E. Anders, Pre-biotic organic matter from comets and asteroids, Nature, vol.342, issue.6247, pp.255-257, 1989.

A. Aubrey, H. J. Cleaves, J. H. Chalmers, A. M. Skelley, R. A. Mathies et al., Sulfate minerals and organic compounds on Mars, vol.34, pp.357-360, 2006.

S. A. Benner, K. G. Devine, L. N. Matveeva, and D. H. Powell, The missing organic molecules on Mars, Proc. Natl. Acad. Sci. U.S.A, issue.6, pp.2425-2430, 2000.

K. Biemann, Search for organic and volatile inorganic-compounds in 2 surface samples from Chryse-Planitia Region of Mars, Science, vol.194, issue.4260, pp.72-76, 1976.

K. Biemann, The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res, vol.82, pp.4641-4658, 1977.

P. A. Bland and T. B. Smith, Meteorite accumulations on Mars, Icarus, vol.144, issue.1, pp.21-26, 2000.

S. A. Bowden and J. Parnell, Intracrystalline lipids within sulfates from the Haughton Impact Structure: Implications for survival of lipids on Mars, vol.187, pp.422-429, 2007.

W. V. Boynton, Evidence for calcium carbonate at the Mars Phoenix Landing Site, Science, vol.325, issue.5936, pp.61-64, 2009.

N. A. Cabrol, E. A. Grin, H. E. Newsom, R. Landheim, and C. P. Mckay, Hydrogeologic evolution of Gale Crater and its relevance to the exobiological exploration of Mars, Icarus, vol.139, issue.2, pp.235-245, 1999.

M. P. Callahan, A. S. Burton, J. E. Elsila, E. M. Baker, K. E. Smith et al., A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry, Meteorit. Planet. Sci, vol.48, issue.5, pp.786-795, 2013.

J. L. Eigenbrode, A. Steele, H. B. Franz, B. Sutter, P. R. Mahaffy et al., Possible global distribution of reduced carbon in surface sediments on Mars: Evidence from volatiles released from the Rocknest eolian drift, Gale Crate, Abstract P23E-04 presented at 2014 Fall Meeting, AGU, 2014.

H. H. Emons, G. Ziegenbalg, R. Naumann, and F. Paulik, Thermal-decomposition of the magnesium-sulfate hydrates under quasi-isothermal and quasi-isobaric conditions, J. Therm. Anal, vol.36, issue.4, pp.1265-1279, 1990.

G. J. Flynn, The delivery of organic matter from asteroids and comets to the early surface of Mars, Earth Moon Planets, vol.72, issue.1-3, pp.469-474, 1996.

C. Freissinet, Organic molecules in the Sheepbed Mudstone, J. Geophys. Res. Planets, vol.120, pp.495-514, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01218165

F. Gaillard, J. Michalski, G. Berger, S. M. Mclennan, and B. Scaillet, Geochemical reservoirs and timing of sulfur cycling on Mars, Space Sci. Rev, vol.174, issue.1-4, pp.251-300, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00801810

D. P. Glavin, Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, J. Geophys. Res. Planets, vol.118, pp.1955-1973, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00868826

K. D. Grevel and J. Majzlan, Internally consistent thermodynamic data for magnesium sulfate hydrates, Geochim. Cosmochim. Acta, vol.73, issue.22, pp.6805-6815, 2009.

M. H. Hecht, Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site, Science, vol.325, issue.5936, pp.64-67, 2009.

K. Heide and M. Földvari, High temperature mass spectrometric gas-release studies of kaolinite Al 2, Thermochim. Acta, vol.446, issue.1, pp.106-112, 2006.

M. N. Heinrich, B. N. Khare, and C. P. Mckay, Prebiotic organic synthesis in early Earth and Mars atmospheres: Laboratory experiments with quantitative determination of products formed in a cold plasma flow reactor, Journal of Geophysical Research, vol.191, pp.765-778, 2007.

A. L. François, . Sulfate, . On, and . Pyrolysis,

J. H. Hoffman, R. C. Chaney, and H. Hammack, Phoenix Mars mission-the thermal evolved gas analyzer, J. Am. Soc. Mass Spectrom, vol.19, issue.10, pp.1377-1383, 2008.

E. Iniguez, R. Navarro-gonzalez, J. De-la-rosa, F. Urena-nunez, P. Coll et al., On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step: Implications for the search of organics on Mars, Geophys. Res. Lett, vol.36, p.21205, 2009.

H. P. Klein, Viking biological investigation-General aspects, Trans., Am. Geophys. Union, vol.58, issue.8, pp.828-828, 1977.

S. P. Kounaves, B. L. Carrier, G. D. O'neil, S. T. Stroble, and M. W. Claire, Evidence of Martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics, Icarus, vol.229, pp.206-213, 2014.

R. Kuusik, P. Saikkonen, and L. Niinisto, Thermal-decomposition of calcium-sulfate in carbon-monoxide, J. Therm. Anal, vol.30, issue.1, pp.187-193, 1985.

K. H. Lau, D. Cubicciotti, and D. Hildenbrand, Effusion studies of the thermal decomposition of magnesium and calcium sulfates, J. Chem. Phys, vol.66, issue.10, pp.4532-4539, 1977.

L. Leshin, P. Mahaffy, C. Webster, M. Cabane, P. Coll et al., Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover, Science, issue.6153, p.1238937, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00922263

J. M. Lewis, J. S. Watson, J. Najorka, D. Luong, and M. A. Sephton, Sulfate minerals: A problem for the detection of organic compounds on Mars?, Astrobiology, vol.15, issue.3, pp.247-258, 2015.

P. R. Mahaffy, The Sample Analysis at Mars investigation and instrument suite, Space Sci. Rev, vol.170, issue.1-4, pp.401-478, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00694758

A. Migda?-mikuli and J. Hetma?czyk, Thermal behavior of [Ca (H2O) 4](ClO4) 2 and [Ca (NH3) 6](ClO4) 2, J. Therm. Anal. Calorim, vol.91, issue.2, pp.529-534, 2008.

K. Miller, R. Summons, J. Eigenbrode, C. Freissinet, D. P. Glavin et al., Analogue experiments identify possible precursor compounds for chlorohydrocarbons, SAM, Abstract P23B-1785 presented at 2013 Fall Meeting, 2013.

R. E. Milliken, J. P. Grotzinger, and B. J. Thomson, Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater, Geophys. Res. Lett, vol.37, p.4201, 2010.

D. W. Ming, H. V. Lauer, P. D. Archer, B. Sutter, D. C. Golden et al., Combustion of organic molecules by the thermal decomposition of perchlorate salts: Implications for organics at the Mars phoenix scout landing site, 2009.

D. W. Ming, Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Science, vol.343, issue.6169, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01238192

R. Navarro-gonzalez, The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results, Proc. Natl. Acad. Sci. U.S.A, vol.103, issue.44, p.94, 2006.

R. Navarro-gonzalez, E. Vargas, J. De-la-rosa, A. C. Raga, and C. P. Mckay, Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars, J. Geophys. Res, vol.115, p.12010, 2010.

J. Oro and G. Holzer, Photolytic degradation and oxidation of organic-compounds under simulated Martian conditions, J. Mol. Evol, vol.14, issue.1-3, pp.153-160, 1979.

A. Pavlov, G. Vasilyev, V. Ostryakov, A. Pavlov, and P. Mahaffy, Recherche d'indices de vie ou d'habitabilité sur Mars: Simulation en laboratoire des processus d'évolution de molécules organiques à la surface de Mars, Geophys. Res. Lett, vol.39, p.13202, 2012.

M. N. Scheidema and P. Taskinen, Decomposition thermodynamics of magnesium sulfate, Ind. Eng. Chem. Res, vol.50, issue.16, pp.9550-9556, 2011.

H. R. Schulten and P. Leinweber, Pyrolysis-field ionization mass-spectrometry of agricultural soils and humic substances-Effect of cropping systems and influence of the mineral matrix, Plant Soil, vol.151, issue.1, pp.77-90, 1993.

M. A. Sephton, J. M. Lewis, J. S. Watson, W. Montgomery, and C. Garnier, Perchlorate-induced combustion of organic matter with variable molecular weights: Implications for Mars missions, Geophys. Res. Lett, vol.41, pp.7453-7460, 2014.

A. Steele, Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils, Planet. Space Sci, vol.337, issue.6091, pp.9-17, 2012.

J. Sun, L. Yuan, K. Zhang, and D. Wang, Synthesis and thermal decomposition of zinc phthalate, Thermochim. Acta, vol.343, issue.1-2, pp.105-109, 2000.

B. J. Thomson, N. T. Bridges, R. Milliken, A. Baldridge, S. J. Hook et al., Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data, vol.214, pp.413-432, 2011.

Y. Uehara, H. Uematsu, and Y. Saito, Thermal ignition of calcium hypochlorite, Combust. Flame, vol.32, pp.90082-90084, 1978.

R. R. West, W. J. Sutton-;-zhan, D. , X. Zhou, Y. Zhang et al., Rheology phase reaction synthesis and thermal decomposition of magnesium phthalate dihydrate, Journal of Geophysical Research, vol.37, issue.5, pp.47-50, 1954.