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In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare

results of test particle simulations and the quasi-linear theory for different spectra of waves to

investigate how a fine structure of the wave emission can influence electron resonant scattering.

We show that for a realistically wide distribution of wave normal angles h (i.e., when the dispersion

dh � 0:5�), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum

consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with

quasi-linear theory show that for dh > 0:5�, the quasi-linear approximation describes resonant

scattering correctly for a large enough plasma frequency. For a very narrow h distribution (when

dh � 0:05�), however, the effect of a fine structure in the wave spectrum becomes important. In

this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast

magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron

scattering. For typical conditions in the earth’s radiation belts, the quasi-linear approximation

cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We

discuss various applications of the obtained results for modeling electron dynamics in the radiation

belts and in the Earth’s magnetotail. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922061]

I. INTRODUCTION

Magnetosonic waves are widespread in the near-earth

plasma environment where these waves are responsible for

the scattering and acceleration of relativistic electrons in the

radiation belts18 and magnetotail region,8,56 and at the bow

shock.23,55 Modern spacecraft observations suggest that

amplitudes of fast magnetosonic waves35,50 and the corre-

sponding wave occurrence rate28,29,31,34,43 are large enough

for these waves to have a significant impact on the overall

dynamics of relativistic electrons. Being excited by unstable

ion distributions,29,57 fast magnetosonic waves can act as

intermediaries in an energy transfer between high-energy

ions and relativistic electrons (in contrast to electron whistler

waves believed to be generated by an anisotropic electron

population14,53).

Spacecraft observations and numerical simulations dem-

onstrate that fast magnetosonic emissions remain generally

trapped within the near-equatorial region in the radiation

belts17,21,38 where these waves could be an important agent

for scattering electrons into Earth’s atmosphere.30 They

could also be partly responsible for important energetic elec-

tron injections recently observed deep inside the plasma-

sphere during substorms.51

The general approach for modeling relativistic electron

scattering by fast magnetosonic waves consists in the appli-

cation of the quasi-linear approximation,31,43,52 although

several limitations of this approach were indicated in Refs. 7

and 24. This approach assumes that wave emission is broad

enough in the frequency x space. However, theoretical mod-

els of the generation of magnetosonic waves show that these

waves are exited at ion cyclotron harmonics.15,57 Thus, in

reality, we deal with a finely structured wave emission

instead of a broad structureless spectrum. Consequently, the

applicability of the quasi-linear theory needs to be reex-

amined for such finely structured emissions. To perform the

corresponding analysis, we use in this paper the test particle

approach and compare the obtained results with a model of

quasi-linear diffusion rates.31

Fast magnetosonic waves propagate at a large angle rel-

ative to the background magnetic field,21 i.e., the correspond-

ing wave vector k has a preponderant transverse component.

Due to the low frequency (relative to the electron gyrofre-

quency Xce) of magnetosonic waves, only Landau resonance

(when the parallel electron velocity becomes equal to the

parallel wave phase velocity) is available for electrons with

energies less than 5 MeV. Thus, the principal role during

electron resonant interaction with magnetosonic waves is

played by the parallel (along field lines) distribution of wave

parameter. However, the strong localization of the wave

emission along field lines allows to consider resonant inter-

action rather independently of the geomagnetic field configu-

ration. This allows to apply the obtained results both for

radiation belts with a dipolar magnetic field and for the mag-

netotail’s magnetic field configuration with stretched field

lines (where strong magnetosonic waves are often observed,

see Ref. 56). Moreover, in the Earth’s magnetotail, the ratio

of plasma frequency Xpe to the local electron gyrofrequency

a)Electronic mail: ante0226@gmail.com
b)Also at National Taras Shevchenko University of Kiev, Kiev, Ukraine.

1070-664X/2015/22(6)/062901/10/$30.00 VC 2015 AIP Publishing LLC22, 062901-1

PHYSICS OF PLASMAS 22, 062901 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

194.167.30.120 On: Thu, 14 Jan 2016 07:55:37

http://dx.doi.org/10.1063/1.4922061
http://dx.doi.org/10.1063/1.4922061
http://dx.doi.org/10.1063/1.4922061
mailto:ante0226@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4922061&domain=pdf&date_stamp=2015-06-03


is larger than the corresponding ratio in the radiation belts. It

has been shown previously that the quasi-linear theory can

be used for the description of electron interaction with mag-

netosonic waves only for short enough wavelength (i.e., for

Xpe=Xce > 5, see Ref. 24). Thus, in this paper, we consider

the general question of electron resonant interaction with

finely structured fast magnetosonic waves for eventual appli-

cation to both the radiation belts and the magnetotail

physics.

II. WAVE MODEL

We consider whistler-mode waves with so low fre-

quency x that the ion contribution to wave dispersion

becomes significant (or even dominant). The cold plasma

dispersion relation of such waves is16,19

x ¼
ffiffiffi
�
p

Xceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Xpe=kc

� �2
q ; (1)

where � ¼ me=mi and mi is the effective mass of the ion mix-

ture. The cold plasma dispersion relation is valid when the

cold electron and ion species are largely dominant over

dilute hot species, as it is usually the case, for example, in

the inner magnetosphere [e.g., see Ref. 26]. Moreover, the

cold ion temperature is assumed to be so small that the corre-

sponding thermal velocity is much smaller than
ffiffiffi
�
p

times the

Alfven velocity (e.g., in the radiation belts the Alfven veloc-

ity is �100 times larger than the thermal velocity of the cold

ion component). In this case, cold ion thermal effects can be

neglected even for waves propagating near the local ion cy-

clotron harmonics.

The corresponding refractive index N is

N2 ¼
X2

pe

�X2
ce

1� x2

�X2
ce

 !�1

¼ 1

�

x2
pe

1� �x2
i

; (2)

where we introduce new parameters xi ¼ x=ð�XceÞ and

xpe ¼ Xpe=Xce. For a dipolar magnetic field, xpe can be

written as a simple function of L-shell in the inner magneto-

sphere40 (i.e., as a function of the distance LRE from the

Earth measured in Earth radii RE).

We use expressions for the electromagnetic field of the

waves in the following form:45

E ¼ Ew;x sin /� Ew;y cos /þ Ew;z sin /;

B ¼ Bw;x cos /� Bw;y sin /þ Bw;z cos /;
(3)

where for fast magnetosonic waves with h � p=2, the rela-

tionships between electric and magnetic wave amplitude

components are

Ew;x

Bw;y
¼ P� N2

PN cos h
;

Ew;y

Bw;y
¼ D

S� N2

P� N2

PN cos h
;

Ew;z

Bw;y
¼ �N

P
;

Bw;x

Bw;y
¼ � D

S� N2

P� N2

P
;

Bw;z

Bw;y
¼ D

S� N2

P� N2

P
tan h;

and P, S, D, are Stix’s coefficients.44 The wave phase is

/ ¼ kxxþ kzz� xt � kðxþ z cos hÞ � xt. Electromagnetic

fields (3) can be expressed through two components of the

vector potential A ¼ �ay sin /ex þ ax cos /ex and scalar

potential U ¼ / cos /. The relationship between amplitudes

of wave components gives the relation between ax, ay, and /

/ ¼ � 1

N

N2

P� N2

S� N2

D
ay;

ax ¼
P

P� N2

S� N2

D
ay:

(4)

We introduce Bw as the full wave magnetic field amplitude,

i.e.,

1

2p

ð2p

0

jBj2d/ ¼ B2
w: (5)

Thus, for h � p=2, we have the corresponding expression

for Bw;y

Bw;y ¼ Bw
D

S� N2

P� N2

P

� ��1

cos h: (6)

The combination of Eqs. (5) and (6) gives

Ay ¼ Bw=kð Þsin /;

Ax ¼ Bw=kð Þa cos /;

U ¼ Bw=Nkð Þa cos /;

a ¼ P

P� N2

S� N2

D
: (7)

Fig. 1 shows the coefficient a as a function of wave fre-

quency xi for the simplified dispersion relation (1) and when

FIG. 1. Dependence of parameter a on the normalized wave frequency

xi ¼ x=ð�XceÞ. The solid line shows results for the simplified dispersion

relation (1), while the dotted line shows results obtained with the full disper-

sion relation of whistler-mode waves.16
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using the full dispersion relation of whistler-mode waves.16

One can see that for xi < 20, we can safely use only the sim-

plified dispersion. One additional property of coefficient

a can be derived by taking into account that N2 � S and

N2 � P for magnetosonic waves. Accordingly, Eq. (7) gives

a � �N2=D � �N2Xcex=X
2
pe. This ratio does not depend on

plasma frequency (see Eq. (2)). Thus, the parameter a
remains more or less the same as plasma frequency (i.e.,

xpe) varies.

III. HAMILTONIAN EQUATIONS

The motion of relativistic electrons with charge e and

mass m in the background magnetic field B0ðzÞ and wave

field (3) can be described by the following Hamiltonian:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2

z c2 þ ðcpx þ eAxÞ2 þ ðeAy;RÞ2
q

� eU

eAy;R ¼ eAy þ exB0ðzÞ; (8)

where Ax, Ay, and U are given by Eq. (7). We use magnetic

field model B0ðzÞ ¼ Beqbðz=R0Þ, where bðz=R0Þ is a dipole

magnetic field with R0 ¼ LRE (L-shell and Earth radius RE).

The corresponding equatorial gyrofrequency is X0 ¼ eBeq=mc.

We introduce dimensionless variables and parameters

H0=mc2 ! H0; p=mc! p; r=R0 ! R0;

tc=R0 ! t; v ¼ X0R0=c; bw ¼ eBw=kmc2;

kX0=c! k; x=X0 ! x; N ! ðk=xÞ; (9)

and rewrite the Hamiltonian (8) as

H ¼� bwða=NÞ cos /

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ ðpx þ bwa cos /Þ2 þ ðbw sin /þ vxbÞ2
q

:

(10)

The parameter bw is small. Thus, the Hamiltonian (10) can

be expanded as

H ¼ H0 þ bw
px

H0

a cos /þ vxb

H0

sin /� a

N
cos /

� �
;

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ p2
x þ vxbð Þ2

q
: (11)

The Hamiltonian H0 shows that the unperturbed motion (for

bw¼ 0) inside the phase plane ðx; pxÞ is periodic. Thus, we

can introduce the adiabatic invariant (i.e., magnetic moment)

Ix ¼
1

2p

þ
pxdx ¼ H2

0 � 1� p2
z

2vb
: (12)

The corresponding change of variables is

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ix=vb

p
sin b;

px ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb

p
cos b;

_b ¼ �vb=H0; (13)

and the final Hamiltonian H0 can be written as

H0 ¼ c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z þ 2vIxb
q

: (14)

We substitute Eqs. (13) and (14) into Eq. (11) and obtain

H ¼H0 � bw
a

N
cos /

þbw

ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb
p

c
a cos / cos bþ sin b sin /ð Þ: (15)

The corresponding wave phase is

/ ¼ vðkzzþ kx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ix=vb

p
sin b� xtÞ: (16)

We use classical expansions of cos /; sin / in Bessel func-

tions Jn to get the series

sin / sin b ¼ �
X1

n¼�1
J0n gð Þcos ~/ þ nb

� �
;

cos / cos b ¼
X1

n¼�1

n

g
Jn gð Þcos ~/ þ nb

� �
;

cos / ¼
X1

n¼�1
Jn gð Þcos ~/ þ nb

� �
; (17)

where

~/ � vðkz cos h� xtÞ;
g � k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ixv=b

p
:

(18)

Substituting Eq. (17) into Eq. (15), we get

H ¼ H0 � bw

X1
n¼�1

Wn cosð~/ þ nbÞ; (19)

Wn ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb
p

c
J0n gð Þ �

an

g
Jn gð Þ

� �
þ a

N
Jn gð Þ:

In the following, we consider only the Landau resonance

n¼ 0, which is known to be the most effective resonance for

electron interaction with magnetosonic waves (see Refs. 18,

31, and 43). Thus, the Hamiltonian (19) takes the form

H ¼ H0 � bwW0 cosð~/Þ; (20)

W0 ¼
a

N
J0 gð Þ �

ffiffiffiffiffiffiffiffiffiffiffi
2Ixvb
p

c
J1 gð Þ;

where J00 ¼ �J1. Hamiltonian equations for the Hamiltonian

(20) are

_z ¼ pz=c

_pz � �ðw0b0ðzÞ=2cÞ þ F

F ¼ vbwkW0 cos h sin ~/
~/ ¼ vðkz cos h� xtÞ; g ¼ k

ffiffiffiffiffiffiffiffiffiffi
w0=b

p
kW0 ¼ axJ0ðgÞ � kc�1

ffiffiffiffiffiffiffiffi
w0b
p

J1ðgÞ;

8>>>>>><
>>>>>>:

(21)

where we introduced w0 ¼ ðc2
0 � 1Þ sin2a0 ¼ 2vIx, c0 is the

initial Lorentz factor and a0 the initial equatorial pitch-angle.
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In Eq. (21), k is determined by Eq. (2). When many waves

are present in the system, the force F takes the following

form:

F ¼
X

l

vbw;lklW0;l cos hl sin ~/l;

~/ ¼ vðklz cos h� xltÞ; gl ¼ kl

ffiffiffiffiffiffiffiffiffiffi
w0=b

p
;

klW0;l ¼ alxlJ0ðglÞ � klc
�1

ffiffiffiffiffiffiffiffi
w0b

p
J1ðglÞ: (22)

IV. TEST PARTICLE MODEL VS. QUASI-LINEAR
APPROXIMATION

To solve system (22) numerically, we first need to define

the wave distribution over angles of propagation h and fre-

quencies x. We use here the approach proposed in Ref. 47:

the wave intensity spectrum is given by equation

P � exp �
x� xmð Þ2

dx2
� h� hmð Þ2

dh2

 !
; (23)

while the corresponding wave amplitudes are

Bw;l ¼
Bw0

RB
exp �

xl � xmð Þ2

2dx2
� hl � hmð Þ2

2dh2

 !
; (24)

RB ¼
1ffiffiffi
2
p
XNl

l¼1

exp �
xl � xmð Þ2

2dx2
� hl � hmð Þ2

2dh2

 !
;

where Bw0 is root-mean-square (RMS) wave amplitude.

Wave characteristics are determined according to spacecraft

observations:18,31 xm ¼ 7�Xce; dx ¼ 2�Xce; hm ¼ 89�; dh
¼ 0:6�. We use 100 different values of hl 2 ½88:6�; 89:2�	
and 100 different value of frequency xl 2 ½xm � 2dx;
xm þ 2dx	. Thus, the total number of waves is Nl ¼ 104.

The distribution of wave intensity along field lines is set in

agreement with spacecraft observation31 P � expð�ðk=3�Þ2Þ
for magnetic latitude jkj < 3�, and P¼ 0 for jkj > 3�.

Two examples of particle trajectories calculated by

solving numerically the system (22) are shown in Fig. 2. One

bounce period contains two time intervals with variations of

particle energy c and equatorial pitch-angle a0: small ampli-

tude variations correspond to the nonresonant passage of

particles through the group of waves (when particles propa-

gate in opposite direction relative to the waves), while signif-

icant variations of particle parameters correspond to efficient

resonant scattering by the waves.

We use Eq. (22) to trace particle ensemble and calculate

diffusion coefficients as27

Daa ¼ ðDa0Þ2=sb; DEE ¼ ðDE=EÞ2=sb; (25)

where Da0 and DE denote changes of particle equatorial

pitch-angle and energy, respectively, while E ¼ mc2ðc0 � 1Þ
is the initial particle energy, and sb � 0:085

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2

0

p
Lð1:3� 0:56 sin a0Þ is the electron bounce period measured

in seconds.27 To calculate diffusion coefficients (25) for

given pitch-angle a0 and energy E, we numerically integrate

103 trajectories and determine the jumps Da0 and DE after

one passage through the equatorial plane. Each trajectory is

integrated during a time interval equal to half of the bounce

period (particles are run from one mirror point and integra-

tion stops when these particles reach the second mirror point

on the other side of the equator). For given a0 and energy E,

all particles have the same initial velocities, but for integra-

tion of each trajectory, we generate the unique initial phases

of waves approximating the spectrum. Then, we calculate

the average over ensemble values of Da0 and DE.

Comparing the latter diffusion coefficients obtained from

test-particle simulations with coefficients derived in the

framework of quasi-linear theory should allow us to deter-

mine the limits of applicability of the approximation of sto-

chastic particle scattering by a broad wave ensemble.24,46,47

To obtain quasi-linear diffusion coefficients, we use the ana-

lytical model proposed and tested in Ref. 31. This model

uses the dispersion relation (2) and the same parameters hm,

xm, dh; dx as the test particle model.

A. Wide wave spectrum

In this subsection, we compare quasi-linear diffusion

coefficients with diffusion coefficients (25) obtained from

test particle simulations. In the test particle simulations, we

use the wave power distribution (23) and approximate it by

104 waves with initially random phases distributed uniformly

within the ½0; 2p	 range. Fig. 3 shows the resulting diffusion

coefficients. One can see that for xpe ¼ 10, the quasi-linear

theory gives results in very good agreement with test particle

FIG. 2. Two examples of particle trajectories are displayed for 100 keV and 1 MeV. Black curves show time profiles of c, while grey curves show time profiles

of equatorial pitch-angle a0. Dotted boxes show an interval of time corresponding to one bounce period. The background magnetic field corresponds to L-shell

equal to 4.5, xpe ¼ 4:5, wave amplitude is Bw0 ¼ 100=
ffiffiffi
2
p

pT. To integrate the trajectory for many bounce periods, we consider waves propagating in the

same direction below and above the equatorial plane, i.e., cos h > 0.
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simulations (for both energy and pitch-angle scattering).

However, as xpe becomes smaller, the discrepancy increases

progressively.

This is an effect of the spatial confinement of magneto-

sonic waves inside a narrow latitudinal region close to the

equatorial plane: if the wavelength becomes larger than the

size of this domain (or, equivalently, if the time of resonant

wave particle interaction becomes larger than the laps of time

necessary for electrons to travel through this domain), par-

ticles can experience an additional transit time scattering even

in the non-resonant case, violating a condition of applicability

of the quasi-linear theory.7,24 This effect directly comes from

the dispersion property of magnetosonic waves, i.e., from the

dependence of the wavelength on plasma density.

As the results displayed in Fig. 3 demonstrate the valid-

ity of the quasi-linear approach to model electron scattering

by magnetosonic waves for xpe ¼ 10, we shall hereafter

keep the same value of xpe to further investigate the possible

effects of a discrete wave spectrum, which have not been

studied before.

B. Discrete wave spectrum: Resonance overlapping

To investigate the effect of a discrete wave spectrum,

we use the test particle approach with a modified distribution

(24): for the frequency distribution, we use only nine sepa-

rate harmonics xi 2 ½3; 11	, while the distribution of h angle

remains the same as the one used to obtain results shown in

Fig. 3. We perform calculations only for xpe ¼ 10 and show

the corresponding results in Fig. 4.

One can see that there is no significant difference

between quasi-linear diffusion coefficients (calculated with

the full spectrum (24)) and the results of test particle simula-

tions obtained when considering a discrete spectrum of

waves. This result stems from the relatively broad distribu-

tion of wave h angles. For such a distribution, the resonances

corresponding to separate ion cyclotron harmonics overlap

in phase space10 and, thus, the resonant wave-particle inter-

action is well described in the framework of the quasi-linear

approximation.39

The Landau resonance corresponds to the condition

x ¼ ðpz=cÞkk, where parallel wave phase velocity x=kk
¼ x=k cos h can be written as (see dispersion relation (1))

x
kk
¼ c

ffiffiffi
�
p

xpe cos h
1� x2

�X2
ce

 !1=2

: (26)

Thus, the width of the resonance corresponding to a variance

dh can be calculated as (for small dh)

FIG. 3. Comparison of pitch-angle and

diffusion rates obtained by test particle

simulations (colored circles) and quasi-

linear approximation (colored curves).

Three values of xpe parameter are

used. The background magnetic field

corresponds to L-shell equal to 4.5,

wave amplitude is Bw0 ¼ 100=
ffiffiffi
2
p

pT.
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d x=kk
� �

¼ x
kk

dh tan hm: (27)

On the other hand, Eq. (26) gives a relation for the distance

between two resonances as a function of ion cyclotron har-

monic numbers l and lþ 1 (i.e., with xi ¼ l and xi ¼ lþ 1)

Dl x=kk
� �

¼ x
kk

�l

1� x2=�X2
ce

: (28)

Thus, the condition of overlapping of all l resonances

dðx=kkÞ > lDlðx=kkÞ can be written as

dh >
�l2= tan hm

1� x2=�X2
ce

� 2�l2

tan hm
: (29)

For l 23,11 and hm ¼ 89�, the condition (29) is satisfied for

dh > 0:1�. Moreover, the condition of overlapping of two

neighboring resonances dðx=kkÞ > Dlðx=kkÞ is satisfied for

dh > 0:01�. Thus, almost all realistic widths of the h distri-

bution should lead to stochastic scattering of charged par-

ticles by magnetosonic waves, even in the case of a discrete

frequency spectrum.

It is interesting to note that the phenomenon of reso-

nance overlapping produces quasi-linear electron scattering

even for one separate frequency xi with a wide enough h dis-

tribution. Accordingly, we separately calculated partial dif-

fusion coefficients for nine frequencies xi 23,11 and

compared the sum of these coefficients with the quasi-linear

diffusion rate calculated for a broad frequency spectrum.

Results shown in Fig. 5 demonstrate that the sum of partial

diffusion coefficients (for each wave we use an amplitude

equal to the partial amplitude of the corresponding frequency

in the broad wave spectrum (24)) is well-described by the

quasi-linear diffusion rates. Thus, the splitting of the wave

emission into individual ion cyclotron harmonics cannot

influence the applicability of the quasi-linear theory for large

enough dh.

C. Separate resonances

In this section, we check the condition of resonance

overlapping given by Eq. (29). We choose now a smaller

dh ¼ 0:06� to avoid a total overlap of all the resonances for

l 2.3,11 In this case, one can expect to obtain different results

when considering a discrete spectrum with xi ¼ l as

FIG. 4. Comparison of pitch-angle dif-

fusion rates obtained by test particle

simulations (colored circles) and based

on the quasi-linear approximation

(colored curves). Wave spectrum

consists in nine separate harmonics

xi 2 [3,11], while xpe ¼ 10. The

background magnetic field corresponds

to a L-shell equal to 4.5, wave ampli-

tude is Bw0 ¼ 100=
ffiffiffi
2
p

pT.

FIG. 5. Comparison of pitch-angle dif-

fusion rates obtained by test particle

simulations (circles and thin curves)

and quasi-linear approximation (dotted

curve). Thin curves show diffusion

coefficients calculated for a given fre-

quency xi ¼ l with l 2 ½3; 11	. Circles

show the sum of individual diffusion

coefficients. Two energies are used,

while xpe ¼ 10. The background mag-

netic field corresponds to a L-shell

equal to 4.5, wave amplitude is Bw0 ¼
100=

ffiffiffi
2
p

pT.
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compared with the quasi-linear approximation. Indeed, Fig.

6 shows a clear difference between the diffusion rates

obtained for the broadband and discrete spectrum models. A

discrete wave spectrum leads to diffusion rates with

two-three times smaller maximum levels, but a much wider

distribution over equatorial pitch-angles than within the

quasi-linear approximation. Since the narrowness in equato-

rial pitch-angles of the diffusion peak is directly provided by

the Landau resonance condition, it seems to imply that the

significant diffusion outside of this domain obtained with

test particle simulations in the case of a discrete spectrum

should come from non-resonant (transit time) scattering.

Thus, the applicability of quasi-linear theory for very small

dh remains questionable.

To further check the dependence of diffusion rate pro-

files on parameter dh, we plot in Fig. 7 the results of test par-

ticle simulations for several values of dh. Numerical

modelling shows that the value of dh determines both the

position of the location of the maximum and the effective

width (in pitch-angle domain) of diffusion rates.

It is worth noting the nonmonotoneous dependence of

the diffusion rate maximum level on dh, e.g., for 100 keV,

the minimum value of the pitch-angle diffusion rate can be

found for dh � 0:3�. Nevertheless, the variation with dh of

the (pitch-angle) position of the diffusion rate maximum can

be explained in the frame of quasi-linear theory. In the very

small dh limit, the position of the maximum should be given

by the Landau resonance condition at the mean angle

h ¼ hm. However, when dh becomes large enough, a slight

shift to higher pitch-angles is allowed by the larger width of

the h distribution P in Eq. (23), due to the rough proportion-

ality of the quasi-linear diffusion rate to �PðhÞ tan2a0 (see

Ref. 31)—e.g., compare the locations of quasi-linear diffu-

sion peaks in Figs. 4 and 6.

Although both Figs. 6 and 7 demonstrate some sensible

differences between results of electron scattering obtained

by test particle modeling and within the quasi-linear approxi-

mation, it should be stressed that these differences remain

smaller than the accuracy of determination of actual wave

parameters in real spacecraft observations. Thus, the loss of

accuracy of the quasi-linear theory due to the effect of reso-

nance splitting at very small dh does not look as important as

the effect of a small enough plasma density7,24 demonstrated

before in Fig. 2.

The effect of a discrete wave spectrum can be further

investigated in the case of more specific spectrum shapes.

For example, we can assume that the spectrum contains two

separate maxima at xi ¼ x1 and xi ¼ x2. Such a spectrum

can be approximated as

P�exp � h� hmð Þ2

dh2

 !


 exp �
x�x1ð Þ2

dx2

� �
þ exp �

x�x2ð Þ2

dx2

� �� �
: (30)

For a discrete spectrum approximation, we consider only

two harmonics xi ¼ x1;2 and 100 waves with different h
values. For the wide spectrum, we separate the distribution

(31) into 100 frequencies xi 2 [3,21] (in both cases, we use

x1 ¼ 6; x2 ¼ 19). For a small enough dh, the separation

between resonances occurring at x1 and x2 should a priori

lead to some difference between Daa obtained for discrete or

FIG. 6. Comparison of pitch-angle diffusion rates obtained by test particle simulations (thin curves with circles) and quasi-linear approximation (solid curve).

Four energies are used, while xpe ¼ 10 and a small dh ¼ 0:06�. The background magnetic field corresponds to L-shell equal to 4.5, wave amplitude is Bw0 ¼
100=

ffiffiffi
2
p

pT.

FIG. 7. Comparison of pitch-angle diffusion rates obtained by test particle

simulations for different dh. Two energies are used, while xpe ¼ 10. The

background magnetic field corresponds to L-shell equal to 4.5, wave ampli-

tude is Bw0 ¼ 100=
ffiffiffi
2
p

pT.
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wide spectra. Fig. 8 shows indeed that we have two localized

maxima in the case of a discrete spectrum. The deepness of

the minimum in Daa located between these maxima

decreases with increase of dh: already for dh ¼ 0:6�, the

difference between Daa obtained with discrete and wide

spectra disappears. This confirms again that the effect of the

discreteness of the spectrum becomes important only for

extremely small dh values.

D. Large wave amplitudes

In this subsection, we check the applicability of the

quasi-linear approximation for high-amplitude magnetosonic

waves. To this aim, we use test particle simulations to obtain

pitch-angle and energy diffusion coefficients for wave ampli-

tudes Bw0 ranging from 100 pT up to 2.5 nT (such very high

amplitude waves were recently observed in the radiation

belts and in the Earth magnetotail, see Refs. 50 and 56).

Diffusion coefficients are normalized on 2ðBw0=100 pTÞ2 to

allow an easier comparison between the results obtained

with different wave amplitudes. Therefore, if the normalized

diffusion coefficients coincide with the coefficients obtained

for Bw0 ¼ 100 pT, then the quasi-linear approximation

should work well for the considered wave amplitude. Fig. 9

shows that the quasi-linear approximation is applicable for

Bw0 < 300 pT, while for larger wave amplitudes the results

of test particle simulations do not coincide any more with

the predictions of the quasi-linear theory. For large wave

amplitudes, the diffusion coefficients increase weakly with

Bw0, while the quasi-linear theory predicts an increase

proportional to �B2
w0. Similar results have been obtained

when considering high amplitude parallel chorus waves (see

Ref. 47).

The inapplicability of the quasi-linear theory for the

description of charged particle scattering by high-amplitude

waves is due to the intrinsically nonlinear nature of such an

interaction in the case of high enough amplitudes.39 In par-

ticular, the quasi-linear theory assumes that the time Tr of

the wave-particle resonant interaction does not depend on

wave amplitudes and that it is determined by wave disper-

sion and the inhomogeneity of the background magnetic

field.22,49,54 In this case, the small change of particle pitch-

angle Da0 (or energy) due to a single act of scattering is

proportional to the amplitude Bw of the wave interacting

with the particle (as the amplitude of the Lorentz force acting

on that particle) multiplied by the time of interaction Tr. Due

to the non-coherence of these many small changes Da0, the

average change is equal to zero, while the variance hðDa0Þ2i
is about ðBw0TrÞ2 � B2

w0. This latter dependence corresponds

to the quasi-linear approximation. However, for high-

amplitude waves the timescale of the wave-particle resonant

interaction is controlled by the wave amplitude Tr � B
�1=2
w0

(this is the so-called nonlinear regime of wave-particle inter-

action, see Refs. 20, 33, 36, and 41). As a result, we obtain a

variance hðDa0Þ2i � Bw0 instead of �B2
w0 as predicted by the

quasi-linear theory. Moreover, for high amplitude waves,

there is a finite average change hDa0i 6¼ 0 providing particle

non-diffusive drift in the pitch-angle (and energy) space.3,6

In such a case, the variation of particle pitch-angle and

energy cannot be described as a diffusive process.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have considered the scattering of rela-

tivistic electrons by fast magnetosonic waves. We have used

a magnetic field configuration and system parameters typical

for the Earth radiation belts. However, the obtained results

can be generalized for applications in the magnetotail region,

FIG. 8. Comparison of pitch-angle diffusion rates obtained by test particle

simulations for discrete and wide spectra (electron energy is 100 keV,

xpe ¼ 10). The background magnetic field corresponds to L-shell equal to

4.5, wave amplitude is Bw0 ¼ 100=
ffiffiffi
2
p

pT. Results obtained for a wide spec-

trum are the same for all used values of dh.

FIG. 9. Comparison of pitch-angle and diffusion rates obtained by test parti-

cle simulations for different wave amplitudes. Two energies are used, while

xpe ¼ 10. The background magnetic field corresponds to L-shell equal to

4.5. All diffusion rates are normalized on ðBw0=100 pTÞ2.
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where strong magnetosonic emissions were recently

observed.8,56 Magnetosonic waves represent a very conven-
ient wave emission for testing the applicability of the

quasi-linear approximation: being trapped within a narrow

near-equatorial region, these waves interact with electrons

locally, and thus, one does not need to take into account

peculiarities of wave intensity and normal-angle distributions

along magnetic field lines (such peculiarities are not well

defined for whistler waves and represent a real challenge

for modeling electron scattering in the radiation belts, see

Refs. 1, 9, 25, 32, and 42). Using this natural advantage of

the magnetosonic wave emission, we have been able to

check the applicability of the quasi-linear approximation for

describing electron scattering in the case of a discrete wave

spectrum as well as for large wave amplitudes. Our study

can be considered as an analog to the investigation presented

in Ref. 47 for parallel whistler waves.

The data shown in Fig. 2 confirm the results obtained in

Ref. 24: the quasi-linear approximation does not work prop-

erly for xpe < 5. In the inner magnetosphere, the range

xpe < 5 is very important, since such values of xpe corre-

spond to a large slice of the outer radiation belt at L-shells

�3� 5, as well as to a significant part of the plasmasphere

(see the empiric model of plasma density in Ref. 40). For

xpe ¼ 3 and 0:1� 2 MeV electrons, the magnitude of diffu-

sion rates obtained from test particle modeling is 3–10 times

smaller than the predictions of the quasi-linear theory. This

is an important result, because the contribution of magneto-

sonic waves is considered to be critical in the outer plasma-

sphere, where these waves may essentially control electron

scattering in the absence of strong emissions of high-

frequency lightning-generated or VLF whistler waves.5,30

Thus, a higher wave intensity is necessary to get an impor-

tant contribution of magnetosonic waves. However, as Fig. 9

shows, the increase of diffusion rates with wave intensity is

not linear. Thus, estimating the wave intensity sufficient to

impact lifetimes of �MeV electrons inside the plasmasphere

requires a separate investigation. It should also be mentioned

that, in contrast to the radiation belts, the parameter xpe is

usually larger than 5 in the Earth magnetotail (typical values

are about xpe � 10, see magnetotail parameters in Ref. 37).

Thus, the quasi-linear approximation seems to be reliable

enough for calculations of electron scattering by magneto-

sonic waves in the magnetotail.

The results obtained for large amplitude waves (see

Fig. 9) demonstrate the natural problems of the quasi-linear

approximation in the case of very intense wave emissions.

Measured average amplitudes of fast magnetosonic waves in

the radiation belts are about 10� 50 pT (see Refs. 28, 29,

31, and 43) and thus, such values guarantee the applicability

of the quasi-linear approximation. However, recent space-

craft measurements demonstrate the presence of magneto-

sonic waves with amplitudes about few hundred pTs.50,56

For these waves, our modeling predicts a significant overesti-

mation of diffusion rates when using the quasi-linear approx-

imation. In such a case, test particle simulations should

better be used for accurately investigating electron scattering

by intense waves.

The relationship between quasi-linear and nonlinear

wave-particle interactions is determined by the wave ampli-

tudes39 and has not been studied yet extensively enough,

because significant efforts are necessary to reproduce the

transition between the regimes of purely nonlinear interac-

tion (including phase bunching and particle trapping) and the

regime of quasi-linear scattering. For most investigated

chorus types of whistler-mode waves, the wave intensity and

effective inhomogeneity of the system parameters vary sig-

nificantly along magnetic field lines.2,36,41 Thus, nonlinear

and quasi-linear regimes of wave-particle interaction can be

encountered by the same particle at different locations along

the field line. As a result, the effects of inhomogeneity

seriously complicate the description of particle nonlinear/

quasi-linear scattering.6 Moreover, the additional effects of a

wave emission localized within wave-packets4,48 and of the

variation of wave frequency within such packets11,12,47 also

make the analytical description of nonlinear wave-particle

interaction rather non straightforward (recent spacecraft

observations found similar frequency variation for magneto-

sonic waves as well13). Most of these problems can be easily

overcome for magnetosonic waves interacting with particles

locally within the equatorial region. In this case, the compar-

ison between nonlinear and quasi-linear wave-particle inter-

actions can be carried out almost analytically. We leave this

study for future publications.

To conclude, in this paper, we have considered the scat-

tering of relativistic electrons by magnetosonic waves in con-

ditions typical for the radiation belts. Our results show that

• The discreteness of the magnetosonic wave emissions can

influence significantly the wave-particle interaction only

for extremely narrow wave normal angle distributions,

while for realistic values of dh, the quasi-linear approxi-

mation still describes electron scattering rather well.
• For wave amplitudes larger than 300 pT, the nonlinear

effects of wave-particle interaction start playing an impor-

tant role. As a result, for such intense wave emissions, the

quasi-linear approximation cannot describe wave-particle

resonant interaction properly.
• In agreement with previous investigations,7,24 the quasi-

linear approximation can describe electron scattering by

magnetosonic emissions localized within a jkj < 3� region

only for a large enough plasma frequency (Xpe=Xce � 10).

The results obtained for high-amplitude waves open the

door for further investigations of nonlinear electron scatter-

ing by magnetosonic waves.
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