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We present the first orbit-integrated self force effects on the gravitational waveform for an intermediate

(extreme) mass ratio inspiral source. We consider the quasi-circular motion of a particle in the spacetime

of a Schwarzschild black hole and study the dependence of the dephasing of the corresponding

gravitational waveforms due to ignoring the conservative piece of the self force. We calculate the

cumulative dephasing of the waveforms and their overlap integral, and discuss the importance of the

conservative piece of the self force in detection and parameter estimation. For long templates the inclusion

of the conservative piece is crucial for gravitational-wave astronomy, yet may be ignored for short

templates with little effect on detection rate. We then discuss the effect of the mass ratio and the start point

of the motion on the dephasing.
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I. INTRODUCTION AND SUMMARY

The detection of gravitational waves (GW) and the onset
of the new field of gravitational-wave astronomy is one of
the most exciting challenges for science in the XXI cen-
tury, completing what is sometimes alluded to as Einstein’s
Unfinished Symphony. The detection of GW will open a
new window onto the universe, that in addition to revealing
exciting information on exotic systems such as black
holes or cosmic strings is expected to also unravel as yet
unexpected sources.

One of the interesting sources for low-frequency GWare
the so called I(E)MRI sources, or intermediate (extreme)
mass ratio inspirals. Those are the GWemitted by a system
including a smaller compact object whose orbit decays into
a much larger massive black hole (MBH). Typical sources
are stellar mass black holes inspiraling into a supermassive
black hole, like those residing at the center of galaxies, and
also intermediate mass black holes (IMBHs) inspiraling
into MBHs. The importance of such sources is that because
of the extreme mass ratio the smaller compact object can
be viewed as a test particle, thus probing the spacetime of
the larger black hole and its surroundings. Inter alia, such
sources will allow us to test directly the Kerr hypothesis,
and allow us to map the spacetime surrounding such exotic
objects. Moreover, the detection of I(E)MRIs will allow us
to determine the mechanisms that shape stellar dynamics in
galactic nuclei with unprecedented precision [1].

The orbits of I(E)MRIs are typically highly relativistic,
and exhibit exciting phenomena, e.g., extreme periastron
and orbital plane precessions. Because the orbital evolution
time scale (‘‘radiation reaction time scale’’) is much longer
than the orbital period(s), over short time scales the orbit is
approximately geodesic, yet on long time scales it deviates
strongly from geodesic motion of the background. Instead,
the smaller objects moves along a geodesic of a perturbed

spacetime. Alternatively, one may construe the orbit as an
accelerated, nongeodesic motion in the spacetime of the
unperturbed central object, where the acceleration is
caused by the self force (SF) of the smaller object [2].
Detection and parameter estimation of GW from I(E)

MRIs relies on the construction of theoretical templates.
A number of approximation schemes for such templates
are available. First, the energy balance approach (‘‘the
radiative approximation’’) uses balance arguments for
otherwise conserved quantities, and relates the flux in these
quantities to infinity and down the event horizon of the
black hole with the particle’s orbit, so that the latter can be
adjusted to agree with the fluxes [3]. As the orbital evolu-
tion time scale is typically much longer than the orbital
period(s), the radiative approximation is very satisfactory
during the adiabatic phase of the motion. As the particle’s
orbit is affected by the fluxes away from it, when the orbit
is not stationary one encounters complex retardation
effects. Most currently available EMRI waveforms have
been obtained by such an approach. This approach, how-
ever, ignores conservative effects that do not register in the
constants of motion.
These retardation effects are completely avoided when

one considers a local approach to orbital evolution in terms
of the SF. (One should bear in mind, however, that the SF
itself is a nonlocal quantity, with contributions arising from
the quasilocal neighborhood of the particle and possibly
beyond [4].) In addition, the local approach to the calcu-
lation of orbital evolution via the SF is not restricted to the
adiabatic regime, it avoids the complications associated
with the rate of change of the Carter constant, and, most
importantly, it includes also conservative effects that are
discarded when one uses balance arguments. Over the last
decade much progress has been made in the computation
and understanding of the SF in General Relativity
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(for recent reviews of the SF in General Relativity
see Refs. [2,5]).

The computation of the fully relativistic SF [6] allows
one to include conservative effects in the waveform
templates, and study the importance of the conservative
effects. True self consistent orbit and waveforms include
the instantaneous solution of the coupled SF integrated
equations of motion and the perturbation equations, or
equivalently the interaction of the particle with its own
field over its half-infinite past world line [7]. Very recently,
for the scalar field toy model, such self consistent
Schwarzschild orbits and waveforms were presented [8].
Here, we are making the simplifying assumption that the
effects of the difference between the SF that is calculated
for the actual orbit (the self consistent approach [7,9]) and
that which is calculated for a geodesic of the same instan-
taneous orbital parameters, is smaller than the effects of the
latter and hence negligible at first order. This approxima-
tion is valid for as long as the orbital evolution is adiabatic,
that is as long as the orbital evolution time scale is much
longer than the orbital period(s). In a Schwarzschild back-
ground of massM, the adiabatic approximation holds when

the mass ratio � :¼ �=M is such that " � �1=2, where "
measures the distance to the innermost stable orbit, spe-
cifically " ¼ p� 6� 2� where p is the semilatus rectum
and � is the orbital eccentricity [10]. In practice, our
approximation is to a leading order in � beyond geodesic
motion. We neglect terms that are linear in second-order
SFs, although our method is amenable to their inclusion
when they become available. This approximation is valid
for at least a part of the relevant parameter space [11], but
as their inclusion would contribute linearly to the dephas-
ing, the contribution of the conservative piece of the SF
(hereafter CSF) may be isolated as is done here. Using true
self consistent waveforms will both produce more accurate
waveforms, and allow us to test the accuracy of this
approximation. Most importantly, our approach allows us
to see for the first time the effect of the CSF on GWemitted
from IMRI sources.

We present here the first waveforms obtained with
inclusion of the CSF, and study its effect within the simple
class of quasi-circular orbits around a Schwarzschild black
hole. Specifically, we study the effect of the system’s mass
ratio on the dephasing that occurs when one neglects the
CSF. We find weak dependence of the dephasing on the
mass ratio, in accord with expectations based on the scaling
of the number of orbits with the inverse of the mass ratio,
and the scaling of the dephasing effect of the CSF per orbit
with themass ratio.We also find that the dephasing depends
quadratically on the initial point of the motion for the range
of parameters we tested. We reiterate that second-order
dissipative effects are ignored in this Paper. Their inclusion
will guarantee the full consistency of the model, and will be
comparable to the self-consistent approach. Recently, sig-
nificant advance in the understanding of the second-order

self force has been achieved [12,13], although the second-
order terms have not been calculated in practice for any
configuration yet. The inclusion of the second-order dissi-
pative effects awaits further development to both theory and
computational techniques.
After the completion of this work we became aware of

Warburton et al. [14]. The approach of Ref. [14] is similar
to our osculating method, except that [14] estimates the
dephasing by the difference in the azimuthal angle ’ of the
orbit, whereas we actually compute the waveforms and find
their dephasing. The generalization of our quasi-circular
orbit to bound orbits of varying eccentricity—as is done in
Ref. [14]—is straightforward, as the osculating orbits
equations of motion already include the eccentricity
parameter. Lastly, we compute the waveforms using two
independent computational methods, specifically the oscu-
lating method and the direct method. The direct method
does not appear to us to be convenient for generalization to
generic Kerr orbits, and the osculating method has a clear
advantage over it for such orbits.
The organization of this paper is as follows: In Sec. II

we discuss the computational and numerical methods that
we use. In Sec. III we discuss our results for the orbits
(III A), the waveforms (III B) and the dependence of the
dephasing on the mass ratio and the initial point of the
motion (III C).

II. METHOD

We use the fully relativistic SF obtained by Barack and
Sago [6] for circular Schwarzschild geodesics to drive the
orbital evolution (our computation allows for an easy
replacement with a different force expression, say one
that includes second order dissipative effects, or spin-orbit
coupling effects when becoming available), and compare
the resulting waveforms with those obtained from the
energy balance approach and those obtained when only
dissipation is left in the SF, setting by hand the CSF to
vanish. In practice, we consider a point source� in a quasi-
circular orbit around a Schwarzschild black hole M with a
mass ratio � :¼ �=M, and the motion starts at a value of
the semilatus rectum p0 until it gets close to the Innermost
Stable Circular Orbit (ISCO) at p ¼ 6. Such sources are
relevant to the NGO capabilities: NGO will have the
capability to detect GW emitted by an IMBH in the mass
range 102–4M� spiraling into a MBH in the mass range
3� 105–107M� such that the mass ratio is 10�3–10�2 out
to cosmological redshift z� 2–4. In addition, advanced
LIGO could detect compact stellar sources spiraling
into an IMBH in the same mass ratio range [15]. We
specialize below to this mass ratio range, � 2
½10�3–10�2�. Although the linearized approach used here
is intended to be used only when � � 1 and one may not
simply extend the range of � to high values and still expect
accurate results, the error involved from neglecting Oð�2Þ
terms in the self force (specifically its dissipative piece) is
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comparable to the accuracy of our computation. In this
sense, to within the accuracy of our numerics, we are
justified in studying the IMRI case as long as we do not
raise � beyond 10�2. Throughout we present waveforms
for the fundamental mode, m ¼ 2.

We integrate the equations of motion using the Barack-
Sago SF which was calculated for momentary circular
geodesics. As the Barack-Sago SF is tabulated for a select
choice of orbital radii, we interpolate to intermediate
values such that the original accuracy is maintained.
Specifically, we match two asymptotic expansions: at large
distances (which we take in practice to be r > 8M) we take
the standard post-Newtonian expansion for the luminosity
in gravitational waves, and construct from it the temporal
component of the SF. To 5.5 PN order the PN expression
does not provide us with sufficient accuracy to reproduce
all the r � 8M data points of the Barack-Sago data. We
therefore add an effective remainder term that appears like
a 6PN term, and fit its two free parameters to agree with all
the large distance tabulated data to all significant figures.
The radial component, or CSF, is modeled by a PN-like
expansion with four free parameters. At short distances
we expand the SF such that convergence is fast and only
four free parameters are needed for either component.
Specifically, we expand the radial component about the
ISCO at p ¼ 6. The expansion functions are as follows:
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where PN5:5 stands for the standard 11
2—post-Newtonian

expression (converting Eq. (3.1) in Ref. [16] from lumi-
nosity to ft—see Appendix ). Fitting the free parameters,
we find the values appearing in Table I.
The simplicityof ourmodel allows us to easily separate the

CSF effects. Specifically, for quasi-circular Schwarzschild
orbits we may write fSF� ¼ fSFt �t

� þ fSF’ �’
� þ fSFr �t

r where

the last term on the right hand side (rhs) is purely conserva-
tive, and the first two are purely dissipative. We may there-
fore study the conservative effects by turning off by hand the
last term on the rhs.
We integrate the SF driven orbit using two independent

methods: one method is the osculating orbit approach [17]
[specifically Eqs. (43)–(47) therein], with special care
given to the requirement that the orbit is quasi-circular.
Specifically, free evolution may take the orbit away from
quasi-circularity because integration using the osculating
geodesics method cannot keep the value of the eccentricity
as precisely zero. As both variables � and � (see Ref. [17]
for definitions) are dynamical, the eccentricity � must
evolve along the orbit too. This behavior is shown in
Fig. 1. Interestingly, the inclusion of the conservative piece
of the SF amplifies the resulting eccentricity.
The second method is the direct integration of the orbit.

The direct integration method takes the local equation of
motion to be u�r�u

� ¼ ��1f�SF (Newton’s second law,

with covariant differentiation compatible with the back-
ground metric) and integrates its solution. Both codes are
numerically stable and convergent. Specifically, the oscu-
lating code converges with 5th order, and the direct code
converges with 4th order (Fig. 2).
Comparing the two independent methods for finding the

SF driven waveforms is not trivial because of a difficulty in
finding identical initial conditions. Specifically, the oscu-
lating method requires as initial data only the specification
of the initial position vector, which in our case is taken to
be a circular geodesic at some initial p0. The direct
method, however, requires both the position and the veloc-
ity vectors to be specified, such that the constraint equation
u�u

� ¼ �1 is also satisfied. The main difficulty is that in

the initial data for the osculating method the initial ur0 ¼ 0,

TABLE I. The fit parameters for the SF. These parameters reproduce the accuracy of Ref. [6]
to all significant figures for all data points. Our results for aþ6;6L are very inaccurate predictions

for the corresponding PN parameters, as our fit ignores all higher-order terms.

a�0 4.57583 aþ6 331.525 b�0 1.32120 bþ0 1.999991

a�1 31.8117 aþ6L �2081:57 b�1 1.2391 bþ1 �6:9969

a�2 �267:250 b�2 �1:297 bþ2 6.29

a�3 1049.27 b�3 1.07 bþ3 �24:6
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such that it corresponds to an incorrect initial radial veloc-
ity for the direct method. In practice, we find the initial data
for the direct code by generating the orbital parameters at
p0 by running the osculating code from some p � p0

down to p0, and then take the position and velocity vectors
at p0 as the initial data for the direct method. The residual
disagreement in the initial data can be controlled to be
compatible with our numerical error tolerance. We then use
the obtained orbits to generate the waveforms using a code

for the sourced Teukolsky equation with hyperboloidal
slicing, a code which converges at 2nd order [18].
As noted above, our approximation holds only for as

long as " � ��1=2. We therefore do not integrate the
equations of motion in practice all the way down to the
ISCO at p ¼ 6, and stop the integration at a finite distance
from the ISCO. In practice, we stop the integration at
pfinal ¼ 6:15� 0:10. Stopping at pfinal is enough to esti-
mate the dephasing at the ISCO: the dephasing �� is a
smooth function of the time t along the particle’s world
line. In practice, we extrapolate r as a function of t to the
ISCO to determine the time at which the particle arrives at
the ISCO, and then we extrapolate the phase of the wave-
form to the same value of the time to estimate the phase of
the waveform when the particle arrives at the ISCO. We
may then find the difference of the total phases between
two waveforms to find the dephasing ��.

III. RESULTS

A. The orbit

We next choose � ¼ 10�2 and p0 ¼ 10. There is of
course nothing special about this choice of the parameters,
except that we couldn’t make a much higher choice for �
and justify it with the linearized approximation used.
Below we study the dependence of the effect on the
parameters �, p0. The orbit is displayed in Figs. 3–6 for
the three codes. Notably, the two independent self force
codes reproduce the orbit to high level of agreement, with a
difference much smaller than the difference between either
and the orbit generated in the energy balance approach.
This difference is attributed to the effect of the conserva-
tive piece of the self force.
The orbit, of course, is a gauge dependent quantity.

Indeed, the position vector changes trivially under gauge
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FIG. 2 (color online). Convergence tests for the two codes. Top
panels: the 4-position (A) and 4-velocity (B) for the osculating
code as functions of the azimuthal angle ’. Lower panels: the
4-position (C) and 4-velocity (D) for the direct code and
a function of time t. In all cases shown here � ¼ 10�2 and
r0 ¼ 10M, and the CSF is included.
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transformations, x� ! x� þ ��. We can, however, create
gauge invariant quantities in a specific gauge choice (in our
case, the Lorenz gauge), and then those quantities are
guaranteed to remain unchanged in any other gauge. Two
independent gauge invariant quantities are ut (‘‘gravita-
tional redshift,’’ ‘‘helical Killing vector of the perturbed
spacetime’’) and the angular frequency � [19]. In Fig. 7
we plot ut as a function of � with and without the con-
servative piece of the self force. Notably, to the accuracy
of our numerical computation the two curves overlap. That
is, we find—as expected—that ut as a function of � is

insensitive to the conservative piece of the self force [5].
This conclusion implies that when an actual data stream is
used and this gauge invariant figure is plotted, one may use
a simplified radiation-reaction scheme, that does not
include the conservative effects in its analysis.
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There is, however, an aspect of the gauge invariant
figure 7 that is sensitive to the conservative effects, spe-
cifically the speed with which the data point moves along
the curve. The way the conservative effects are manifested
in the gauge invariant plot is not is the shape of the curve,
but in the time it takes the signal to move along it. One may
therefore observe the CSF effect by monitoring the motion
of the data point representing the system along its curve on
the ut �� plane. We note that one additional effect of the
CSF is the shift in the ISCO [20], which we do not consider
here.

B. The waveforms

We show the waveform for the case that the CSF is
turned off in Fig. 8 for the same parameters discussed
above, specifically p0 ¼ 10 and � ¼ 10�2. We find that
the waveforms obtained with the SF keeping only its dis-
sipative pieces (and turning off its CSF) overlap with the
energy balance waveform. Notice that the two waveforms
in the figure are indistinguishable. The calculation method
is very different in these two cases: In the SF case the
orbital evolution is local; the orbit evolves because of a
local force acting on the particle; in the energy balance
case the fluxes to infinity and down the event horizon are
calculated, and then the energy escaping over a period of
the orbit is removed from the particle, and a new orbit with
the new values of the constants of motion is found. The
agreement of the waveforms is therefore a nontrivial test of
the correctness of the calculation. The two waveforms
overlap nearly exactly, with total cumulative dephasing at
the order of 10�3 radians.

We next reintroduce the CSF. We integrate the SF driven
orbit using two independent methods: the osculating orbit

approach and direct integration of the orbit. Figure 9 shows
the waveform for the energy balance approach (same as in
Fig. 8) and for the two independent methods of calculating
the SF driven orbit (including the CSF). The latter two
waveforms are in agreement with each other with small
dephasing (see below) between them, and a much larger
dephasing of either with the energy balance waveform.
The waveform dephasing of Fig. 9 is shown explicitly in

Fig. 10. We find that the total cumulative dephasing of the
waveforms at the endpoint of the evolution at pfinal is
�� ¼ 10:3� 0:4 radians. The error estimate comes from
the numerical errors in each calculation method and from
residual incompatibility of initial data in the two SF driven
cases, which we estimate by comparing the waveforms
obtained from the osculating orbit approach and the direct
integration approach.
The dependence of �� on the position p is a simple

monotonic unction of the time (Fig. 10) which we can
extrapolate from pfinal down to the ISCO at p ¼ 6. We
find that at the ISCO the dephasing is �� ¼ 14� 1 radi-
ans. Dephasing of 14� 1 radians corresponds to about 2.2
cycles over the entire motion of the particle over 107.8
cycles. We next consider the following simulation of a
detection event. Say the actual data stream is modeled by
the waveforms obtained with the full SF expression, i.e.,
including the CSF, and that the theoretical template is
obtained by turning off the CSF, or equivalently by using
the energy balance waveform. By how much is the overlap
integral of the waveforms reduced because of our igno-
rance of the CSF?
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FIG. 8 (color online). The real part of the waveform c 4 when
the CSF is turned off (solid), and using the energy balance
approach (dashed, �). The SF waveform was calculated with
the orbit evolving using the osculating method [17].
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FIG. 9. The real part of the waveform c 4 when the CSF is
included (solid for the osculating orbit method, and dashed for
the direct integration method), and using the energy balance
approach (dotted). The three waveforms are in phase at the
beginning of the waveforms, but the former two dephase with
time from the latter (and to a much smaller extent from each
other).
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Figure 11 shows the overlap integral as a function of the
time, when we take a window of length L of the energy
balance waveforms (specifically from their late chirp part),
and shift it along the waveform of the full SF. At each
point we calculate the overlap integral of the window with
a local piece of the second waveform, and plot the local
overlap integral as a function of the start time of the
window. Because the window was taken from the late
part of the waveform, we find that the overlap integral is
very small at first, and becomes large only at the late
part of the other waveform. We then take the maximum
of the overlap integral to be the one corresponding to
the chosen window L. More precisely, we calculate

Cmax ¼ max	
hc SFðtÞjc EBðt�	Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hc SFðtÞjc SFðtÞihc EBðtÞjc EBðtÞi
p . Larger values of

L would reduce the overlap integral even further. In
Fig. 12 we show Cmax as a function of the window size
L. As L increases, at some value Cmax would drop below a
predetermined value that marks our tolerance for detection
or parameter estimation. Many times this threshold is taken
to be C ¼ 0:96, because then detection rate would drop by
10%. Here, this threshold is obtained when Lthreshold ¼
816:6M, which corresponds to just over 14 wavelengths
of the emitted GW. If L * Lthreshold, the exclusion of the
CSF effects would cause a significant drop in the Cmax that

would reduce the detection rate by 10% or more. In such a
case ignoring the CSF would have an important effect on
detection or parameter estimation of the GW. However,
short waveforms (i.e., L < Lthreshold) do not require the
CSF effects to be included if reduction of the detection

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t / M

C
 (

t)

 L = 820 M
 L = 350 M

FIG. 11 (color online). The local overlap integral for a window
of length L ¼ 350M (dash-dotted) and of length L ¼ 820M
(solid) taken from the energy balance waveform and a piece of
equal length of the full SF (including conservative effects)
waveform obtained from the osculating orbit method, as a
function of the starting point of the latter. The window is taken
here from the end of the waveform (the late chirp part).
The global maximum of the overlap integral is 0.9900 (for
L ¼ 350M) and 0.9594 (for L ¼ 820M).
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FIG. 12 (color online). The maximal overlap integral for
windows of varying length L taken from the energy balance
waveform and a piece of equal length of the full SF (including
conservative effects) obtained from the osculating orbit method,
as a function of the starting point of the latter. The circles are
data points, and the curve is the quadratic fit Cmax ¼ 1:0010�
1:7988� 10�5L� 3:9154� 10�8L2, with fit parameter
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FIG. 10 (color online). The dephasing of the waveforms for the
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from each other. Dashed curve: dephasing of the waveforms
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rate by less than this tolerance is acceptable. The overlap
integral increases rapidly as the template window is taken
from earlier times. This result suggests that when other
parts than the very end of the waveform is of interest, the
full SF is even less significant than we have found.

C. Varying the values of parameters

Our model of quasi-circular Schwarzschild orbits
depends on two variables: the mass ratio � and the start
point p0. Here we vary each parameter independently and
find the dependence of the dephasing �� [between the
osculating orbits case (that includes the CSF) and the
energy balance case (that neglects the CSF and considers
only dissipative effects)] on either parameter.

1. Varying the mass ratio �

First we study the variation of the dephasing with chang-
ing the parameter �, the mass ratio. The greatest problem
with varying � is its effect on the computation time. On the
one hand we cannot justifiably increase � beyond 10�2,
because then the linearization approximation breaks down.
On the other hand, lowering � to very small values, while
satisfying the linearization requirement more confidently,
results in longer physical evolution times and correspond-
ingly also longer computation times.

In practice we reduce the value of � by a full order of
magnitude, and sample values in the range [10�3–10�2],
and fix p0 ¼ 8. (We decrease the value of p0 from its
previous value of 10 to save on computation time for the
lower values of �.)

Figure 13 shows a family of curves displaying the de-
phasing between the cases of the osculating orbits method
and the energy balance method. Each curve in Fig. 13 ends
at the point we stop the integration when the orbits gets too
close to the ISCO for the adiabatic approximation to still
hold. These curves are very smooth and simple functions,
which we extrapolate to the times at which the particle
arrives at the ISCO. The extrapolated value of the dephas-
ing at the ISCO is also shown in Fig. 13. We find only little
variation in the dephasing as � changes over a full order of
magnitude, consistent with the expectation that the dephas-
ing has only a weak dependence on �. Indeed, one could
expect from scaling arguments that the dephasing per orbit
scales with � while the number of orbits scales with ��1

(both scalings are indeed found in our simulations—see
Fig. 14), so that the total dephasing is at the leading order at
Oð�0Þ. Here we show that not only is the dephasing at
Oð1Þ, but in the range tested and with our numerical
resolution is indistinguishable from a constant value, or
at the most is a very weak function of �.

In Fig. 14 we show five dimensionless quantities con-
structed from the evolution time T from p0 down to the
ISCO, the total phase of the waveform in the energy
balance and osculating methods case (including the CSF
term), and the differences in arrival time and the dephasing

between the latter two. We find that T �Oð��1Þ, that
���Oð�0Þ, �T=M�Oð�0Þ and that in both the energy
balance and osculating orbits cases the total phase � is a
linear function of � with a very small slope, that is at the
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FIG. 13 (color online). The dephasing �� as function of time
for a family of mass ratios � for the values (from right to left):
� ¼ 0:001, 0.002, 0.003, 0.005, 0.006, 0.007, and 0.010 (solid
curves). The circles display the extrapolated values when
the particle arrives at the ISCO, and the dashed line shows
their average at 1:726� 0:021. In all cases the motion starts
at p0 ¼ 8.
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magnitude of our computational error. We therefore cannot
rule out that we see in addition to the leading Oð��1Þ term
also a higher-order Oð�0Þ term. Notice that the last
four quantities are comparable to each other, and that

the variation in all five (at the most 10%) is very small
compared with the full order of magnitude variation
in �.

2. Varying the initial position p0

Next we fix the mass ratio � and vary the starting point
of the motion p0. In practice we choose the value of
� ¼ 10�2. Figure 15 shows the dephasing between the
osculating orbits case (that includes the CSF) and the
energy balance case (that neglects the CSF) for the range
p0 2 ½8; 10�. Naturally, the dephasing grows with p0. The
data presented are consistent a quadratic dependence
of �� on p0.
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APPENDIX: THE 5.5 POST-NEWTONIAN TERM

The PN5:5 term used in Eq. (2) is given by ([16]):
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