynamics in a heterogeneous soil
profile remains a modeling challenge because of the large number of
interacting processes that have to be accounted for and because of
their large temporal and spatial variability.
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