Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

Apurva Oza, François Leblanc, Jean-Jacques Berthelier, Joël Becker, Romain Coulomb, Pierre Gilbert, Soonil Lee, Nguyen Tuan Hong, Ludovic Vettier

To cite this version:

HAL Id: insu-01250430
https://hal-insu.archives-ouvertes.fr/insu-01250430
Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Carbon Nanotube Electron Gun (CNTEG) is developed to ionize neutral atmospheres for future space spectrometry missions. The Exospheric Global Model (EGM) is a 3D parallelized Monte Carlo code developed for the characterization of exospheres. Here, we model Europa. Test particles are ejected from Europa’s surface up to 10 R₉, following known energy distributions. The test particles are on ballistic trajectories and can escape, stick, and bounce on the surface. Furthermore the particles can be dissociated/ionized by physicochemical processes.

Fig. 8: EGM domain modeling physical processes in spherical coordinates.

Results

- Jovian gravitational drag is evident.
- Similar to sodium clouds at Io⁹.
- Escape rates could indicate an Enceladus-like hydrotorus.

Perspectives from Surface-Exosphere inhomogeneties:

- Sputtering may not be global.⁹
- 0⁺, S⁺ ions may not dominate.⁶
- Water-product escape rates match previous studies.⁷
- O₂ is thermalized to Tₑ, speeds are not sufficient to populate upper exosphere.

References:

Fig. 4: CNTEG emission vs gate voltage. Gate voltage 1-6 V.

Fig. 5: Upper exospheric oxygen behavior is identical to other water-products: H₂, OH, H₂O. Day-night symmetry is apparent. Effect is less for neutral hemisphere as anti-jove is close to anti-jove.