M. Anholm, S. Ballmer, J. D. Creighton, L. R. Price, and X. Siemens, Optimal strategies for gravitational wave stochastic background searches in pulsar timing data, Physical Review D, vol.79, issue.8, p.84030, 2009.
DOI : 10.1103/PhysRevD.79.084030

URL : http://arxiv.org/abs/0809.0701

Z. Arzoumanian, GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES, The Astrophysical Journal, vol.794, issue.2, p.141, 2014.
DOI : 10.1088/0004-637X/794/2/141

S. Babak and A. Sesana, Resolving multiple supermassive black hole binaries with pulsar timing arrays, Physical Review D, vol.85, issue.4, p.44034, 2012.
DOI : 10.1103/PhysRevD.85.044034

URL : http://arxiv.org/abs/1112.1075

M. C. Begelman, R. D. Blandford, and M. J. Rees, Massive black hole binaries in active galactic nuclei, Nature, vol.221, issue.5780, p.307, 1980.
DOI : 10.1038/287307a0

S. Burke-spolaor, Multi-messenger approaches to binary supermassive black holes in the ???continuous-wave??? regime, Classical and Quantum Gravity, vol.30, issue.22, p.224013, 2013.
DOI : 10.1088/0264-9381/30/22/224013

S. J. Chamberlin, J. D. Creighton, P. B. Demorest, J. Ellis, L. R. Price et al., Time-domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave background searches in pulsar timing data, Physical Review D, vol.91, issue.4, p.44048, 2015.
DOI : 10.1103/PhysRevD.91.044048

P. B. Demorest, LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES, The Astrophysical Journal, vol.762, issue.2, p.94, 2013.
DOI : 10.1088/0004-637X/762/2/94

S. Detweiler, Pulsar timing measurements and the search for gravitational waves, The Astrophysical Journal, vol.234, p.1100, 1979.
DOI : 10.1086/157593

J. A. Ellis, A Bayesian analysis pipeline for continuous GW sources in the PTA band, Classical and Quantum Gravity, vol.30, issue.22, p.224004, 2013.
DOI : 10.1088/0264-9381/30/22/224004

J. A. Ellis, F. A. Jenet, and M. A. Mclaughlin, PRACTICAL METHODS FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION USING PULSAR TIMING DATA, The Astrophysical Journal, vol.753, issue.2, p.96, 2012.
DOI : 10.1088/0004-637X/753/2/96

URL : http://arxiv.org/abs/1202.0808

D. Foreman-mackey, D. W. Hogg, D. Lang, and J. Goodman, : The MCMC Hammer, Publications of the Astronomical Society of the Pacific, vol.125, issue.925, p.306, 2013.
DOI : 10.1086/670067

L. P. Grishchuk, Relic gravitational waves and cosmology, Physics-Uspekhi, vol.48, issue.12, p.1235, 2005.
DOI : 10.1070/PU2005v048n12ABEH005795

URL : http://arxiv.org/abs/gr-qc/0504018

I. W. Harry, B. Allen, and B. Sathyaprakash, Stochastic template placement algorithm for gravitational wave data analysis, Physical Review D, vol.80, issue.10, p.104014, 2009.
DOI : 10.1103/PhysRevD.80.104014

URL : http://arxiv.org/abs/0908.2090

R. W. Hellings and G. S. Downs, Upper limits on the isotropic gravitational radiation background from pulsar timing analysis, The Astrophysical Journal, vol.265, p.39, 1983.
DOI : 10.1086/183954

G. Hobbs, The Parkes Pulsar Timing Array, Classical and Quantum Gravity, vol.30, issue.22, p.224007, 2013.
DOI : 10.1088/0264-9381/30/22/224007

G. Hobbs, The International Pulsar Timing Array project: using pulsars as a gravitational wave detector, Classical and Quantum Gravity, vol.27, issue.8, p.84013, 2010.
DOI : 10.1088/0264-9381/27/8/084013

URL : http://arxiv.org/abs/0911.5206

A. H. Jaffe and D. C. Backer, Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries, The Astrophysical Journal, vol.583, issue.2, p.616, 2003.
DOI : 10.1086/345443

M. Kramer and D. J. Champion, The European Pulsar Timing Array and the Large European Array for Pulsars, Classical and Quantum Gravity, vol.30, issue.22, p.224009, 2013.
DOI : 10.1088/0264-9381/30/22/224009

L. Lentati, P. Alexander, M. P. Hobson, S. Taylor, J. Gair et al., Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data, Physical Review D, vol.87, issue.10, p.104021, 2013.
DOI : 10.1103/PhysRevD.87.104021

M. A. Mclaughlin, The North American Nanohertz Observatory for Gravitational Waves, Classical and Quantum Gravity, vol.30, issue.22, p.224008, 2013.
DOI : 10.1088/0264-9381/30/22/224008

R. N. Manchester and . Ipta, The International Pulsar Timing Array, Classical and Quantum Gravity, vol.30, issue.22, p.224010, 2013.
DOI : 10.1088/0264-9381/30/22/224010

URL : https://hal.archives-ouvertes.fr/insu-01329806

A. Petiteau, Y. Shang, S. Babak, and F. Feroz, Search for spinning black hole binaries in mock LISA data using a genetic algorithm, Physical Review D, vol.81, issue.10, p.104016, 2010.
DOI : 10.1103/PhysRevD.81.104016

URL : https://hal.archives-ouvertes.fr/hal-00706178

A. Petiteau, S. Babak, A. Sesana, and M. De-araújo, Resolving multiple supermassive black hole binaries with pulsar timing arrays. II. Genetic algorithm implementation, Physical Review D, vol.87, issue.6, p.64036, 2013.
DOI : 10.1103/PhysRevD.87.064036

M. Rajagopal and R. W. Romani, Ultra--Low-Frequency Gravitational Radiation from Massive Black Hole Binaries, The Astrophysical Journal, vol.446, p.543, 1995.
DOI : 10.1086/175813

URL : http://arxiv.org/abs/astro-ph/9412038

P. A. Rosado and A. Sesana, Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array, Monthly Notices of the Royal Astronomical Society, vol.439, issue.4, p.3986, 2014.
DOI : 10.1093/mnras/stu254

URL : http://arxiv.org/abs/1311.0883

A. Sesana, Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves, Physical Review D, vol.81, issue.10, p.104008, 2010.
DOI : 10.1103/PhysRevD.81.104008

R. M. Shannon, Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution, Science, vol.746, issue.3, p.334, 2013.
DOI : 10.1093/mnras/sts182

URL : http://arxiv.org/abs/1310.4569

S. Taylor, J. Ellis, and J. Gair, Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays, Physical Review D, vol.90, issue.10, p.104028, 2014.
DOI : 10.1103/PhysRevD.90.104028

S. R. Taylor, Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background, Physical Review Letters, vol.115, issue.4, p.41101, 2015.
DOI : 10.1103/PhysRevLett.115.041101

URL : https://hal.archives-ouvertes.fr/insu-01265421

M. J. Valtonen, A massive binary black-hole system in OJ???287 and a test of general relativity, Nature, vol.116, issue.7189, p.851, 2008.
DOI : 10.1038/nature06896

R. Van-haasteren and Y. Levin, Understanding and analysing time-correlated stochastic signals in pulsar timing, Monthly Notices of the Royal Astronomical Society, vol.428, issue.2, p.1147, 2013.
DOI : 10.1093/mnras/sts097

A. Vilenkin, Gravitational radiation from cosmic strings, Physics Letters B, vol.107, issue.1-2, p.47, 1981.
DOI : 10.1016/0370-2693(81)91144-8

A. Vilenkin and E. P. Shellard, Cosmic Strings and Other Topological Defects, 1994.

J. S. Wyithe and A. Loeb, and Pulsar Timing Arrays, The Astrophysical Journal, vol.590, issue.2, p.691, 2003.
DOI : 10.1086/375187

X. Zhu, France 10 ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo, the Netherlands 11 Anton Pannekoek Institute for Astronomy NL-1098 XH Amsterdam, the Netherlands 12 Jodrell Bank Centre for Astrophysics UK 13 INAF ? Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius, Italy 14 Station de radioastronomie de Nançay People's Republic of China 16 Astrophysics Group, CNRS/INSU F-18330 Nançay, France 15 Kavli Institute for Astronomy and Astrophysics 17 TAPIR (Theoretical Astrophysics), California Institute of Technology 18 Fakultät für Physik, p.92190, 2014.