J. Almeida, Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, vol.502, pp.359-363, 2013.

G. P. Ayers, R. W. Gillett, and J. Gras, On the vapor-pressure of sulfuric acid, Geophys. Res. Lett, vol.7, pp.433-436, 1980.

G. A. Bazilevskaya, Cosmic ray induced ion production in the atmosphere, Space Sci. Rev, vol.137, pp.149-173, 2008.

D. Brus, K. Neitola, A. Hyvärinen, T. Petäjä, J. Vanhanen et al., Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions, Atmos. Chem. Phys, vol.11, pp.5277-5287, 2011.

J. Duplissy, Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory, J. Geophys. Res. Atmos, vol.121, 2016.

S. Ehrhart and J. Curtius, Influence of aerosol lifetime on the interpretation of nucleation experiments with respect to the first nucleation theorem, Atmos. Chem. Phys, vol.13, pp.465-476, 2013.

F. L. Eisele and D. J. Tanner, Measurement of the gas phase concentration of H 2 SO 4 and methane sulfonic acid and estimates of H 2 SO 4 production and loss in the atmosphere, J. Geophys. Res, vol.98, issue.D5, pp.9001-9010, 1993.

S. L. Girshick and C. Chiu, Kinetic nucleation theory-A new expression for the rate of homogeneous nucleation from ideal supersaturated vapor, J. Chem. Phys, vol.93, pp.1273-1277, 1990.

R. H. Heist and H. Reiss, Hydrates in supersaturated binary sulfuric acid vapor, J. Chem. Phys, vol.61, pp.573-581, 1974.

H. Henschel, J. C. Navarro, T. Yli-juuti, O. Kupiainen-määttä, T. Olenius et al., Hydration of atmospherically relevant molecular clusters: Computational chemistry and classical thermodynamics, J. Phys. Chem. A, vol.118, issue.14, pp.2599-2611, 2014.

W. Hoffmann and F. W. Seeman, Schwefelsäure-Wasser gemischen im temperaturbereich von 15 bis 25 C, Z. Phys. Chem. Neue Folge, vol.24, pp.300-306, 1960.

A. Jaecker-voirol, P. Mirabel, and H. Reiss, Hydrates in supersaturated binary sulfuric acid-water vapor-A reexamination, J. Chem. Phys, vol.87, pp.4849-4852, 1987.

D. Kashchiev, On the relation between nucleation work, nucleus size, and nucleation rate, J. Chem. Phys, vol.76, pp.5098-5102, 1982.

V. Kerminen, Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis based on existing literature and new results, Atmos. Chem. Phys, vol.12, p.59, 2012.

J. Kirkby, Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, vol.476, pp.429-433, 2011.

C. Kuang, P. H. Mcmurry, A. V. Mccormick, and F. L. Eisele, Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations, J. Geophys. Res, vol.113, pp.2156-2202, 2008.

M. Kulmala and A. Laaksonen, Binary nucleation of water sulfuric-acid system: Comparison of classical theories with different H 2 SO 4 saturation vapor-pressures, J. Chem. Phys, vol.93, pp.696-701, 1990.

M. Kulmala, M. Lazaridis, A. Laaksonen, and T. Vesala, Extended hydrates interaction model: Hydrate formation and the energetics of binary homogeneous nucleation, J. Chem. Phys, vol.94, pp.7411-7413, 1991.

M. Kulmala, K. E. Lehtinen, and A. Laaksonen, Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration, Atmos. Chem. Phys, vol.6, pp.787-793, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00295859

O. Kupiainen-määttä, T. Olenius, H. Korhonen, J. Malila, M. D. Maso et al., Critical cluster size cannot in practice be determined by slope analysis in atmospherically relevant applications, J. Aerosol Sci, vol.77, pp.127-144, 2014.

T. Kurten, M. Noppel, H. Vehkamäki, M. Salonen, and M. Kulmala, Quantum chemical studies of hydrate formation of H 2 SO 4 and HSO 4 ?, Boreal Environ. Res, vol.12, pp.431-453, 2007.

L. Laakso, J. M. Mäkelä, L. Pirjola, and M. Kulmala, Model studies on ion-induced nucleation in the atmosphere, J. Geophys. Res, vol.107, issue.20, p.4427, 2002.

V. Loukonen, T. Kurten, I. K. Ortega, H. Vehkamäki, A. A. Padua et al., Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water-A computational study, Atmos. Chem. Phys, vol.10, pp.4961-4974, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00479686

E. R. Lovejoy, J. Curtius, and K. Froyd, Atmospheric ion-induced nucleation of sulfuric acid and water, J. Geophys. Res, vol.109, p.8204, 2004.

A. Määttänen, H. Vehkamäki, A. Lauri, I. Napari, and M. Kulmala, Two-component heterogeneous nucleation kinetics and an application to Mars, J. Chem. Phys, vol.127, issue.13, p.134710, 2007.

P. H. Mcmurry, Photochemical aerosol formation from SO 2 : A theoretical analysis of smog chamber data, J. Colloid Interface Sci, vol.78, issue.2, pp.513-527, 1980.

P. H. Mcmurry, New particle formation in the presence of an aerosol: Rates, time scales, and sub-0.01 m size distributions, J. Colloid Interface Sci, vol.95, issue.1, pp.72-80, 1983.

J. Merikanto, E. Zapadinsky, A. Lauri, and H. Vehkamäki, Origin of the failure of classical nucleation theory: Incorrect description of the smallest clusters, Phys. Rev. Lett, vol.98, issue.14, p.145702, 2007.

S. Mikkonen, A statistical proxy for sulphuric acid concentration, Atmos. Chem. Phys, vol.11, pp.319-330, 2011.

L. J. Morgan and C. E. Davies, The properites of mixed liquids: I. Sulfuric acid-water mixtures, J. Am. Chem. Soc, vol.28, pp.555-568, 1916.

D. M. Murphy and T. Koop, Review of the vapour pressures of ice and supercooled water for atmospheric applications, Q. J. R. Meteorol. Soc, vol.131, issue.608, pp.1539-1565, 2005.

C. E. Myhre, C. J. Nielsen, and O. W. Saastad, Density and surface tension of aqueous H 2 SO 4 at low temperature, J. Chem. Eng. Data, vol.43, pp.617-622, 1998.

, International Critical Tables of Numerical Data Physics, Chemistry and Technology, vol.1, 1928.

M. Noppel, H. Vehkamäki, and M. Kulmala, An improved model for hydrate formation in sulfuric acid-water nucleation, J. Chem. Phys, vol.116, pp.218-228, 2002.

T. Olenius, I. K. O.-kupiainen-määttä, T. Ortega, H. Kurtén, and . Vehkamäki, Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters, J. Chem. Phys, vol.139, issue.8, p.84312, 2013.

J. R. Pierce and P. J. Adams, A computationally efficient aerosol nucleation/condensation method: Pseudo-steady-state sulfuric acid, Aerosol Sci. Technol, vol.43, pp.216-226, 2009.

J. R. Pierce, M. J. Evans, C. E. Scott, S. D. D'andrea, D. K. Farmer et al., Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO 2 chemistry, Atmos. Chem. Phys, vol.13, pp.3163-3176, 2013.

N. P. Rao and P. H. Mcmurry, Nucleation and growth of aerosol in chemically reacting systems: A theoretical study of the near-collision-controlled regime, Aerosol Sci. Technol, vol.11, issue.2, pp.120-132, 1989.

H. Reiss, The kinetics of phase transitions in binary systems, J. Chem. Phys, vol.18, p.840, 1950.

L. Sabinina and L. Terpugow, Die Oberflächenspannung des Systems Schwefelsäure-Wasser, Z. Phys. Chem, vol.173, pp.237-241, 1935.

M. Sipilä, The role of sulfuric acid in atmospheric nucleation, Science, vol.327, pp.1243-1246, 2010.

A. Sorokin, F. Arnold, and D. Wiedner, Formation and growth of sulfuric acid-water cluster ions: Experiments, modelling, and implications for ion-induced aerosol formation, Atmos. Environ, vol.40, pp.2030-2045, 2006.

D. Stauffer, Kinetic theory of two-component (hetero-molecular) nucleation and condensation, J. Aerosol Sci, vol.7, issue.4, pp.319-333, 1976.

R. M. Suggitt, P. M. Aziz, and F. E. Wetmore, The surface tension of aqueous sulfuric acid solutions at 25-degrees, J. Am. Chem. Soc, vol.71, pp.676-678, 1949.

J. Thomson, Conduction of Electricity Through Gases, 1906.

I. G. Usoskin, G. A. Kovaltsov, and I. A. Mironova, Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere, J. Geophys. Res, vol.115, p.10302, 2010.

H. Vehkamäki, M. Kulmala, I. Napari, K. E. Lehtinen, C. Timmreck et al., An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions, J. Geophys. Res, vol.107, issue.D22, p.4622, 2002.

H. Vehkamäki, M. J. Mcgrath, T. Kurtén, J. Julin, K. E. Lehtinen et al., Rethinking the application of the first nucleation theorem to particle formation, J. Chem. Phys, vol.136, issue.9, p.94107, 2012.

A. Wexler, Vapor pressure formulation for water in range 0 to 100 ? C: A revision, J. Res. Natl. Bur. Stand. Sect. A, vol.80, pp.775-785, 1976.

G. Wilemski and B. E. Wyslouzil, Binary nucleation kinetics: 1. Self-consistent size distribution, J. Chem. Phys, vol.103, pp.1127-1136, 1995.

F. Yu, From molecular clusters to nanoparticles: Second-generation ion-mediated nucleation model, Atmos. Chem. Phys, vol.6, pp.5193-5211, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00296076

F. Yu, Ion-mediated nucleation in the atmosphere: Key controlling parameters, implications, and look-up table, J. Geophys. Res, vol.115, p.3206, 2010.

F. Yu and R. P. Turco, The size-dependent charge fraction of sub-3-nm particles as a key diagnostic of competitive nucleation mechanisms under atmospheric conditions, Atmos. Chem. Phys, vol.11, pp.9451-9463, 2011.

G. K. Yue and L. Y. Chan, Theory of the formation of aerosols of volatile binary-solutions through the ion-induced nucleation process, J. Colloid Interface Sci, vol.68, pp.501-507, 1979.

F. J. Zeleznik, Thermodynamic properties of the aqueous sulfuric-acid system to 350 K, J. Phys. Chem. Ref. Data, vol.20, pp.1157-1200, 1991.

R. Y. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu, Nucleation and growth of nanoparticles in the atmosphere, Chem. Rev, vol.112, pp.1957-2011, 2012.

Y. Zhang, P. H. Mcmurry, F. Yu, and M. Z. Jacobson, A comparative study of nucleation parameterizations: 1. Examination and evaluation of the formulations, J. Geophys. Res, vol.115, p.20212, 2010.