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Abstract. We study the electron temperature distribution and
the structure of the current sheet along the magnetotail us-
ing simultaneous observations from THEMIS spacecraft. We
perform a statistical study of 40 crossings of the current sheet
when the three spacecraft THB, THC, and THD were dis-
tributed along the tail in the vicinity of midnight with co-
ordinatesXB ∈ [−30RE,−20RE], XC ∈ [−20RE,−15RE],
andXD ∼ −10RE. We obtain profiles of the average electron
temperature〈Te〉 and the average magnetic field〈Bz〉 along
the tail. Electron temperature and〈Bz〉 increase towards the
Earth with almost the same rates (i.e., ratio〈Te〉/〈Bz〉 ≈

2 keV/7 nT is approximately constant along the tail). We also
use statistics of 102 crossings of the current sheet from THB
and THC to estimate dependence ofTe andBz distributions
on geomagnetic activity. The ratio〈Te〉/〈Bz〉 depends on geo-
magnetic activity only slightly. Additionally we demonstrate
that anisotropy of the electron temperature〈T‖/T⊥〉 ≈ 1.1 is
almost constant along the tail forX ∈ [−30RE,−10RE].

Keywords. Magnetospheric physics (magnetotail; plasma
convection; plasma sheet)

1 Introduction

The current sheet (CS) of the near-Earth magnetotail
(−10RE < X < −30RE, whereRE is the Earth radius) can
be approximately considered as a 2-D structure with the
main gradient along the normal direction (alongZ) and the
weak gradient along x-direction (GSM coordinate system is
used). Configuration of the magnetotail CS controls the rate
of charged particle acceleration and following injection into
the inner magnetosphere (see recent reviews byBaumjohann
et al., 2007; Sergeev et al., 2012, and references therein).
With the multi-spacecraft Cluster mission, transverse (along

Z) structure of the CS was studied in detail (especially at the
distancesX ∼ −20RE, where Cluster collected main statis-
tics; seeRunov et al., 2006; Artemyev et al., 2011b). Al-
though the distribution of the magnetic field along the tail
plays an important role in particle (mainly electron) acceler-
ation, it is less investigated.

Electrons are magnetized in the magnetotail, and their mo-
tion is controlled by the global gradients of the magnetic
field. One of the most effective mechanisms of electron en-
ergization is adiabatic heating in the course of the earth-
ward convection (Lyons, 1984; Zelenyi et al., 1990). This
mechanism predicts monotonic growth of electron tempera-
ture withBz(X) (i.e., withX). However, recent observations
and the numerical modeling suggest that a substantial role
in electron energization could be played by various transient
processes (seeAsano et al., 2010; Fu et al., 2011; Ashour-
Abdalla et al., 2011; Fu et al., 2012; Birn et al., 2012, and
references therein). To compare impacts of adiabatic heating
(throughout the paper, we use this term for global betatron
acceleration) and transient acceleration to the electron ener-
gization, one needs to study gradient∂/∂X of the electron
temperature and magnetic fieldBz along the magnetotail.

So far, estimates of the gradient∂/∂X in the magnetotail
have been obtained by using three independent approaches:
(1) small-scale gradients of the near-Earth dipolarized CS
can be estimated using direct measurements of Cluster mis-
sion in 2007–2009 (Nakamura et al., 2009) or THEMIS mis-
sion in the case of specific spacecraft configuration (Saito
et al., 2010; Panov et al., 2012); (2) statistical investigation
can give average profiles of the main CS parameters (Bz
component, plasma pressure and plasma density) along the
tail (see statistics collected by AMPTE/IRM, Geotail and
THEMIS spacecraft inKan and Baumjohann, 1990; Wang
et al., 2012); and (3) thermal electrons could be used as
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Fig. 1. Example ofBx component of the magnetic field measured
by four spacecraft. Also spacecraft positions are shown.

tracers of the magnetotail structure (Artemyev et al., 2011c).
The distribution of electron temperature along the magne-
totail was studied only using statistical investigation (e.g.,
Wang et al., 2012). Each of these methods has principal dis-
advantages for the determination of the gradient∂/∂X in the
magnetotail: (1) direct calculation of∂/∂X is possible only
for relatively strong gradients in the dipolarized CS; (2) aver-
age profiles cannot give snapshot-like information about the
magnetotail structure (the latter is important because major
tail parameters vary in a wide range on timescales from min-
utes to hours); and (3) to use electrons as tracers, one needs
realistic models of the electron heating and detailed informa-
tion about the transverse structure of CS.

Therefore, existing approaches cannot be used for investi-
gation of the relation betweenTe(X) andBz(X) profiles and,
as a result, cannot help us study the role of electron adiabatic
heating for general electron energization in the magnetotail.
To obtain distribution of CS parameters along the magneto-
tail, the only reliable way is to organize simultaneous ob-
servations at substantially different x-coordinates. In this pa-
per we use the statistics of simultaneous observations of thin
CSs from several THEMIS spacecraft to study the relation
betweenTe(X) andBz(X) distributions.

2 Dataset

In this study we use two datasets, which consist of THEMIS
and Cluster observations, respectively. THEMIS data provide
us with simultaneous observations of the magnetotail CS at
different x-coordinates, while the Cluster dataset contains
observations in the magnetotail for 2001–2009 from the C2

spacecraft and gives average values ofTe for several ranges
of X. Due to small separation of Cluster spacecraft, we can-
not use Cluster measurements for simultaneous observations
of CS at different x-coordinates. The Cluster dataset includes
measurements only with|Bx| < 10 nT and|Y | < 5RE (this
is essentially the same dataset as the one used byArtemyev
et al., 2011a).

The THEMIS statistics includes 102 events, when two
spacecraft THB and THC crossed the magnetotail CS within
30 min (we consider 2008 and 2009). For 40 events from this
list, THD also crossed the magnetotail CS within the same
time interval. Thus, we have substatistics of 40 events with
simultaneous observations at three different x-coordinates.
All 102 events can be attributed to CSs with the duration of
crossing varying from tens of seconds (for THB) up to tens
of minutes (for THD). We cannot estimate thickness of ob-
served CSs directly and use a criterion of rapid crossing for
THB to select mainly thin CSs. For this dataset we use the
magnetic field (Auster et al., 2008) and the electron measure-
ments (McFadden et al., 2008). All data are obtained from
the CDAWeb database (http://cdaweb.gsfc.nasa.gov/). For all
crossings|Y | coordinate is smaller than|X| (i.e., all crossings
occur approximately around the midnight).

A typical example of an event from THEMIS statistics is
shown in Fig.1. Grey color denotes CS crossings by the four
spacecraft. THB spacecraft crossed CS; then THC and THE
(as well as THD) crossedBx = 0 in agreement with the distri-
bution of z-coordinates of spacecraft. Synchronous crossings
correspond to the vertical flapping motions of the CS (see the
detailed study of CS flapping observed by several THEMIS
spacecraft inRunov et al., 2009).

For each CS crossing from THEMIS dataset, we use the
average values of〈Te〉, 〈T‖/T⊥〉, and 〈Bz〉 component of
the magnetic field computed in the central region of CS
(|Bx| < 10 nT), whereTe = (T‖ + 2T⊥)/3, andT‖ and T⊥

represent diagonal components of the electron temperature
tensor (smaller than|Bx| < 10 nT region of averaging some-
times leads to only a few points of electron data).

3 Distribution of CS parameters along the tail

We start with the statistics of 40 crossings of the magneto-
tail CS by three THEMIS spacecraft. For each event we have
three values of〈Te〉 and〈Bz〉 measured at corresponding co-
ordinatesX. Four examples of〈Te〉 and 〈Bz〉 distributions
along the tail are shown in Fig.2. One can see that the pro-
files 〈Te〉(X) almost coincide with the profiles〈Bz〉(X).

The profiles〈Te〉 and 〈Bz〉 along the tail for the whole
THEMIS dataset are shown in Fig.3a and c. There is a gen-
eral increase of the magnetic field and the electron tempera-
ture withX (i.e., in the earthward direction). At the large dis-
tance where THB crossed the CS (X ∼ −25RE), the value of
Bz is very small (Bz ∼ 1 nT). Therefore, any deformations of
the CS could result in substantial errors in estimation ofBz,

Ann. Geophys., 31, 1109–1114, 2013 www.ann-geophys.net/31/1109/2013/
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Fig. 2.Profiles of the average electron temperature〈Te〉 (shown by solid lines) and the magnetic field〈Bz〉 (shown by dotted lines) along the
tail.

Fig. 3. 〈Te〉, 〈Bz〉 and〈T‖/T⊥〉 distributions in the magnetotail for 40 events, when THB, THC, and THD crossed the CS. Panels(a), (c), and
(f) show all profiles of〈Te〉 and〈Bz〉 from our database. In panels(b), (d), and(g), we present average values of corresponding quantities with
standard deviations. Panel(e)shows average values of electron temperature anisotropy. Various symbols (red, green, and blue diamonds) are
used for data collected by THB, THC, and THD (THE) spacecraft. Black crosses show averaged data from Cluster C2 statistics. In panels(f)
and(g), color curves show approximations〈Te〉/〈Bz〉 ≈ 2keV/7nT (red curve) and〈Te〉/(〈Bz〉+1nT) ≈ 1.7keV/8nT (blue curve). See text
for details.

when the normal direction to the CS is tilted in the(X,Z)

plane. This effect is clearly seen in Fig.3f, where profiles
〈Te〉 as function of〈Bz〉 are shown.〈Te〉 mainly varies from
200 to 500 eV up to 1.5–2 keV, while〈Bz〉 changes within
the range 2–10 nT. However, there are several observations
of small 〈Bz〉 with relatively large〈Te〉 shown by the grey
circle in Fig. 3f. As a result, we cannot use the relation
〈Te〉/〈Bz〉 ≈ const for the individual CS crossings.

To obtain a more reliable presentation describing profiles
〈Te〉 and〈Bz〉, we average our statistics for four intervals of

X ∈ [−10,−25]RE (see Fig.3b, d). Although averaging re-
sults in a loss of information regarding the peculiarities of
individual cases, this operation is more accurate than collec-
tion of Cluster statistics because it takes into account only
monotonic profiles of〈Te〉 and〈Bz〉 along the tail. For〈Bz〉

we obtain the following approximation based on the aver-
aging at four intervals ofX: 〈Bz〉 ≈ 7nT· (−1−X/5RE)−1.
The corresponding approximation of the electron tempera-
ture is 〈Te〉 ≈ 2keV· (−1− X/5RE)−1. These two approx-
imations give the empirical proportionality〈Te〉/〈Bz〉 ≈

www.ann-geophys.net/31/1109/2013/ Ann. Geophys., 31, 1109–1114, 2013



1112 A. V. Artemyev et al.:Te(x) and Bz(x) profiles in the magnetotail

Table 1. Ratios of electron temperature and magnetic field. Num-
bers of events for three Kp range are 42, 43, and 17.

Kp 〈BTC
z /BTB

z 〉 〈T TC
e /T TB

e 〉 〈1Te〉/〈1Bz〉

≤ 1+ 1.4± 0.2 1.8± 0.05 350/1.9 ≈ 185 eV/nT
2 1.75± 0.05 1.7± 0.1 500/2.1 ≈ 240 eV/nT
≥ 3− 1.9± 0.1 1.8± 0.1 600/2.9 ≈ 205 eV/nT

2keV/7nT (exact value is 1.9(±0.5)keV/7.4(±1.2)nT).
Due to the above-mentioned problems with small〈Bz〉 mea-
sured by THB, the obtained temperature growth is weaker
than observed growth of〈Bz〉. Thus, the approximation
〈Te〉/〈Bz〉 ≈ 2keV/7nT slightly overestimates growth of
〈Te〉. To correct the approximation of〈Bz〉, we need to intro-
duce one additional free parameter responsible for constant
shift: 〈Bz〉 ≈ −1nT+8nT· (−1.3−X/4.5RE)−0.7. The cor-
responding approximation of〈Te〉 profile is 〈Te〉 ≈ 1.7keV·

(−1.3−X/4.5RE)−0.7 (exact value of〈Te〉/(〈Bz〉+ 1nT) is
1.7(±0.3)keV/8.1(±0.7)nT).

We plot profiles〈Te〉 as function of〈Bz〉 in Fig. 3f, where
red and blue curves show both our approximations. One
can see that both approximations describe observations well
and actually are not that different (corresponding correla-
tion coefficients are 0.62 and 0.7). Proportionality〈Te〉 ≈

(1.7keV/8nT) ·(〈Bz〉+1nT) approximates data slightly bet-
ter than〈Te〉/〈Bz〉 ≈ 2keV/7nT (see Fig.3g, where we com-
bine the profiles from Fig.3b, d and show〈Te〉 as function of
〈Bz〉). Moreover, both approximations of〈Bz〉 coincide with
AMPTE/IRM statistics presented byKan and Baumjohann
(1990) (not shown here).

We also compare measurements of electron temperature
from the THEMIS mission with the Cluster dataset. Fig-
ure 3d shows Cluster C2 data of the electron temperature
collected in the central region of the magnetotail CS. Cluster
measurements demonstrate the growth of〈Te〉 with X (i.e.,
in the earthward direction) as well. However, the absolute
values of the temperature are larger than data obtained by
THEMIS. This discrepancy could be explained by different
solar activity for the seasons, when Cluster and THEMIS op-
erated in the magnetotail. Smallness of the THEMIS statis-
tics also can be responsible for this effect.

The profile of the average electron anisotropyT‖/T⊥

shown in Fig.3e demonstrates thatT‖/T⊥ is almost con-
stant along the tail andT‖/T⊥ ≈ 1.1 (this is a typical value
of electron anisotropy; seeSergeev et al., 2001; Artemyev
et al., 2011b). The same results are derived from the Cluster
statistics (see large crosses in Fig.3e). Therefore, the combi-
nation of〈Te〉 ∼ 〈Bz〉 and〈T‖/T⊥〉 ≈ const leads to the sur-
prising conclusion that the parallel component of the tem-
perature increases with the same rate as the perpendicular
one (∼ 〈Bz〉). However, we should note that the variance of
T‖/T⊥ is large. Thus, we only can conclude that temperature

ratio is T‖/T⊥ ∈ (1,1.2) without strong variation along the
magnetotail.

We use full THEMIS statistics of 102 events when THB
and THC crossed the magnetotail CS within short time in-
terval. The large amount of two-point events allows us to
divide these events in three groups depending on geomag-
netic activity (Kp≤ 1+, Kp = 2, and Kp≥ 3−). We do not
consider the same statistics forX > −15RE because of the
small of number of events when THB/THC and THD crossed
the magnetotail CS within 30 min. For each range of Kp, we
obtain average ratios〈BTC

z /BTB
z 〉 and〈T TC

e /T TB
e 〉 (Table1).

For small Kp, the increase ofBz is weaker than for Kp≥ 2.
The ratio of temperatures is〈T TC

e /T TB
e 〉 ∼ 1.8 independent

of Kp.
We calculate1Te = T TC

e − T TB
e and 1Bz = BTC

z − BTB
z

(distance between THB and THC is about∼ 6RE for events
from our statistics). In this case, the approximationTe =

const0Bz+const1 gives1Te/1Bz = const0. For small Kp≤
1, the temperature difference〈1Te〉 is smaller than for
Kp ≥ 2. The ratio 〈1Te〉/〈1Bz〉 is similar to the value
2keV/7nT∼ 290eV/nT obtained forX ∈ [−10,−30]RE
with three-point statistics. For Kp≤ 1 this ratio is one and
half times smaller. However, this can be the effect of small
statistics. Therefore, dependencies of ratios〈Te〉/〈Bz〉 and
〈T TC

e /T TB
e 〉 on geomagnetic activity seem to be weak.

4 Conclusions

In conclusion, we have shown the following: (1) electron
temperature in the vicinity of the neutral plane increases
with 〈Bz〉 almost linearly, and (2) anisotropy of the elec-
tron temperature is almost constant along the tail forX ∈

[−25RE,−10RE]. Here, we note that our results can be ob-
tained only owing to simultaneous observations of the mag-
netotail current sheet from several spacecraft in differentX.

These two effects provide some difficulties for the sim-
ple explanation of electron energization via the adiabatic
mechanism as well as via models of the transient acceler-
ation. Profiles of magnetic field along the magnetotail do
not contain any artificially (transient) large values of〈Bz〉.
Therefore, we observe in our statistics the averaged profiles
of Bz(X) corresponding to the quiet magnetotail configura-
tion. If transient processes had substantial impact on the elec-
tron energization, electron temperature would not correlate
with averaged〈Bz〉 profiles in the magnetotail. Moreover, in
this case〈Te〉 in the near-Earth region (X ∼ −15RE) would
be larger than a value obtained from a simple approxima-
tion 〈Te〉/〈Bz〉 ≈ const with〈Te〉 measured atX ∼ −25RE.
In contrast, the approximation〈Te〉/〈Bz〉 ∼ const slightly
overestimates growth of〈Te〉, and real energization is even
weaker than the increase of〈Bz〉. Thus, we can conclude
that there is no evidence (direct or indirect) of a substantial
role of any transient process (like reconnection and/or dipo-
larization) in additional energization of the thermal electron

Ann. Geophys., 31, 1109–1114, 2013 www.ann-geophys.net/31/1109/2013/
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population. Strictly speaking, this conclusion can only be ap-
plied to quiet time conditions when the averaged〈Bz〉 pro-
file is monotonous along the magnetotail. However, transient
mechanisms still can be important for acceleration of high-
energy electrons (seeAsano et al., 2010; Fu et al., 2011;
Ashour-Abdalla et al., 2011; Fu et al., 2012; Birn et al., 2012,
and references therein).

Although the relation〈Te〉/〈Bz〉 = const can be considered
as evidence of the adiabatic heating, we also cannot use this
model to describe the observed electron energization. Adia-
batic heating predicts a variation of the electron temperature
anisotropy.T⊥ increases linearly with〈Bz〉 according to the
betatron mechanism, while the rate ofT‖ growth provided by
Fermi mechanism is smaller:T‖ ∼ 〈Bz〉

2/5 (seeLyons, 1984;
Zelenyi et al., 1990; Artemyev et al., 2011c, and references
therein). Therefore, in the simplified model of the magneto-
tail, one should obtain the decrease of the anisotropyT‖/T⊥

with the increase of〈Bz〉 (seeArtemyev et al., 2012).
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Asano, Y., Shinohara, I., Retinò, A., Daly, P. W., Kronberg, E. A.,
Takada, T., Nakamura, R., Khotyaintsev, Y. V., Vaivads, A.,
Nagai, T., Baumjohann, W., Fazakerley, A. N., Owen, C. J.,
Miyashita, Y., Lucek, E. A., and R̀eme, H.: Electron accelera-
tion signatures in the magnetotail associated with substorms, J.
Geophys. Res., 115, A05215, doi:10.1029/2009JA014587, 2010.

Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M.,
Schriver, D., Richard, R., Walker, R., Kivelson, M. G., and
Hwang, K.-J.: Observations and simulations of non-local accel-
eration of electrons in magnetotail magnetic reconnection events,
Nature Physics, 7, 360–365, doi:10.1038/nphys1903, 2011.

Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O.,
Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon,
K. H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R.,
Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke,
F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and
Wiedemann, M.: The THEMIS Fluxgate Magnetometer, Space
Sci. Rev., 141, 235–264, doi:10.1007/s11214-008-9365-9, 2008.

Baumjohann, W., Roux, A., Le Contel, O., Nakamura, R., Birn,
J., Hoshino, M., Lui, A. T. Y., Owen, C. J., Sauvaud, J.-A.,
Vaivads, A., Fontaine, D., and Runov, A.: Dynamics of thin
current sheets: Cluster observations, Ann. Geophys., 25, 1365–
1389, doi:10.5194/angeo-25-1365-2007, 2007.

Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M.,
and Zelenyi, L. M.: Particle acceleration in the magnetotail and
aurora, Space Sci. Rev., 173, 49–102, doi:10.1007/s11214-012-
9874-4, 2012.

Fu, H. S., Khotyaintsev, Y. V., André, M., and Vaivads, A.:
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