R. E. Keeling, A. Körtzinger, and N. Gruber, Ocean Deoxygenation in a Warming World, Annual Review of Marine Science, vol.2, issue.1, pp.199-229, 2010.
DOI : 10.1146/annurev.marine.010908.163855

H. C. Jenkyns, Geochemistry of oceanic anoxic events, Geochemistry, Geophysics, Geosystems, vol.2, issue.3, 2010.
DOI : 10.1038/ngeo578

K. M. Meyer and L. Kump, Oceanic Euxinia in Earth History: Causes and Consequences, Annual Review of Earth and Planetary Sciences, vol.36, issue.1, pp.251-288, 2008.
DOI : 10.1146/annurev.earth.36.031207.124256

F. M. Monteiro, R. D. Pancost, A. Ridgwell, and Y. Donnadieu, Nutrients as the dominant control on the spread of anoxia and euxinia across the DRAKE 408

K. B. Föllmi, Early Cretaceous life, climate and anoxia, Cretaceous Research, vol.35, pp.230-257, 2012.
DOI : 10.1016/j.cretres.2011.12.005

O. Friedrich, R. D. Norris, and J. Erbacher, Evolution of middle to Late Cretaceous oceans--A 55 m.y. record of Earth's temperature and carbon cycle, Geology, vol.40, issue.2, pp.107-110, 2011.
DOI : 10.1130/G32701.1

C. J. Poulsen, A. S. Gendaszek, and R. L. Jacob, Did the rifting of the Atlantic Ocean cause the Cretaceous thermal maximum? Geology 31, pp.115-118, 2003.

E. Pucéat, Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels, Paleoceanography, vol.18, pp.10-1029, 2003.

J. O. Sewall, Climate model boundary conditions for four Cretaceous time slices, Climate of the Past, vol.3, issue.4, pp.647-657, 2007.
DOI : 10.5194/cp-3-647-2007

URL : https://hal.archives-ouvertes.fr/hal-00298187

S. A. Robinson, D. P. Murphy, D. Vance, and D. J. Thomas, Formation of "Southern Component Water" in the Late Cretaceous: Evidence from Nd-isotopes, Geology, vol.38, issue.10, pp.871-874, 2010.
DOI : 10.1130/G31165.1

S. A. Robinson and D. Vance, Widespread and synchronous change in deepocean circulation in the North and South Atlantic during the Late Cretaceous, Paleoceanography, vol.27, pp.10-10292011, 2012.

S. Voigt, Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse, Earth and Planetary Science Letters, vol.369, issue.370, pp.369-370, 2013.
DOI : 10.1016/j.epsl.2013.03.019

D. P. Murphy and D. J. Thomas, Cretaceous deep-water formation in the Indian sector of the Southern Ocean, Paleoceanography, vol.23, issue.2, p.1211, 2012.
DOI : 10.1029/2011PA002198

E. E. Martin, K. G. Macleod, A. J. Berrocoso, and E. Bourbon, Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes, Earth and Planetary Science Letters, vol.327, issue.328, pp.111-120, 2012.
DOI : 10.1016/j.epsl.2012.01.037

K. G. Macleod, C. I. Londono, E. E. Martin, A. J. Berrocoso, and C. Basak, Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval, Nature Geoscience, vol.4, issue.11, pp.779-782, 2011.
DOI : 10.1029/2007PA001545

K. G. Macleod, E. E. Martin, and S. W. Blair, Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic, Geology, vol.36, issue.10, pp.811-814, 2008.
DOI : 10.1130/G24999A.1

O. Friedrich, J. Erbacher, K. Moriya, P. A. Wilson, and H. Kuhnert, Warm saline intermediate waters in the Cretaceous tropical Atlantic??Ocean, Nature Geoscience, vol.29, issue.7, pp.453-457, 2008.
DOI : 10.1029/98PA00070

A. M. Hague, Convection of North Pacific deep water during the early Cenozoic, Geology, vol.40, issue.6, pp.527-530, 2012.
DOI : 10.1130/G32886.1

C. J. Poulsen, D. Seidov, E. J. Barron, and W. Peterson, The impact of paleogeographic evolution on the surface oceanic circulation and the marine environment within the Mid-Cretaceous tethys, Paleoceanography, vol.10, issue.32, pp.546-559, 1998.
DOI : 10.1029/98PA01789

B. L. Otto-bliesner, E. C. Brady, and C. Shields, Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model, Journal of Geophysical Research, vol.137, issue.D2, 2002.
DOI : 10.1029/2001JD000821

J. Trabucho-alexandre, The mide-Cretaceous North Atlantic nutrient trap: Black shales and OAEs, 2010.

C. J. Poulsen, E. J. Barron, M. A. Arthur, and W. H. Peterson, forcings, Paleoceanography, vol.26, issue.6, pp.576-592, 2001.
DOI : 10.1029/2000PA000579

E. C. Brady, R. Deconto, and S. L. Thompson, Deep water formation and poleward ocean heat transport in the warm climate extreme of the Cretaceous (80 Ma), Geophysical Research Letters, vol.10, issue.22, pp.4205-4208, 1998.
DOI : 10.1029/1998GL900072

D. J. Lunt, CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization, Geology, vol.38, issue.10, pp.875-878, 2010.
DOI : 10.1130/G31184.1

C. J. Poulsen and J. Zhou, Sensitivity of Arctic Climate Variability to Mean State: Insights from the Cretaceous, Journal of Climate, vol.26, issue.18, pp.7003-7022, 2013.
DOI : 10.1175/JCLI-D-12-00825.1

S. Flögel, Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2), Earth and Planetary Science Letters, vol.305, issue.3-4, pp.371-384, 2011.
DOI : 10.1016/j.epsl.2011.03.018

D. J. Lunt, A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations: EoMIP. Clim. Past Discuss, pp.1229-1273, 2012.

M. Frank, Radiogenic isotopes: Tracers of past ocean circulation and erosional input, Reviews of Geophysics, vol.109, issue.2, pp.10-1029, 2002.
DOI : 10.1029/2000RG000094

S. L. Goldstein and S. B. Jacobsen, The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater, Chemical Geology: Isotope Geoscience section, vol.66, issue.3-4, pp.245-272, 1987.
DOI : 10.1016/0168-9622(87)90045-5

D. J. Thomas, Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval, Nature, vol.83, issue.6995, pp.65-68, 2004.
DOI : 10.1016/S0009-2541(00)00198-4

D. P. Murphy and D. J. Thomas, The evolution of Late Cretaceous deep-ocean circulation in the Atlantic basins: Neodymium isotope evidence from South Atlantic drill sites for tectonic controls, Geochemistry, Geophysics, Geosystems, vol.26, issue.1, pp.1002-2013, 2013.
DOI : 10.1002/2013GC004889

C. Jeandel, T. Arsouze, F. Lacan, P. Téchiné, and J. Dutay, Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: A compilation, with an emphasis on the margins, Chemical Geology, vol.239, issue.1-2, pp.156-164, 2007.
DOI : 10.1016/j.chemgeo.2006.11.013

URL : https://hal.archives-ouvertes.fr/hal-00280191

F. Lacan and C. Jeandel, Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water, Geochemistry, Geophysics, Geosystems, vol.16, issue.C8, 2005.
DOI : 10.1029/2005GC000956

URL : https://hal.archives-ouvertes.fr/hal-00280188

D. Vance and K. Burton, Neodymium isotopes in planktonic foraminifera: a record of the response of continental weathering and ocean circulation rates to climate change, Earth and Planetary Science Letters, vol.173, issue.4, pp.365-379, 1999.
DOI : 10.1016/S0012-821X(99)00244-7

M. Roy, T. Van-de-flierdt, S. R. Hemming, and S. L. Goldstein, 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the southern ocean, Chemical Geology, vol.244, issue.3-4, pp.507-519, 2007.
DOI : 10.1016/j.chemgeo.2007.07.017

I. W. Dalziel, Antarctica; A Tale of Two Supercontinents?, Annual Review of Earth and Planetary Sciences, vol.20, issue.1, pp.501-526, 1992.
DOI : 10.1146/annurev.ea.20.050192.002441

R. L. Larson and W. Pitman, World-Wide Correlation of Mesozoic Magnetic Anomalies, and Its Implications, Geological Society of America Bulletin, vol.83, issue.12, pp.3645-3662, 1972.
DOI : 10.1130/0016-7606(1972)83[3645:WCOMMA]2.0.CO;2

M. Moiroud, Evolution of the neodymium isotopic signature of neritic seawater on a northwestern Pacific margin: new constrains on possible end-members for the composition of deep-water masses in the Late Cretaceous ocean, Chemical Geology, vol.356, pp.160-170, 2013.
DOI : 10.1016/j.chemgeo.2013.08.008

URL : https://hal.archives-ouvertes.fr/hal-00859600

M. Moiroud, Evolution of neodymium isotopic signature of seawater during the Late Cretaceous: Implications for intermediate and deep circulation, Gondwana Research, vol.36, p.5, 2015.
DOI : 10.1016/j.gr.2015.08.005

URL : https://hal.archives-ouvertes.fr/hal-01356761

P. Carter, D. Vance, C. D. Hillenbrand, J. A. Smith, and D. R. Shoosmith, The neodymium isotopic composition of waters masses in the eastern Pacific sector of the Southern Ocean, Geochimica et Cosmochimica Acta, vol.79, pp.41-59, 2012.
DOI : 10.1016/j.gca.2011.11.034

B. Vrielynck and P. Bouysse, The Changing Face of the Earth: The Breakup of Pangea and Continental Drift Over the Past 250 Million Years in Ten Steps, 2003.

G. Giunta, E. Marroni, E. Padoa, and L. Pandolfi, in The Circum-Gulf of Mexico and the Carribean: Hydrocarbon habitats, basin formation, and plate tectonics, pp.104-125, 2003.

M. Itturalde-vinent, in From Greenhouse to Icehouse: The Marine Eocene- Oligocene Transition, pp.386-396, 2003.

P. Sepulchre, Consequences of shoaling of the Central American Seaway determined from modeling Nd isotopes, Paleoceanography, vol.317, issue.318, pp.10-1002, 2014.
DOI : 10.1029/2005PA001149

URL : https://hal.archives-ouvertes.fr/hal-01138831

A. S. Von-der-heydt and H. A. Dijkstra, Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene, Paleoceanography, vol.292, issue.D2, pp.10-1029, 2006.
DOI : 10.1029/2005PA001149

D. Soudry, C. R. Glenn, Y. Nathan, I. Segal, and D. L. Vonderhaar, Evolution of Tethyan phosphogenesis along the northern edges of the Arabian???African shield during the Cretaceous???Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation, Earth-Science Reviews, vol.78, issue.1-2, pp.27-57, 2006.
DOI : 10.1016/j.earscirev.2006.03.005

A. W. Omta and H. A. Dijkstra, A physical mechanism for the Atlantic???Pacific flow reversal in the early Miocene, Global and Planetary Change, vol.36, issue.4, pp.265-276, 2003.
DOI : 10.1016/S0921-8181(02)00221-7

J. C. Zachos, G. R. Dickens, and R. E. Zeebe, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, vol.314, issue.7176, pp.279-283, 2008.
DOI : 10.1038/nature06588

M. L. Tejada, Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event, Geology, vol.37, issue.9, pp.855-858, 2009.
DOI : 10.1130/G25763A.1

S. C. Turgeon and R. A. Creaser, Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode, Nature, vol.200, issue.7202, pp.323-327, 2008.
DOI : 10.1038/nature07076

R. Baroni, I. Topper, R. P. Van-helmond, N. A. Brinkhuis, H. Slomp et al., Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input, Biogeosciences, vol.11, issue.4, pp.977-993, 2014.
DOI : 10.5194/bg-11-977-2014-supplement

K. Ozaki, S. Tajima, and E. Tajika, Conditions required for oceanic anoxia/euxinia: Constraints from a one-dimensional ocean biogeochemical cycle model, Earth and Planetary Science Letters, vol.304, issue.1-2, pp.270-279, 2011.
DOI : 10.1016/j.epsl.2011.02.011

R. L. Jacob, Low Frequency Variability in a Simulated Atmosphere Ocean System, 1997.

C. J. Poulsen and R. L. Jacob, Factors that inhibit snowball Earth simulation, Paleoceanography, vol.43, issue.11, pp.10-1029, 2004.
DOI : 10.1029/2004PA001056

V. Lefebvre, Y. Donnadieu, P. Sepulchre, D. Swingedouw, and . Zhang, Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current, Paleoceanography, vol.3, issue.5, pp.10-1029, 2012.
DOI : 10.1126/science.1059412

C. Vérard, K. Flores, and G. Stampfli, Geodynamic reconstructions of the South America???Antarctica plate system, Journal of Geodynamics, vol.53, pp.43-60, 2012.
DOI : 10.1016/j.jog.2011.07.007

Y. Lagabrielle, Y. Godderis, Y. Donnadieu, J. Malavieille, and M. Suarez, The tectonic history of Drake Passage and its possible impacts on global climate, Earth and Planetary Science Letters, vol.279, issue.3-4, pp.197-211, 2009.
DOI : 10.1016/j.epsl.2008.12.037

URL : https://hal.archives-ouvertes.fr/hal-00413525

A. Maldonado, A model of oceanic development by ridge jumping: Opening of the Scotia Sea, Global and Planetary Change, vol.123, pp.152-173, 2014.
DOI : 10.1016/j.gloplacha.2014.06.010

Y. M. Martos, M. Catalan, J. Galindo-zaldivar, A. Maldonado, and F. Bohoyo, Insights about the structure and evolution of the Scotia Arc from a new magnetic data compilation, Global and Planetary Change, vol.123, pp.239-248, 2014.
DOI : 10.1016/j.gloplacha.2014.07.022

G. Eagles, The age and origin of the central Scotia Sea, Geophysical Journal International, vol.183, issue.2, pp.587-600, 2010.
DOI : 10.1111/j.1365-246X.2010.04781.x

D. L. Royer, M. Pagani, and D. J. Beerling, Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic, Geobiology, vol.2, issue.S1, pp.298-310, 2012.
DOI : 10.1111/j.1472-4669.2012.00320.x

Y. Donnadieu, Y. Godderis, and N. Bouttes, Exploring the climatic impact of the continental vegetation on the Mezosoic atmospheric CO<sub>2</sub> and climate history, Climate of the Past, vol.5, issue.1, pp.85-96, 2009.
DOI : 10.5194/cp-5-85-2009

B. J. Fletcher, D. J. Beerling, S. J. Brentnall, and D. L. Royer, Fossil bryophytes as recorders of ancient CO2 levels: experimental evidence and a Cretaceous case study, Global Biogeochem. Cycles, vol.19, pp.10-1029, 2005.

P. J. Franks, D. L. Royer, K. R. Johnson, I. Miller, and B. J. Enquist, concentration for the Phanerozoic, Geophysical Research Letters, vol.327, issue.4, pp.4685-4694, 2014.
DOI : 10.1029/2003PA000937

M. Haworth, S. P. Hesselbo, J. C. Mcelwain, S. A. Robinson, and J. W. Brunt, Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae), Geology, vol.33, issue.9, pp.749-752, 2005.
DOI : 10.1130/G21736.1

M. G. Passalia, Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.273, issue.1-2, pp.17-24, 2009.
DOI : 10.1016/j.palaeo.2008.11.010