Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration
Apurva Oza, François Leblanc, Jean-Jacques Berthelier, Joël Becker, Romain Coulomb, Pierre Gilbert, Soonil Lee, Nguyen Tuan Hong, Ludovic Vettier

To cite this version:

HAL Id: insu-01250430
https://hal-insu.archives-ouvertes.fr/insu-01250430
Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Technology Objective

A carbon nanotube electron gun (CNTEG) is constructed for the highly sensitive exploration of exospheres, i.e. extremely tenuous atmospheres \((n < 10^8 \text{ cm}^{-3}) \). The CNTEG is based on the quantum principle of field emission seeking to efficiently impact and therefore ionize diffuse neutrals known to be present around planetary bodies.

Exosphere Ionization

Europa EGM

The Exospheric Global Model (EGM) is a 3D parallelized Monte Carlo code developed for the characterization of exospheres. Here, we model Europa. Test particles are ejected from Europa’s surface up to \(\sim 15 \text{ R}_E \), following known energy distributions. The test particles are on ballistic trajectories and can escape, stick, and bounce on the surface. Furthermore the particles can be dissociated/ionized by physisochemo processes.

Results

Extended Exosphere Clouds are simulated, due to:

- Jovian gravitational drag is evident.
- Similar to sodium clouds at Io².
- Escape rates could indicate an Enceladus-like hydrotorus.

Perspectives from Surface-Exosphere inhomogeneities:

- Sputtering may not be global².
- \(O^+ \) may not be dominant.
- Water-product escape rates match previous studies ².
- \(O_2 \) is thermalized to \(T_{\text{ex}} \), speeds are not sufficient to populate upper exosphere.

References