K. E. Barber, Peat stratigraphy and climatic change. A palaeoecological test of the theory of 601 cyclic bog regeneration, p.602, 1981.

J. Barichivich, K. Briffa, R. Myneni, G. Schrier, W. Dorigo et al., Temperature and Snow-Mediated Moisture Controls of Summer Photosynthetic Activity in Northern Terrestrial Ecosystems between 1982 and 2011, 2014. 603 Temperature and Snow-­?Mediated Moisture Controls of Summer Photosynthetic Activity in 604 Northern Terrestrial Ecosystems between, pp.1390-1431, 1982.
DOI : 10.3390/rs6021390

D. W. Beilman, G. M. Macdonald, L. C. Smith, and P. J. Reimer, Carbon accumulation in peatlands 606 of West Siberia over the last 2000 years, Global Biogeochemical Cycles, vol.23, p.607, 2009.

B. E. Berglund and M. Ralska-­?jasiewiczowa, Pollen analysis and pollen diagrams Handbook of Holocene Paleoecology and Paleohydrology, pp.609-455, 1986.

H. Beug, Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, p.611, 2004.

H. H. Birks, Plant macrofossil introduction, Encyclopedia of Quaternary, p.613, 2007.

W. Bleuten and I. Filippov, Hydrology of mire ecosystems in central West Siberia, p.618, 2008.

A. Blundell and K. Barber, A 2800-­?year palaeoclimatic record from Tore Hill Moss, p.622, 2005.

A. Blundell, D. J. Charman, and K. Barber, Multiproxy late Holocene peat records from Ireland: towards a regional palaeoclimate curve, Journal of Quaternary Science, vol.35, issue.1, pp.59-71, 2008.
DOI : 10.1002/jqs.1115

. Peatlands, Specific Features of Polytypic and Polymorphic Species, Biology Bulletin of the 631 Russian Academy of Sciences, vol.29, pp.605-617

L. A. Pestryakova, U. Herzschuh, R. K. Booth, M. Lamentowicz, D. J. Charman et al., Testate amoebae and environmental features of polygon 637 tundra in the Indigirka lowland (East Siberia) Testate amoebae as proxies for mean annual water-­?table depth in Sphagnum-­? 639 dominated peatlands of North America Preparation and analysis of testate amoebae 641 in peatland paleoenvironmental studies Widespread drought episodes in the 643 western Great Lakes region during the past 2000 years: Geographic extent and potential 644 mechanisms, Ecology of testate amoebae in a North Carolina 646 pocosin and their potential use as environmental and paleoenvironmental indicators, pp.43-57, 2006.

W. Borren, W. Bleuten, and E. D. Lapshina, Holocene peat and carbon accumulation rates in the southern taiga of western Siberia, Quaternary Research, vol.1, issue.01, pp.42-51, 2004.
DOI : 10.1016/S0277-3791(02)00196-8

R. H. Bradshaw, M. Lindbladh, and G. E. Hannon, The role of fire in southern Scandinavian forests during the late Holocene, International Journal of Wildland Fire, vol.19, issue.8, pp.1040-1049, 2010.
DOI : 10.1071/WF09108

C. F. Bronk-ramsey, D. W. Beilman, and Z. Yu, Deposition models for chronological records, Quaternary Science Reviews, vol.27, issue.1-2, pp.42-60, 2008.
DOI : 10.1016/j.quascirev.2007.01.019

D. Charman, A. Blundell, and A. Members, A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands, Journal of Quaternary Science, vol.8, issue.3, pp.209-221, 2007.
DOI : 10.1002/jqs.1026

URL : https://hal.archives-ouvertes.fr/hal-00402975

D. J. Charman, Peatlands and environmental change, p.661, 2002.

D. J. Charman, A. Blundell, R. C. Chiverrell, D. Hendon, and P. G. Langdon, Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain, Quaternary Science Reviews, vol.25, issue.3-4, pp.336-350, 2006.
DOI : 10.1016/j.quascirev.2005.05.005

M. B. Davis and E. S. Deevey, Pollen Accumulation Rates: Estimates from Late-Glacial Sediment of Rogers Lake, Science, vol.145, issue.3638, pp.1293-1295, 1964.
DOI : 10.1126/science.145.3638.1293

N. B. Dise, Peatland Response to Global Change, Science, vol.326, issue.5954, pp.810-811, 2010.
DOI : 10.1126/science.1174268

B. Fia?kiewicz-­?kozie?, P. Ko?aczek, A. Michczy?ski, and N. Piotrowska, The construction of a 684 reliable absolute chronology for the last two millennia in an anthropogenically disturbed peat 685 bog: Limitations and advantages of using a radio-­?isotopic proxy and age?depth modelling, p.686, 2015.

I. V. Filippov and E. D. Lapshina, Peatland unit types of lake-­?bog systems in the Middle Priob'ie 688 (Western Siberia, Transactions of UNESCO Department of Yugorsky State 689, 2008.

W. Finsinger and W. Tinner, Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors, The Holocene, vol.6, issue.2, pp.293-297, 2005.
DOI : 10.1191/0959683605hl808rr

M. Flannigan, A. S. Cantin, W. J. De-groot, M. Wotton, A. Newbery et al., Global wildland fire season severity in the 21st century, Forest Ecology and Management, vol.294, pp.54-61, 2013.
DOI : 10.1016/j.foreco.2012.10.022

N. H. French, P. Goovaerts, and E. S. Kasischke, Uncertainty in estimating carbon emissions 695 from boreal forest fires, Journal of Geophysical Research: Atmospheres, vol.109, pp.14-22, 2004.

M. Ga?ka, G. Miotk-­?szpiganowicz, T. Goslar, M. J??ko, W. O. Van-der-knaap et al., Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 698 7500 years reconstructed from a raised bog based on multi-­?proxy data, pp.209-700

F. Gennaretti, D. Arseneault, Y. Bégin, and G. De-deyn, Millennial stocks and fluxes of large 704 woody debris in lakes of the North American taiga Wechseltierchen (Rhizopoden) Kosmos Verlag, Journal of Ecology, p.706, 1958.

G. Grosse-­?brauckmann, Über pflanzliche Makrofossilien mitteleuropäischer Torfe. II, p.707, 1974.

W. Reste, Moose u.a.) und ihre Bestimmungsmöglichkeiten -­? On plant 708 macrofossils in central European peat. II. Other remnants (e.g. fruits and seeds, mosses) and 709 possibilities for their identification, pp.51-117

G. Grosse-­?brauckmann, Über pflanzliche Makrofossilien mitteleuropäischer Torfe. III, p.711, 1992.

S. Früchte and . Einige-gewebe, Fotos von fossilen Pflanzenresten) -­? On plant macrofossils 712 in central European peat. III. Fruits, seeds and some tissues (photos of fossil plant remains)

O. Heiri, A. F. Lotter, and G. Lemcke, Loss on ignition as a method for estimating organic and 715 carbonate content in sediments: reproducibility and comparability of results, Journal of Paleolimnology, vol.25, issue.1, pp.101-110, 2001.
DOI : 10.1023/A:1008119611481

D. Hendon and D. J. Charman, High-­?resolution peatland water-­?table changes for the past 200 718 years: the influence of climate and implications for management. The Holocene, pp.125-134, 2004.

A. Hölzer, Die Torfmoose Südwestdeutschlands und der Nachbargebiete, 2010.

Q. Hua, M. Barbetti, and A. Z. Rakowski, Atmospheric Radiocarbon for the Period 1950???2010, Radiocarbon, vol.8, issue.224, pp.2059-2072, 1950.
DOI : 10.1016/j.forsciint.2010.12.002

P. D. Jones and M. E. Mann, Climate over past millennia, Reviews of Geophysics, vol.13, issue.9, pp.42-726, 2004.
DOI : 10.1029/2003RG000143

S. Juggins, C2 User guide. Software for ecological and palaeoecological data analysis and 727 visualisation, p.728, 2003.

H. J. Birks, A. F. Lotter, S. Juggins, and J. P. Smol, Tracking Environmental Change Using Lake 730 Sediments. Developments In Paleoenvironmental Research, pp.431-494

E. S. Kasischke, E. J. Hyer, P. C. Novelli, L. P. Bruhwiler, N. H. French et al., Influences of boreal fire emissions on Northern Hemisphere atmospheric 736 carbon and carbon monoxide, Global Biogeochemical Cycles, vol.735, issue.19, p.737, 2005.

A. P. Kirilenko and R. A. Sedjo, Climate change impacts on forestry, Proceedings of the National Academy of Sciences, vol.104, issue.50, pp.19697-19702, 2007.
DOI : 10.1073/pnas.0701424104

K. V. Kremenetski, A. A. Velichko, O. K. Borisova, G. M. Macdonald, L. C. Smith et al., Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history, Quaternary Science Reviews, vol.22, issue.5-7, pp.703-723, 2003.
DOI : 10.1016/S0277-3791(02)00196-8

I. V. Kurina, Y. I. Preis, and A. A. Bobrov, Testate amoebae inhabiting middle taiga bogs in 743, 2010.

J. Laine, P. Harju, T. Timonen, A. Laine, E. S. Tuittila et al., The 745, 2011.

M. Lamentowicz, A. Cedro, M. Ga?ka, G. Miotk-­?szpiganowicz, E. A. Mitchell et al., Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from 749 stable isotopes, pollen, plant macrofossils and testate amoebae, pp.93-106, 2008.

M. Lamentowicz, M. Ga?ka, J. Pawlyta, ?. Lamentowicz, T. Goslar et al., 752 Climate change and human impact in the southern Baltic during the last millennium 753 reconstructed from an ombrotrophic bog archive, Studia Quaternaria, vol.28, pp.3-16, 2011.

M. Lamentowicz, K. Milecka, M. Ga?ka, A. Cedro, J. Pawlyta et al., Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine, Boreas, vol.35, issue.2, pp.214-229, 2009.
DOI : 10.1111/j.1502-3885.2008.00047.x

M. Lamentowicz and E. A. Mitchell, The Ecology of Testate Amoebae (Protists) in Sphagnum in North-western Poland in Relation to Peatland Ecology, Microbial Ecology, vol.8, issue.1, pp.48-63, 2005.
DOI : 10.1007/s00248-004-0105-8

E. D. Lapshina and N. N. Plogova, Spatial Dynamics of peat growth and carbon accumulation in 761 sphagnum bogs (Boreal West Siberia), West Siberian Peatlands and Carbon Cycle: past and 762 present, Proceedings of the Third International Field Symposium Khanty-­?Mansiysk, 2011.

E. D. Lapshina, N. N. Pologova, E. Ya, and M. , Pattern of development and carbon accumulation 765 in homogenous Sphagnum fuscum-­?peat deposit on the south of West Siberia, p.766, 2001.

A. Titlyanova and A. Velochko, West Siberian Peatlands and Carbon Cycle: past and present, 767 Proceedings of International Field Symposium, pp.101-104, 2001.

C. Lavoie and S. Pellerin, Fires in temperate peatlands (southern Quebec): past and recent trends, Canadian Journal of Botany, vol.85, issue.3, pp.263-272, 2007.
DOI : 10.1139/B07-012

P. Legendre and E. D. Gallagher, Ecologically meaningful transformations for ordination of species data, Oecologia, vol.129, issue.2, pp.271-280, 2001.
DOI : 10.1007/s004420100716

O. L. Liss, K. I. Abramova, and L. I. Avetov, Bog ecosystems of West Siberia and their 773 environmental importance, 2001.

J. Loisel and Z. Yu, Surface vegetation patterning controls carbon accumulation in peatlands, Geophysical Research Letters, vol.37, issue.2, pp.5508-5513, 2013.
DOI : 10.1029/2010GL043584

P. Kuhry, A. Lamarre, M. Lamentowicz, D. Large, M. Lavoie et al., A database and 783 synthesis of existing data for northern peatland soil properties and Holocene carbon 784 accumulation, Holocene, vol.24, pp.1028-1042, 2014.

M. Magny, F. Arnaud, H. Holzhauser, E. Chapron, M. Debret et al., Solar and proxy-­?sensitivity imprints on paleohydrological records 787 for the last millennium in west-­?central Europe, Quaternary Research, vol.786, issue.73, pp.173-179, 2010.

M. Magny, E. Gauthier, B. Vannière, and O. Peyron, Palaeohydrological changes and 789 humanimpact history over the last millennium recorded at Lake Joux in the Jura Mountains, pp.255-265, 2008.

K. Marcisz, W. Tinner, D. Colombaroli, P. Ko?aczek, M. S?owi?ski et al., Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive, Quaternary Science Reviews, vol.112, pp.138-152, 2015.
DOI : 10.1016/j.quascirev.2015.01.019

Y. Mazei and A. N. Kabanov, Testate amoebae from the sedge-­?sphagnum forested mire in the 796 north of Karelia (Russia). Izv. Penza. gos. pedagog. univ. im.i Vv, Gg. Bbelinskogo, vol.10, pp.101-104, 2008.

Y. Mazei and A. N. Tsyganov, Freshwater testate amoebae, p.798, 2006.

Y. A. Mazei and E. A. Embulaeva, Changes of soil-­?inhabited testate amoebae communities along 799 forest-­?steppe gradient in the middle Volga region, Arid Ecosystems, vol.15, pp.13-23, 2009.

Y. A. Mazei, A. N. Tsyganov, and O. A. Bubnoba, The structure of amoeba communities in boggy 801 biotopes of the southern Taiga (Russian European Part) Ucpiechi Sovriemennoi Biologii 129, pp.67-77, 2009.

Y. A. Mazei, A. N. Tsyganov, and O. A. Bubnova, Structure of a community of testate amoebae in a sphagnum dominated bog in upper sura flow (Middle Volga Territory), Biology Bulletin, vol.34, issue.4, pp.382-394, 2007.
DOI : 10.1134/S1062359007040115

P. D. Moore, J. A. Webb, and M. E. Collinson, Pollen analysis, p.807, 1991.

S. Muller, A. A. Bobrov, L. Schirrmeister, A. A. Andreev, and P. E. Tarasov, Testate amoebae 808 record from the Laptev Sea coast and its implication for the reconstruction of Late Pleistocene 809 and Holocene environments in the Arctic Siberia, pp.810-271, 2009.

M. Niklasson, M. Lindbladh, and L. Björkman, A long-­?term record of Quercus decline, logging 812 and fires in a southern Swedish Fagus-­?Picea forest, Journal of Vegetation Science, vol.13, pp.765-774, 2002.

C. G. Ogden and R. H. Hedley, An Atlas of Freshwater Testate Amoebae, Soil Science, vol.130, issue.3, p.815, 1980.
DOI : 10.1097/00010694-198009000-00013

R. J. Payne, V. E. Jassey, I. D. Leith, L. J. Sheppard, N. B. Dise et al., Ammonia exposure promotes algal biomass in an ombrotrophic peatland, Soil Biology and Biochemistry, vol.57, issue.819, pp.936-938, 2013.
DOI : 10.1016/j.soilbio.2012.09.012

URL : https://hal.archives-ouvertes.fr/hal-00820346

R. J. Payne and E. A. Mitchell, How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae, Journal of Paleolimnology, vol.8, issue.1???2, pp.483-824, 2008.
DOI : 10.1007/s10933-008-9299-y

A. Peregon, M. Uchida, and Y. Shibata, Sphagnum peatland development at their southern 826 climatic range in West Siberia: Trends and peat accumulation patterns, Environmental Research, vol.827, issue.2, p.828, 2007.

A. Peregon, M. Uchida, and Y. Shibata, Sphagnum peatland development at their southern 829 climatic range in West Siberia: trends and peat accumulation patterns, Environmental Research, vol.830, issue.2, pp.45014-831, 2007.

A. Pitkänen, J. Turunen, T. Tahvanainen, and K. Tolonen, Holocene vegetation history from the Salym-Yugan Mire Area, West Siberia, The Holocene, vol.12, issue.3, pp.353-362, 2002.
DOI : 10.1191/0959683602hl533rp

Y. M. Qin, E. A. Mitchell, M. Lamentowicz, R. J. Payne, E. Lara et al., Ecology of testate amoebae in peatlands of central China and development of a transfer 835 function for paleohydrological reconstruction, Journal of Paleolimnology, vol.834, issue.50, pp.2013-319

G. Simpson, K. Sohar, N. J. Whitehouse, J. W. Williams, and A. Witkowski, Looking forward 852 through the past: identification of 50 priority research questions in palaeoecology, pp.256-267, 2014.

U. Sillasoo, M. Väliranta, and E. S. Tuittila, Fire history and vegetation recovery in two raised bogs at the Baltic Sea, Journal of Vegetation Science, vol.6, issue.6, pp.1084-1093, 2011.
DOI : 10.1111/j.1654-1103.2011.01307.x

A. I. Solomeshch, The West Siberian Lowland The 857 World's Largest Wetlands, Ecology and Conservation, pp.11-62, 2005.

J. Stockmarr, Tablets with spores used in absolute pollen analysis. Pollen and Spores 16, pp.615-621, 1971.

B. J. Stocks, J. A. Mason, J. B. Todd, E. M. Bosch, B. M. Wotton et al., Large forest fires in Canada, Journal of Geophysical Research, vol.108, pp.1959-1997, 2001.

G. T. Swindles, P. J. Morris, A. J. Baird, M. Blaauw, G. G. Plunkett et al., Ecohydrological feedbacks 867 confound peat-­?based climate reconstructions A multiproxy climate record from a raised bog, Geophysical Research Letters, vol.39, issue.868, p.869, 2007.

C. Fermanagh, Northern Ireland: a critical examination of the link between bog surface 870 wetness and solar variability, Journal of Quaternary Science, vol.22, issue.871, pp.667-679

G. T. Swindles, E. Watson, T. E. Turner, J. M. Galloway, T. Hadlari et al., 872 Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene R: A language and environment for statistical computing. R Foundation for 875 Statistical Computing, 2013.

W. Tinner and F. S. Hu, Size parameters, size-­?class distribution and area-­?number relationship 877 of microscopic charcoal: relevance for fire reconstruction. The Holocene 13, pp.499-505, 2003.

K. Tobolski, Przewodnik do oznaczania torfów i osadów jeziornych, Vademecum 879 Geobotanicum, Wydawnictwo Naukowe PWN, pp.508-880, 2000.

Y. A. Mazei, Additive partitioning of testate amoeba species diversity across habitat 884 hierarchy within the pristine southern taiga landscape (Pechora-­?Ilych Biosphere Reserve, p.885, 2015.

M. R. Turetsky, B. Benscoter, S. Page, G. Rein, G. R. Van-der-werf et al., Global vulnerability of peatlands to fire and carbon loss, Nature Geoscience, vol.6, issue.1, pp.11-14, 2015.
DOI : 10.1002/jgrg.20042

T. E. Turner, G. T. Swindles, and K. H. Roucoux, Late Holocene ecohydrological and carbon 889 dynamics of a UK raised bog: impact of human activity and climate change. Quaternary Science 890, Reviews, vol.84, pp.65-85, 2014.

J. Turunen, T. Tahvanainen, K. Tolonen, and A. Pitkanen, peatland distribution in North America and Eurasia during the past 21,000 years, Global Biogeochemical Cycles, vol.39, issue.2, pp.285-296, 2001.
DOI : 10.1029/2000GB001312

M. A. Tweiten, S. C. Hotchkiss, R. K. Booth, R. R. Calcote, E. A. Lynch et al., The response of a jack 894 pine forest to late-­?Holocene climate variability in northwestern Wisconsin, Did fires drive Holocene carbon 897 sequestration in boreal ombrotrophic peatlands of eastern Canada? Quaternary Research, pp.50-898, 2009.

F. A. Street-­?perrott, E. M. Rice, V. A. Pancotto, M. Lamentowicz, and . Van-leeuwen, Testate amoebae as a proxy for 901 reconstructing Holocene water table dynamics in southern Patagonian peat bogs, Journal of 902 Quaternary Science J.F.N, vol.29, pp.463-474, 2014.

D. Mauquoy, T. Goslar, E. A. Mitchell, ?. Lamentowicz, and C. Kamenik, A multi-­?proxy, high-­? 905 resolution record of peatland development and its drivers during the last millennium from the 906 subalpine Swiss Alps, Quaternary Science Reviews, vol.30, pp.3467-3480, 2011.

S. E. Ward, N. J. Ostle, S. Oakley, H. Quirk, P. A. Henrys et al., Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition, Ecology Letters, vol.7, issue.10, pp.1285-1293, 2013.
DOI : 10.1111/ele.12167

B. M. Wotton and M. D. Flannigan, Length of the fire season in a changing climate, The Forestry Chronicle, vol.69, issue.2, pp.187-192, 1993.
DOI : 10.5558/tfc69187-2

O. Zackrisson, Influence of Forest Fires on the North Swedish Boreal Forest, Oikos, vol.29, issue.1, pp.22-32, 1977.
DOI : 10.2307/3543289

M. Zobel, 5%) Sphagnum stems 51?52 Poz-59502 701%) Sphagnum stems; excluded from age-depth modelling 56?57 Poz-69551 145, Autogenic succession in boreal mires ? a review. Folia Geobotanica et 914 Phytotaxonomic6%) Sphagnum stems, pp.417-445, 1988.