Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

Apurva Oza, François Leblanc, Jean-Jacques Berthelier, Joël Becker, Romain Coulomb, Pierre Gilbert, Soonil Lee, Nguyen Tuan Hong, Ludovic Vettier

► To cite this version:

HAL Id: insu-01250430
https://hal-insu.archives-ouvertes.fr/insu-01250430
Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

Apurva V. Oza, F. Leblanc, J.-J. Berthelier, J. Becker, R. Coulomb, P. Gilbert, S. Lee, N.T Hong, L. Vettier
1 Sorbonne Universités, UPMC, CNRS, LATMOS, Paris, France
2 LATMOS, UVSQ, CNRS, Paris/Guyancourt, France
3 Ajou University, Korea, Center for High Technology, Ha Noi, Vietnam

Technology Objective

A carbon nanotube electron gun (CNTEG) is constructed for the highly sensitive exploration of exospheres, i.e., extremely tenuous atmospheres ($n < 10^8 \text{ cm}^{-3}$). The CNTEG is based on the quantum principle of field emission1 seeking to efficiently impact and therefore ionize diffuse neutrals known to be present around planetary bodies.

Exosphere Ionization

Goal: To simulate & design ideal ionization volume demonstrating ion production via e impact.

1) Electric force balance: $\frac{d}{dt}(n_e,v_e)=dQ$
2) Poisson's equation (space-charge): $\frac{d^2}{dx^2}v_e=\rho_f$
3) Electron-impact ion production rate $dn_e/dt=\sigma v_e n_0$

Europe's Hydro-Exosphere

Overall water exosphere is uniform in 1D, H$_2$ detection excess $H_2/\frac{\text{flux}}{\text{area}}$ may be an anomaly.

Sub-Jovian water is more than 10x dense at high altitudes.

Fig. 5: Side view of water ($\phi = 30^\circ$) & molecular oxygen ($\phi = 90^\circ$) simulation and observation.

Fig. 6: Top view of simulated atomic oxygen exosphere.

Fig. 7: View of simulated atomic oxygen exosphere.

Carbon Nanotubes as Cold Cathodes

Fig. 3 SIMION simulation of CNTEG electronics’ equipotentials and e trajectories. *Grids are at 50% transparency.

Fig. 4: CNTEG emission field measured at each electrode labeled above.

• CNTEGs are emitting consistently at ~ 90%.
• Anode emission is at 76%.
• Emission $=100\mu$A is achieved with a cathode gate distance of $d_{cg}=250\mu$m.

Fig. 8: Selected SIMION simulation of ionization volume demonstrating ion production via e impact.

Fig. 1 CNTG:
• Electron field effect emission generates current due to solid-state quantum tunneling1.
• Moderate E field. ($E<1$MV/m).
• Power-efficient. (P <0.1 Watts).
• Sufficiently powerful current ($I \sim 800$ nA $.1 \mu$A).
• Very stable.
• $d/dt < 0.1$ μA/s.
• Light-weight and robust.

Fig. 1: Selected SIMION simulation of ionization volume demonstrating ion production via e impact.

Overall water exosphere is uniform in 1D, H$_2$ detection excess $H_2/\frac{\text{flux}}{\text{area}}$ may be an anomaly.

Sub-Jovian water is more than 10x dense at high altitudes.

Fig. 5: Side view of water ($\phi = 30^\circ$) & molecular oxygen ($\phi = 90^\circ$) simulation and observation.

Fig. 6: Top view of simulated atomic oxygen exosphere.

Fig. 7: Top view of simulated atomic oxygen exosphere.

Fig. 8: SIMION simulation of CNTEG electronics" equipotentials and e trajectories. *Grids are at 50% transparency.

Fig. 4: CNTEG emission field emission measured at each electrode labeled above.

• CNTEGs are emitting consistently at ~ 90%.
• Anode emission is at 76%.
• Emission $=100\mu$A is achieved with a cathode gate distance of $d_{cg}=250\mu$m.

Exosphere Ionization

Goal: To simulate & design ideal ionization volume demonstrating ion production via e impact.

1) Electric force balance: $\frac{d}{dt}(n_e,v_e)=dQ$
2) Poisson's equation (space-charge): $\frac{d^2}{dx^2}v_e=\rho_f$
3) Electron-impact ion production rate $dn_e/dt=\sigma v_e n_0$

Europe's Hydro-Exosphere

Overall water exosphere is uniform in 1D, H$_2$ detection excess $H_2/\frac{\text{flux}}{\text{area}}$ may be an anomaly.

Sub-Jovian water is more than 10x dense at high altitudes.

Fig. 5: Side view of water ($\phi = 30^\circ$) & molecular oxygen ($\phi = 90^\circ$) simulation and observation.

Fig. 6: Top view of simulated atomic oxygen exosphere.

Fig. 7: Top view of simulated atomic oxygen exosphere.

Results

Extended Exosphere Clouds are simulated, due to:

• Jovian gravitational drag is evident.
• Similar to sodium clouds at Io5.
• Escape rates could indicate an Enceladus-like hydrotorus.

Perspectives from Surface-Exosphere inhomogeneties:

• Sputtering may not be global7.
• O_+, S_+ ions may not dominate8.
• Water-product escape rates match previous studies9.
• O_2 is thermized to T_{ex}, speeds are not sufficient to populate upper exosphere.

References:
1. Foster & Nordheim, 1038. PRL 28 (1972)

Fig. 6: Side view of water ($\phi = 30^\circ$) & molecular oxygen ($\phi = 90^\circ$) simulation and observation.

Fig. 7: Top view of simulated atomic oxygen exosphere.