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Abstract The numerical investigation of wave propagation in the asymptotic domain
of Kerr spacetime has only recently been possible thanks to the construction of suit-
able hyperboloidal coordinates. The asymptotics revealed an apparent puzzle in the
decay rates of scalar fields: the late-time rates seemed to depend on whether finite
distance observers are in the strong field domain or far away from the rotating black
hole, an apparent phenomenon dubbed ‘splitting.’ We discuss far-field ‘splitting’ in
the full field and near-horizon ‘splitting’ in certain projected modes using horizon-
penetrating, hyperboloidal coordinates. For either case we propose an explanation
to the cause of the ‘splitting’ behavior, and we determine uniquely decay rates that
previous studies found to be ambiguous or immeasurable. The far-field ‘splitting’ is
explained by competition between projected modes. The near-horizon ‘splitting’ is
due to excitation of lower multipole modes that back excite the multipole mode for
which ‘splitting’ is observed. In both cases ‘splitting’ is an intermediate effect, such
that asymptotically in time strong field rates are valid at all finite distances. At any
finite time, however, there are three domains with different decay rates whose bound-
aries move outwards during evolution. We then propose a formula for the decay rate
of tails that takes into account the inter–mode excitation effect that we study.
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1 Introduction

The response of a black hole to generic perturbations has been an active topic of inter-
est since the study of Regge and Wheeler in 1957 [1]. It is now well-known that black
hole perturbations satisfy wave equations. Generic solutions to such wave equations
consist of three stages: an initial transient during which the evolution depends on
details of initial data; exponentially decaying oscillations called quasinormal mode
ringing; and a late-time polynomial decay dubbed the Price tail. In this paper, we
focus on the late-time behavior during which the field decays as tn, where t denotes
time measured by stationary observers and n denotes the decay rate ([2]), and specif-
ically distinguish between intermediate albeit late time, and asymptotically late–time
behaviors.

The historical analyses of the Kerr decay rates are based on asymptotic expan-
sion methods, and have also been studied extensively. Theoretical work has pro-
vided the general expected decay rates of perturbations in Kerr spacetime [3,4,5,
6,7]. These rates have also been computed numerically [8,9,10,11,12]. Today, our
understanding of late-time Kerr decay rates of spherical harmonic Y`m modes of the
scalar field includes as an essential element the distinction between initial modes and
projected modes generated by coupling. Denoting the initial mode number by `′ and
the projected mode number by `, and focusing on azimuthal (m = 0) modes, the
asymptotic finite-distance decay rates of projected modes was found to be given by
nR = −(`′ + `+ 1) for ` < `′ and nR = −(`′ + `+ 3) for ` ≥ `′ where R is a finite
value for the Boyer–Lindquist radial coordinate. Decay rates along null infinity differ
from those at finite distances [13]. The rates along null infinity of Kerr spacetime
predicted by Hod ([5]) nI +

= −(` + 2) for ` ≥ `′ and nI +

= −`′ for ` ≤ `′ − 2.
In summary:

nR =

{
−(`′ + `+ 1) for ` < `′ ,
−(`′ + `+ 3) for ` ≥ `′ nI +

=

{
−`′ for ` ≤ `′ − 2 ,
−(`+ 2) for ` ≥ `′

(1)
We revisit this formula in Section 3 with particular focus on the cases `′ = `, and our
results suggest to us that Eq. (1) needs to be revised to include high–order couplings
that are not captured in Eq. (1). The spherical harmonic modes (`,m) in this work are
the same as those in earlier works that use Boyer–Lindquist coordinates [11,12,14]
and other coordinates in the same equivalence-class [15,16]. Thus, the same late-time
decay rates are observed for each mode.

Until recently, the numerical study of Kerr tails in the literature has exclusively fo-
cused on finite distance rates even though the null infinity rates are arguably more in-
teresting for observers at astronomical distances ([17,18]). Null infinity decay rates in
Schwarzschild spacetime have been studied with the characteristic method as early as
1994 ([13]). The characteristic method, however, is difficult to extend to Kerr space-
time ([19,20,21]). It is due to this technical obstacle that Kerr tails in the asymptotic
domain have not been studied numerically.

This problem has recently been resolved with the general construction of hy-
perboloidal coordinates for asymptotically flat black hole spacetimes ([22]). These
coordinates provide numerical access to the asymptotic domain and resolve the outer
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boundary problem in an efficient way. Recent hyperboloidal evolutions ([14,15,16,
23]) confirmed the theoretically predicted decay rates of projected modes at null in-
finity.

The hyperboloidal evolutions revealed an apparently puzzling behavior for the
rates in the asymptotic spatial domain. The rates at finite distances far away from
the black hole and at finite times appeared to deviate from the rates both near the
black hole (including the event horizon), and along null infinity. This observation
requires some explanation. In Schwarzschild spacetime, the local (in time) decay
rates at finite distances depend on the distance to the black hole. For example, the
dominant `′ = ` = 0 mode decays along null infinity with a power of −2, and at
finite distances with −3, asymptotically in time. Therefore, at any finite time, one
expects that the finite distance rates vary monotonously between −2 and −3. This
expectation is in accordance with theoretical predictions (see Eq. (5) and [24,25])
and is confirmed by numerical studies ([17,18]).

A similar distance-dependence for the full field is observed in Kerr spacetime for
`′ < 4, but for initial data with `′ = 4 an anomalous behavior appears. Instead of
a monotonous transition between the null infinity rate of −4 and the finite distance
rate of −5, there are apparently far away observers for whom the decay rate seems to
approach a value smaller than −5 ([14]). A more detailed study of tail decay rates by
Rácz and Tóth in [15] provided independent evidence for such anomalous behavior.
They suggested that certain projected modes have different local decay rates close to
the horizon and far away from it, which they referred to as ‘splitting.’ They also found
that the ‘splitting’ depends upon the value of the azimuthal mode number m. Numer-
ical computations in 3D by Jasiulek showed that ‘splitting’ is robust ([16]). These
studies pointed out that longer time evolutions are needed, suggesting that ‘splitting’
may not be an asymptotic but rather an intermediate phenomenon. Rácz and Tóth in
[15] referred to certain decay rates as “ambiguous,” indicating that they were unable,
because of the ‘splitting’ phenomenon they observed, to determine uniquely the value
of the decay rate n. More recently, Harms, Bernuzzi, and Bruegmann [26] revisited
this question for scalar, electromagnetic, and gravitational perturbations and reported
on similar ‘splitting’ phenomena. They determined some of the rates that [15] listed
as “ambiguous” but did not provide rates for all of them.

In this paper, we perform careful evolutions that are nearly an order-of-magnitude
longer than previous works (on the order of 104M where M denotes the mass of the
Kerr black hole), to study the two types of ‘splitting’ discussed in the literature: ‘split-
ting’ in the full field ([14]) and ‘splitting’ in certain projected modes ([15,16,26]).
Our long evolutions, enabled by the advances in numerical technology, allow us to
explain the origin of the two kinds of ‘splitting’ phenomena, conclude that ‘splitting’
does not exist in the asymptotically late–time decay rate but only as an intermedi-
ate feature of the fields evolution, and also determine uniquely all the decay rates
that have been found previously to be ambiguous or immeasurable. We emphasize
that our evolutions were just as long as needed to determine the new results: shorter
evolutions might indeed lead one to conclude that some decay rates are ambiguous

We show that the two ‘splitting’ phenomena arise from different mechanisms and
argue that, asymptotically in time, the strong field decay rates are valid at all finite
distances, such that there is no ‘splitting’ in the asymptotic regime. The full–field
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‘splitting’ has been explained before, yet we discuss it here again for the complete-
ness of the presentation. ‘Splitting’ in the full field is nearly–trivially explained as
a competition between the constituent multipole modes, such that multipole modes
which dominate at early times become eventually sub-dominant. ‘Splitting’ in pro-
jected modes involves a more intricate mechanism: it appears as an intermediate be-
havior of decay rates from excitation of lower multipole modes that back excite the
higher mode in question. Both types of ‘splitting’ disappear asymptotically. ‘Split-
ting’ in the projected modes as an intermediate phenomenon is still interesting and
important though, as at any given late time there are three domains observed with
different local decay rates for certain projected modes. The boundaries between these
domains move to larger distances during evolution.

Our study requires integration into very late times. The technological advances
that allowed for such long evolutions may be relevant also for other interesting prob-
lems. For example, the late-time decay of scalar fields is related to the violation of the
Huygens’ principle in black hole spacetimes and therefore carries theoretical interest.
Its presence indicates that waves not only propagate on the light cone of the initial
perturbation, but also within the light cone. Such propagation is partly responsible for
the late-time polynomial decay, also called the tail. The tail piece of the solution is
very small, and unlikely to be directly detectable. One may therefore argue that it is
not interesting from an astrophysical point of view. However, there are astrophysical
problems where the accurate computation of the tail decay is important.

One specific astrophysical problem where one needs to numerically compute the
late-time tail solution is related to the inspiral of a small black hole into a supermas-
sive one. The self-force that acts on such a small black hole can be described by a
time integral into the infinite past of the retarded Green function that describes pertur-
bations of the supermassive black hole [27,28]. The computation of such black hole
Green functions at a given base point can be performed by numerically integrating
wave equations with vanishing initial data and a narrow Gaussian source centered
at the given base point approximating a Dirac distribution [29]. These computations
must be performed into late times where the tail effect dominates because the self-
force calculation includes a half-infinite time integral of the Green function [30].
Therefore accurate computations of late-time wave solutions are important for a the-
oretical understanding of wave propagation and for the development of numerical
tools to tackle astrophysical problems.

The organization of this paper is as follows. In Section 2 we describe the nu-
merical methods that we use, specifically the hyperboloidal compactification of the
horizon and of infinity in Section 2.1 and the numerical implementation in Section
2.2. In Section 3 we describe our results for the far–field (3.1) and the (near–field 3.2)
cases. We discuss our results in Section 4.
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2 Methods

2.1 Hyperboloidal compactification of the horizon and of infinity

A technical new development in this paper is the application of the hyperboloidal
layer method from [31] to the construction of horizon-penetrating, hyperboloidal co-
ordinates in Kerr spacetime. The causal behavior of the slicing is similar to the slic-
ings of [15,16] with the difference that standard Boyer–Lindquist coordinates can be
used in a compact domain. Our coordinates extend those in [32] to become horizon-
penetrating. Similar coordinates have been constructed previously for Schwarzschild
spacetime in [33].

Denoting the tortoise coordinate based on the Boyer–Lindquist representation of
the Kerr metric as r∗, we map the infinite domain r∗ ∈ (−∞,∞) to a finite domain
ρ ∈ [−S, S] using the spatial compactification

r∗ =
ρ

Ω
, with Ω = 1−

(
|ρ| − R

S− R

)4

Θ(|ρ| − R) , (2)

where Θ denotes the step function and R the location of the interface. The function
Ω vanishes at ρ = ±S with a nonzero gradient. It is unity for −R < ρ < R and
sufficiently smooth at the interfaces ρ = ±R. To avoid loss of resolution for outgoing
waves near infinity, we combine the spatial compactification with a suitable time
transformation introducing a new time coordinate τ = t± h(r∗). The function h(r∗)
is called the height function.

The Kerr metric in Boyer–Lindquist coordinates is asymptotically Schwarzschild
in standard Schwarzschild coordinates. Therefore, the leading order form of in- and
outgoing null rays can be written as t ± r∗. The height function is chosen such that
the time function τ satisfies the condition t± r∗ = τ ± ρ. Combined with the spatial
compactification (2) we get

h(ρ) =
ρ

Ω
− ρ. (3)

The choices (2) and (3) fully determine the coordinates. Note that only the asymptotic
form of the in- and outgoing null surfaces goes into the hyperboloidal transformation.

2.2 Numerical implementation

We study local decay rates by solving the scalar wave equation, �φ = 0, for a
rescaled variable rφ, using hyperboloidal layers. Our numerical simulations are per-
formed with a modified version of the time-domain evolution code presented in [12].
The code is an explicit, hyperbolic-PDE solver in (2+1)D that uses the Lax–Wendroff
finite-difference evolution scheme. The numerical results have low truncation error
due to high-order differencing in the angular direction and high-precision (quadru-
ple or octal) floating-point operations. The code is parallelized via message passing
interface using the standard domain-decomposition approach on the radial coordi-
nate grid. The main modification of the code for this paper is the implementation of
hyperboloidal layers as discussed in the previous section.
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Typical grid resolutions used in this work are M/64 in the radial and π/48 in
the angular direction. We set M = 1 and a/M = 0.995. The domain size in the
compactified ρ-coordinate is [−100, 100]M with the layer interfaces at R = ±28M .
The time-step is set toM/128 as dictated by the Courant condition for stability of the
numerical evolution scheme. The compact-supported, non-stationary, initial data for
the scalar field is chosen to be a truncated Gaussian wave packet of width 4M and
variable center location. This corresponds to type 1 initial data as classified in [15].

3 Results

We investigate the decay rates for all `′ ≤ 5, specializing to vanishing azimuthal
number, m = 0. We study intermediate decay rates for both the projected modes and
the full field measured by various observers using the local decay rate nobs(t) defined
as ([34])

nobs :=
d ln |φ(t, robs)|

d ln t
. (4)

We then define the asymptotic decay rate as nobs
∞ := limt→∞ nobs. Note that the

local and asymptotic decay rates are invariant under the transformations in the hyper-
boloidal layers because the timelike Killing field is left invariant by the hyperboloidal
time transformation.

3.1 Far-field

3.1.1 Local rates of projected modes

The intermediate decay rates, as defined in (4). for projected modes with initial data
mode `′ ≤ 5 measured by far-field observers ranging from null infinity to about
100M are shown in Fig. 1 with the center of the Gaussian initial perturbation located
at r∗ = 25M . The decay rates are monotonous; no ‘splitting’ occurs.

It is instructive to contrast Fig. 1 to observations in Schwarzschild spacetime.
The observer dependence and the intermediate behavior of local decay rates are sim-
ple there. An initial pure spherical harmonic stays a pure spherical harmonic during
evolution (` = `′) and the decay rates are given as ni

+

∞ = −(2` + 3) at timelike
infinity and as nI

∞ = −(`+ 2) at null infinity [2,13]. During the intermediate decay
there is a monotonous transition depending on the location of the observer ([17,18]).

In Kerr spacetime, there is no geometric notion of a pure multipole because of
the lack of spherical symmetry of the background spacetime: the scalar spherical
harmonics are not eigenfunctions of the Laplace operator, and this leads to coupling
between multipoles. Nevertheless, we observe a similar intermediate behavior in the
projected modes for far field observers (r > 100M ) in Fig. 1.

The observer-dependence in these plots can be understood by considering the
description of pointwise decay estimates suggested in Schwarzschild spacetime for
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Fig. 1 Local decay rates for the evolution of even initial modes `′ = 0, 2, 4 on the left panels and odd
initial modes `′ = 1, 3, 5 on the right panels, for a family of far-field observers ranging from null infinity
to about 100M successively closer to the Kerr hole from top to bottom for each projection. The initial
data is a Gaussian with compact support centered at r∗ = 25M . The late-time values are consistent with
the predictions in the published literature. No ‘splitting’ is observed in the far field (r ≥ 100M ) for
t = 104M . The lowest mode rates in the odd modes (red dash-dotted on the right panel) are truncated due
to numerical oscillations.

small solutions ([24,25]). For the dominant `′ = ` = 0 mode the estimate in standard
Schwarzschild coordinates reads

|φ| ≤ C1

(C2 + t+ r∗)(C3 + t− r∗)2
, (5)

whereCi are constants. This estimate captures the asymptotic behavior of the solution
near null infinity as well as at finite distances from the black hole. It also provides an
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explicit description of the point- and slicing-dependence of the decay rates [18]. The
powers in the above formula are different for different values of `, but the qualitative
structure of observer-dependence is the same.

The far-field local-in-time decay rates suggested by Fig. 1 are listed in Tab. 1.
Notice that in Tab. 1 the entries that were indeterminate in Tab. 1 of [15] are printed
with an asterisk. We emphasize that these are the decay rates that would be observed
by late-time observers who are not asymptotic. Initial data (compact support data
centered at r∗ = 25M ) and observation points (far away observers with r∗ ≥ 100M )
were chosen here so that even very long evolutions do not reveal the inter-mode
interaction effect in the near field to be discussed below in Sec. 3.2.

`′ ` = 0 ` = 2 ` = 4

0 -2 -3 -4 -5 -6 -7
2 -2 -3 -4 -7∗ -6 -9∗

4 -4 -5 -4 -7 -6 -11∗

`′ ` = 1 ` = 3 ` = 5

1 -3 -5 -5 -7 -7 -9
3 -3 -5 -5 -9∗ -7 -11∗

5 -5 -7 -5 -9 -7 -13∗

Table 1 Far-field decay rates for all mode projections suggested by Fig. 1 for even modes (left table)
and odd modes (right table). We list both nI

∞ (left entry of each column) and ni+
∞ (right entry) for each

choice of `′, `. The values agree with theoretical predictions listed in (1) (see [5,12]). However, some of
the finite distance rates, marked with an asterisk, may change asymptotically in time due to propagation of
near-horizon inter-mode coupling behavior not seen in Fig. 1 because the initial data and the observers are
located far away from the black hole (see Sec. 3.2).

3.1.2 Local rates of the full field

The ‘splitting’ in the decay rates of the full field has first been observed in [14]. We
present in Fig. 2 the local decay rate for the full field for initial data of `′ = 4 for a
family of observers in linear (left panel) and inverse (right panel) time.

The curves separate into two types: those corresponding to near observers for
whom the local decay rate at the end point of the numerical simulation increases as
time increases (or as inverse time decreases), and those corresponding to far observers
for whom it decreases in the same limits. Notice that the designations ‘near’ and ‘far’
here are different than in the preceding section. The designation of near or far ob-
servers depends on how long the simulation runs. For our choice of tfinal = 104M ,
the two types of curves separate at about r ∼ 700M . For near observers (r . 700M )
extrapolations of the local decay rate as a function of inverse time to M/t → 0
produce results very close to the expected asymptotic value of −5, but far away ob-
servers seem to measure a decay rate of −6. Quantitatively, the observers and the ex-
trapolated decay rates they measure are as follows: (r∗/M, ni

+

∞) = {(112,−4.962),
(523,−5.008), (608,−5.121), (728,−5.017), (907,−5.058), (1207,−5.495),
(1806,−6.08)}. The latter two values vary significantly from −5, which is what is
referred to as the full-field ‘splitting.’ Notice, however, that Fig. 2 also shows how the
‘splitting’ behavior is an intermediate one: the (r∗/M, ni

+

∞) = (1207,−5.495) case
shows that although the extrapolated value deviates significantly form the expected
value of −5, the curve already starts to curve up as M/t decreases. The integration,
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Fig. 2 The local decay rates for `′ = 4 initial data as functions of time (t/M , left panel) and inverse time
(M/t, right panel). The bold solid magenta curve corresponds to an observer at r = 700M , dashed blue
curves for observers at r > 700M , and thin solid grin curves to observers at r < 700M . For the right
panel, for high M/t the distance of the observer increases from bottom to top. Note that the uppermost
two thin solid green curves would appear below the thin solid green curves at the lower right corner were
the figure extended to higher values of M/t. The dotted curves on the right panel are extrapolations of the
local decay rates using linear extrapolation for r < 700M and quadratic extrapolations for r ≥ 700M .

however, is not long enough to allow for sufficient curvature to enter the curve, that
would push the asymptotic value all the way up to −5. The situation would be the
same if we only integrated any of the solid curves in Fig. 2 to earlier times. In the
case of (r∗/M, ni

+

∞) = (907,−5.058) the curve has enough to make the limit be
reasonably close to −5, and we conclude that that would also be the case for more
distant observer, if we integrate longer in time.

102 103 104

t/M

10-23

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

|φ
`
|

`′ =0

`=0

`=2

`=4

102 103 104

t/M

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

|φ
`
|

`′ =4

`=0

`=2

`=4

Fig. 3 Absolute values of the scalar field for the evolution measured by observers along null infinity and
at r∗ = 200M for each projected mode as functions of the time, for initial modes `′ = 0 (left panel) and
`′ = 4 (right panel). For each case the steeper curve at late times corresponds to the field for the stationary
observer at a finite distance. The lowest excited mode is the dominant mode. It is larger at all times by
many orders of magnitude for `′ = 0 whereas for `′ = 4 the lowest excited mode dominates only at late
times (see Fig. 4 for the ratio between the two lowest excited modes). The transition is observed as an
intermediate ‘splitting’ in the full field.
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modes for `′ = 4 initial data measured by observers ranging from the vicinity of the horizon to null infinity
(from top to bottom in the figure). Two dashed red reference lines indicate a ratio of unity, and the time
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shows that the lowest mode will dominate for any finite distance observer at sufficiently late times, but the
notion of near and far observers depends on the evolution time. There is no transition of decay rates along
null infinity, referred to as Scri in the above figure.

It may seem puzzling that the local decay rates do not present any ‘splitting’
behavior (Fig. 1) whereas the full field does (Fig. 2). This puzzle is explained by
considering the relative strengths of modes generated due to mode coupling in Kerr
spacetime. We plot in Fig. 3 the absolute values of the projected modes for initial data
with `′ = 0 on the left and `′ = 4 on the right panel for comparison. The values are
measured by two observers for each mode: one at null infinity, the other at 200M .
The dominant modes for `′ = 0 are by many orders of magnitude larger than the
up-modes generated by mode coupling. This implies that the full field clearly decays
with the rate of the dominant mode, and no ‘splitting’ occurs. This clean separation
of absolute values in projected modes is no more valid for initial data with `′ = 4
as seen in the right panel of Fig. 3. The initial mode starts strongest, but decays fast
leaving the generated lower modes behind. The null infinity decay rates of the lowest
two modes are the same, implying that there is no transition of strength between
them (compare also Fig. 1). The finite distance rates of these modes, however, are
different. Consequently, the lowest mode with slowest decay dominates at late times,
but at early times the decay of the faster decaying higher mode may still dominate.
This leads to the apparent ‘splitting’ behavior at far away distances indicated in Fig. 2.
We note that the same behavior is also found in the case of odd `, `′ modes.

We argue that full-field ‘splitting’ appears because the simulation has not run far
enough for far away observers. Longer evolutions would make far observers near
ones. Considering Fig. 2, we predict that the asymptotic decay rates measured by far
observers would be numerically close to −5 for longer evolutions. Notably, already
with the given evolution time the extrapolations for the distant observers curve “up”
in Fig. 2, in support of our prediction.

Further support for this argument comes from the ratio of the two lowest gener-
ated modes, φ`′′′=0/φ`′′=2 for `′ = 4, plotted in Fig. 4. This plot gives additional
information to the evolution of modes whose decay rates are depicted in Fig. 1. As
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can be inferred from Fig. 1, the rates along null infinity between the two lowest gen-
erated modes are the same. Therefore, their ratio stays below unity and no transition
is observed for the decay along null infinity. For observers closer to the black hole
(upper curves in the figure), however, the ratio evolves in time and goes above unity
eventually. The dashed red line depicting a ratio of 1 can be seen as describing the
transition of the decay rate from the rate of the higher mode to the lowest one. The
fact that the ratio goes above unity for finite distance observers indicates that the low-
est mode becomes the dominant mode whose decay is observed. The farther away the
observer the longer it takes for the lowest generated mode to dominate. In that sense
the ‘splitting’ of the decay rates for the full field is only an intermediate behavior due
to the relative strength of generated modes. For observers near the black hole, the
difference in the decay rates is 2, so the ratio follows the t2 curve depicted by the
second dashed red line in Fig. 4.

3.2 Near-field

The picture of decay rates in certain projected modes presented in Fig. 1 and Tab. 1 is
modified when near horizon rates are taken into account. Rácz and Tóth report ‘split-
ting’ in [15]1 in the projected modes for certain cases. We plot the near horizon decay
rates for two cases, `′ = ` = 2 and `′ = ` = 3 in Fig. 5 on the left and the right pan-
els respectively. The observers are located (from large distances to lower distances)
at r∗/M = 20, 18, 16, 14, 12, 10 (yellow dashed), r∗/M = 8, 6, 4, 2, 0,−4 (green
solid) and r∗/M = −8,−12,−20,−70,−∞ (blue dotted).

In such cases with `′ = `, the determination of the asymptotic decay rate is
particularly difficult due to the near-field intermediate behavior. Decay rates along
r∗ ≥ 10M denoted by the yellow dashed lines are consistent with Fig. 1 and Tab. 1.
The local rate curves bend down, however, in preparation for a sign change, which
happens along the green solid lines in the range r∗ ∈ [−4M, 8M ]. The rate after the
sign change approaches the same rate as the blue dotted lines, plotted for observers
with r∗ ≤ −8M . The green vertical lines in Fig. 5 indicating sign change can be
regarded as the boundary of ‘splitting’ between the two finite distance decay rates.

The location dependence observed in Fig. 5 provides evidence for the difference
between intermediate and asymptotic behavior. We suggest that, asymptotically in
time, the decay of the blue dotted lines in Fig. 5 will dominate for all finite observers
but at any given late time there will be some far away observers that see the decay of
the yellow dashed lines consistent with Tab. 1.

Given that the asymptotic behavior dominates for different observers at different
times, a natural question is how the boundary between the two regimes (intermediate
and asymptotic) propagates to infinity. We see from Fig. 5 that the boundary can be
taken as where the sign of the field changes, depicted by the vertical green lines. The
time difference between the vertical green lines seems to become larger for the farther
away observers, indicating that the speed of transition slows down. We would like to
know quantitatively, for a given observer, the speed of the transition. In Fig. 6, we

1 We thank Gábor Zs Tóth for pointing out that ‘splitting’ occurs near the horizon for the projected
modes.
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Fig. 5 Local decay rates for near-horizon observers with `′ = ` = 2 (left panel) and `′ =
` = 3 (right panel). The observers are located (from large distances to lower distances) at
r∗/M = 20, 18, 16, 14, 12, 10 (yellow dashed), r∗/M = 8, 6, 4, 2, 0,−4 (green solid) and r∗/M =
−8,−12,−20,−70,−∞ (blue dotted). The yellow dashed lines are consistent with Fig. 1 and Tab. 1.
The green solid vertical lines indicate the transition during which the field changes sign. The blue dotted
lines are the near-horizon rates. The plot indicates that at asymptotically late times the near-horizon rates
(blue dotted) will dominate for far away observers (yellow dashed) after a sign change (green solid).

plot the rate at which this transition event moves as a function of the inverse distance
to the observer for the case `′ = 2 = `. We show the rate for five sets of initial data
characterized by the r∗ value of the center of the initial wave packet. Specifically, we
set the centers of the initial wave packets as r∗0/M = 5, 10, 15, 20 and 25.
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Fig. 6 Rate at which the boundary of the ‘splitting’ behavior moves as a function of the inverse distance of
the observer. We show the rate for five sets of initial data characterized by the r∗ value of the center of the
initial wave packet. Specifically, we choose `′ = 2 = ` and the centers of the initial wave packets are at
r∗0/M = 5, 10, 15, 20 and 25. The insert shows the extrapolated value of the boundary speed at infinity
(M/r → 0) as a function of the location of the center of the initial wave packet and a spline extrapolation
thereof.

Near observers see a faster propagation speed of the boundary than distant ob-
servers. In addition, initial wave packets closer to the black hole cause a faster transi-
tion. Both properties indicate that the transition is a strong field behavior. Intuitively
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it makes sense that the asymptotic decay rate is obtained faster for all observers when
the initial perturbation is in the strong field domain close to the black hole.

The insert shows the extrapolated value of the boundary speed at infinity (M/r →
0) as a function of the location of the center of the initial wave packet and a spline
extrapolation thereof. Even for far observers, the transition speed seems to approach
a non-vanishing limit. This dependence of the ‘splitting’ behavior on the location of
the initial perturbation has not been observed before.

In conclusion, we distinguish late time behavior for large t from asymptotic be-
havior for t → ∞. In that sense, ‘splitting’ in the projected modes should be under-
stood as an intermediate late time behavior, and not an asymptotic behavior.

Our explanation for this behavior is that successive mode excitations affect the
decay rate of the late-time tail via inter-mode coupling. For example, the decay rate of
the ` = 4 mode given `′ = 2 initial data progresses in multiple channels. The direct
channel is the excitation of the ` = 4 mode by the `′ = 2 initial data. This direct
channel leads to a tail with asymptotic decay rate of tn0 where −n0 = `′ + ` + 3 =
2 + 4 + 3 = 9.2 In an indirect channel, the `′′ = 0 is excited. The excited monopole
field then acts as a source and creates a second ` = 4 tail whose asymptotic decay
rate is riven by tn1 where−n1 = `′′+`+3 = 0+4+3 = 7. Similarly, the decay rate
of the ` = 2 mode given `′ = 2 initial data progresses in multiple channels. In the
direct channel, the ` = 2 mode evolves without coupling, for which the asymptotic
decay rate is given by tn0 where −n0 = `′ + ` + 3 = 2 + 2 + 3 = 7. The indirect
channel involves the excitation of the `′′ = 0 mode, which then acts as a source
field for a second ` = 2 field whose tail decays asymptotically according to tn1

where −n1 = `′′ + ` + 3 = 0 + 2 + 3 = 5. We propose that the reason why
in [15] these values (and others) were indeterminate is that the multiple channels
could not be computed. Note that these observations suggest that the tail decay rates
found by Hod [5] are not asymptotic, because they ignore the inter-mode interaction.
This reasoning also explains the m-dependence of the ‘splitting’ as observed in [15,
16]. We summarize our findings in Tab. 2. Notice how these values differ from their
counterparts in Tab. 1. This intricate inter–mode coupling mechanism has not been
suggested before, and warrants further study.

`′ ` = 0 ` = 2 ` = 4

0 -2 -3 -4 -5 -6 -7
2 -2 -3 -4 -5 -6 -7
4 -4 -5 -4 -7 -6 -9

`′ ` = 1 ` = 3 ` = 5

1 -3 -5 -5 -7 -7 -9
3 -3 -5 -5 -7 -7 -9
5 -5 -7 -5 -9 -7 -11

Table 2 Same as in Table 1 with the near–field effect of first–order inter-mode coupling.

Based on [35] we know that starting with a some value of `′, all dynamically
allowed lower modes are excited at higher orders in (a/r)2.3 Specifically, starting

2 In what follows we omit the subscript from the asymptotic decay rate n∞ as it is implied.
3 We use here the expansion in powers of (a/r)2 not necessarily as an expansion in a small parameter

as in [35], but ronoather as a counting scheme for the orders of the multiple channels; however, for small
a/r this also explains the smallness of the amplitude of the excited source.
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with an `′ = 4 mode and considering the ` = 4 mode, we have the direct channel
that leads to decay rate with tn0 where −n0 = `′ + `+ 3 = 4 + 4 + 3 = 11. We also
have two indirect channels, one with the excited quadrupole mode and the other with
the excited monopole mode. Naive application of our argument above would lead to
decay rate with tn1 where−n1 = `′′+`+3 = 2+4+3 = 9, and the latter the decay
rate with tn2 where−n2 = `′′′+`+3 = 0+4+3 = 7. If this reasoning were correct,
one would expect the asymptotic decay rate to be t−7. However, in practice we find
the decay rate to be t−9. We propose that this different decay rate is found because
the produced monopole does not decay at the same rate that a monopole present in
the initial data does. Indeed, the former decays as t−3 whereas the latter decays as
t−5. This difference is proposed to be responsible for the faster decay rate we find.
In the previously discussed case of `′ = 2, ` = 2 the produced monopole decays at
the same rate as a monopole present in the initial data is, and therefore the decay rate
obeyed the naive expectations. See the discussion in [36].

It is challenging to observe such decay rates numerically due to the very high
order effect that is needed to produce them. For the `′ = 4, ` = 4 case and counting
powers of (a/r)2, the `′′ = 2 mode is excited at 1st order, i.e., at O((a/r)2), and
the `′′′ = 0 mode is excited at 2nd order, i.e., at O((a/r)4). Continuing the count-
ing of orders, n1 is a 2nd order effect at O((a/r)4), while n2 is a 4th order effect at
O((a/r)8). Since each mode is excited with a small amplitude, higher order excita-
tions are expected to be produced with very low amplitudes which set a considerable
challenge for numerical computations because of the challenges involved with ampli-
tudes comparable or smaller than the floating point arithmetic level, and the very long
evolution times which are needed for very low initial amplitude to dominate despite
their slower decay rate.

Numerical evidence for such higher order tails await further studies [36]. In the
meantime, one may tentatively speculate on the basis of the above argument and our
numerical results of Table 2 that the successive mode excitations ultimately impact
the asymptotic decay rate of each and every mode. With the exception of the case in
which `′ is the slowest decaying mode (for which case the decay rates are given by
−n = `′ + ` + 3), all other modes —even or odd— appear to decay according to
−n = `′ + `+ 1.

4 Summary and Conclusions

We presented a detailed study of ‘splitting’ of local decay rates in Kerr spacetime
observed in previous work ([14,15,16,23]) both in certain projected modes and in
the full field. Our simulations are about an order of magnitude longer (∼ 104M )
than currently published simulations in the literature, which allows us to determine
power indices that were considered, based on shorter evolutions, as ambiguous. The
determination of these indices suggests a spin-dependent mechanism by which a
‘splitting’–like behavior in the decay rates is produced. To achieve long simulation
times without destroying relevant features of the solution due to boundary effects, we
attached hyperboloidal layers both in the positive and the negative directions in the
tortoise coordinate in Kerr spacetime. This procedure leads to a horizon-penetrating,
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hyperboloidal coordinate system, completely removing artificial boundaries from the
numerical simulation (see also [33] for the construction in Schwarzschild spacetime).
It is a new result that a hyperboloidal layer can be attached in the strong field domain
near the future event horizon of Kerr spacetime, which may be of potential useful-
ness also for other applications. Some interesting problems where this method might
be used are the study of superradiance (see, for example, recent work [37]), and the
instability of perturbations of extremal Kerr spacetimes ([38]).

Having access to long simulations and studying various aspects of the solution
from local decay rates to relative amplitudes of projected modes, we obtained a de-
tailed understanding of the mechanisms underlying near-horizon and far-field ‘split-
ting.’ These two aspects of ‘splitting’ seem unrelated to each other. ‘Splitting’ near
the black hole appears in the projected modes, and can be observed with standard
codes. It is surprising that it has been discovered only recently. ‘Splitting’ far away
appears in the full field and is due to the competition between the amplitudes of pro-
jected modes.

In cases where full-field ‘splitting’ appears (for example, Fig. 2) we observe that
different modes have different decay rates. Eventually the lowest mode dominates
because of its slowest decay (Fig. 3). This transition happens at different times for
different observers, which appears as ‘splitting’ in the decay rates of the full field.
Asymptotically in time, the theoretical decay rates are valid. In that sense, the ‘split-
ting’ of the full field is only an intermediate behavior.

‘Splitting’ in certain projected modes is of a different nature arising from the
excitation of lower modes. Here we observe that for any given time there are three
domains with three different local decay rates (see Figs. 1 and 5): very close to the
horizon, far away from the horizon, and near infinity. There is a transition in which the
field changes sign and the decay rates approach the near-horizon rates. The boundary
of this transition moves slowly towards infinity (Fig. 6), which suggests that asymp-
totically in time near-horizon rates will dominate at all finite distances. For all prac-
tical purposes, however, ‘splitting’ is a real effect for these modes at any given (late)
time. We also argued that successive mode excitations affect the decay rate of the
late-time tail of all modes. However, the effects of lower mode excitations on any
given mode’s decay rate are difficult to observe due to numerical challenges. This is
an area certainly requiring further work.
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