Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration
Apurva Oza, François Leblanc, Jean-Jacques Berthelier, Joël Becker, Romain Coulomb, Pierre Gilbert, Soonil Lee, Nguyen Tuan Hong, Ludovic Vettier

To cite this version:

HAL Id: insu-01250430
https://hal-insu.archives-ouvertes.fr/insu-01250430
Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

Apurva V. Oza1, F. Leblanc1, J.J. Berthelier1, J. Becker1, R.Coulomb2, P.Gilbert3, S.Lee3, N.T Hong3, L.Vettier3.
1Sorbonne Universités, UPMC, CNRS, LATMOS, Paris, France
2LATMOS, UnivSQ, CNRS, Paris/Guyancourt, France
3Ajou University, Korea, “Center for High Technology, Hà Nội, Vietnam.

Technology Objective

A carbon nanotube electron gun (CNTEG) is constructed for the highly sensitive exploration of exospheres, i.e. extremely tenuous atmospheres \((n < 10^8 \text{ cm}^{-3})\). The CNTEG is based on the quantum principle of field emission1, seeking to efficiently impact and therefore ionize diffuse neutrals known to be present around planetary bodies.

![Fig. 1 CNTEG](image)

- Electron field effect emission generates current due to solid-state quantum tunneling.
- Moderate E field.
- Power-efficient. \((P < 0.1 \text{ Watts})\).
- Sufficiently powerful current. \((I \approx 200 \mu A/0.1 \mu A)\).
- Very stable. \((dI/dt < 0.1 \mu A/s)\).
- Light-weight and robust.

Carbon Nanotubes as Cold Cathodes

![Fig. 2 SIMION simulation of CNTEG electrodes' equipotentials and \(e\) trajectories. *Overlaying grid *source.](image)

- Field emission from \(d_{\text{CNT}}=90 \text{ nanometer} \text{ CNT} \text{ at } 95 \text{ V/cm}\).
- CNT emission measured at each electrode labeled above.
- CNTEGs are emitting consistently at ~ 60%.
- Axole emission is at 76%.
- Emission \(I_{\text{CNT}}=100 \mu A\) at a cathode gate distance of \(d_{\text{cath}}=250 \mu m\).

Exosphere Ionization

![Fig. 3 SIMION simulation of CNTEG electrodes’ equipotentials and \(e\) trajectories. *Overlaying grid. *Source.](image)

- Overall water exosphere is uniform in 1 yr. HST detection of excess \(H I/\beta\) may be an anomaly.
- Sub-Jovian water is more than 10x dense at high altitudes.
- Sub-Jovian \(O_i\) is \(\approx 1000 x\) more dense than the anti-Jovian observations.
- Jupiter is a unique source of \(upper\) atmosphere \(O_2\) \(Atomic\) \(O\) more likely.

Europa’s Hydro-Exosphere

![Fig. 4 CNTEG electron field emission measured at each electrode labeled above.](image)

- Upper exospheric oxygen behavior is identical to other water-products: \(H_2, OH, H_2O\).

![Fig. 5: Selected SIMION simulation of ionization volume demonstrating ion production via \(e\) impact.](image)

- EUROM simulations of Europa’s Hydro-Exosphere show stark atmospheric structures dominated principally by Jupiter’s gravitation.

Exospheric Global Model (EGM) is a 3D parallelized Monte Carlo code developed for the characterization of exospheres. Here, we model Europa. Test particles are ejected from Europa’s surface up to \(15 R_E\), following known energy distributions. The test particles are on ballistic trajectories and can escape, stick, and bounce on the surface. Furthermore the particles can be dissociated/ionized by physicochemical processes.

![Fig. 6: EGM domain modeling physical processes in spherical coordinates.](image)

- Extended Exosphere Clouds are simulated, due to:
 - Jovian gravitational drag is evident.
 - Similar to sodium clouds at Io^5.
- Escape rates could indicate an Enceladus-like hydrotorus.

Perspectives from Surface-Exosphere inhomogeneities:

1. Sputtering may not be global^8.
2. \(O_+\) ions may not dominate^7.
3. Water-product escape rates match previous studies \(^6\).
4. \(O_2\) is thermalized to \(T_{\text{Surf}}\), speeds are not sufficient to populate upper exosphere.

Results

![Fig. 7: Top view of simulated atomic oxygen exosphere.](image)

- Europa’s hill sphere extends to about \(5 R_E\) beyond which Jovian gravity dominates.
- Day-night asymmetry is apparent. Effect is less for leading hemisphere as anti-jovian is close to anti-pole.

References