D. K. Stoecker, Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications, European Journal of Protistology, vol.34, issue.3, pp.281-290, 1998.
DOI : 10.1016/S0932-4739(98)80055-2

D. K. Stoecker, M. D. Johnson, C. De-vargas, and F. Not, Acquired phototrophy in aquatic protists, Aquatic Microbial Ecology, vol.57, pp.279-310, 2009.
DOI : 10.3354/ame01340

URL : https://hal.archives-ouvertes.fr/hal-01258262

M. Selosse and M. Roy, Green plants that feed on fungi: facts and questions about mixotrophy, Trends in Plant Science, vol.14, issue.2, pp.64-70, 2009.
DOI : 10.1016/j.tplants.2008.11.004

G. Gebauer and M. Meyer, 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association, New Phytologist, vol.32, issue.1, pp.209-223, 2003.
DOI : 10.1046/j.1469-8137.2003.00872.x

F. Gomaa, One Alga to Rule them All: Unrelated Mixotrophic Testate Amoebae (Amoebozoa, Rhizaria and Stramenopiles) Share the Same Symbiont (Trebouxiophyceae), Protist, vol.165, issue.2, pp.161-176, 2014.
DOI : 10.1016/j.protis.2014.01.002

K. J. Flynn, Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types, Journal of Plankton Research, vol.35, issue.1, pp.62-73, 2012.
DOI : 10.1093/plankt/fbs062

A. Z. Worden, Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes, Science, vol.347, issue.6223, pp.1257594-1257594, 2015.
DOI : 10.1126/science.1257594

M. Jansson, P. Blomqvist, A. Jonsson, and A. K. Bergström, Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake ??rtr??sket, Limnology and Oceanography, vol.41, issue.7, pp.1552-1559, 1996.
DOI : 10.4319/lo.1996.41.7.1552

P. Falkowski, Ocean Science: The power of plankton, Nature, vol.304, issue.7387, pp.17-20, 2012.
DOI : 10.1038/483S17a

F. Unrein, J. M. Gasol, and R. Massana, Dinobryon faculiferum (Chrysophyta) in coastal Mediterranean seawater: presence and grazing impact on bacteria, Journal of Plankton Research, vol.32, issue.4, pp.559-564, 2010.
DOI : 10.1093/plankt/fbp150

M. Hartmann, Mixotrophic basis of Atlantic oligotrophic ecosystems, Proc. Natl. Acad. Sci. USA, pp.5756-5760, 2012.
DOI : 10.1073/pnas.1118179109

F. Unrein, J. M. Gasol, F. Not, I. Forn, and R. Massana, Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters, The ISME Journal, vol.53, issue.1, pp.164-176, 2014.
DOI : 10.1078/0932-4739-00815

S. Wilken, J. M. Schuurmans, and H. C. Matthijs, after feeding, New Phytologist, vol.455, issue.4, pp.882-889, 2014.
DOI : 10.1111/nph.12975

S. Wilken, J. Huisman, S. Naus-wiezer, and E. Van-donk, Mixotrophic organisms become more heterotrophic with rising temperature, Ecology Letters, vol.455, issue.2, pp.225-233, 2012.
DOI : 10.1111/ele.12033

A. Mitra, The role of mixotrophic protists in the biological carbon pump, Biogeosciences Discussions, vol.10, issue.8, pp.13535-13562, 2013.
DOI : 10.5194/bgd-10-13535-2013

Z. Yu, Peatlands and Their Role in the Global Carbon Cycle, Eos, Transactions American Geophysical Union, vol.37, issue.2, pp.97-108, 2011.
DOI : 10.1029/2011EO120001

D. Gilbert, E. A. Mitchell, and I. P. Martini, Microbial diversity in SPhagnum peatlands in Peatlands: basin evolution and depository of records on global environmental and climatic changes, pp.287-318, 2006.

Z. Lindo and A. Gonzalez, The Bryosphere: An Integral and Influential Component of the Earth???s Biosphere, Ecosystems, vol.202, issue.4, pp.612-627, 2010.
DOI : 10.1007/s10021-010-9336-3

V. E. Jassey, To What Extent Do Food Preferences Explain the Trophic Position of Heterotrophic and Mixotrophic Microbial Consumers in a Sphagnum Peatland?, Microbial Ecology, vol.25, issue.3, pp.571-580, 2013.
DOI : 10.1007/s00248-013-0262-8

URL : https://hal.archives-ouvertes.fr/hal-01420339

K. Marcisz, B. Fournier, D. Gilbert, M. Lamentowicz, and E. A. Mitchell, Response of Sphagnum Peatland Testate Amoebae to a 1-Year Transplantation Experiment Along an Artificial Hydrological Gradient, Microbial Ecology, vol.22, issue.8, pp.1-9, 2014.
DOI : 10.1007/s00248-014-0367-8

URL : https://hal.archives-ouvertes.fr/hal-01114336

L. Beyens, P. Ledeganck, B. J. Graae, and I. Nijs, Are soil biota buffered against climatic extremes? An experimental test on testate amoebae in arctic tundra (Qeqertarsuaq, West Greenland), Polar Biology, vol.20, issue.12, pp.453-462, 2009.
DOI : 10.1007/s00300-008-0540-y

A. N. Tsyganov, R. Aerts, I. Nijs, J. H. Cornelissen, and L. Beyens, Sphagnum-dwelling Testate Amoebae in Subarctic Bogs are More Sensitive to Soil Warming in the Growing Season than in Winter: the Results of Eight-year Field Climate Manipulations, Protist, vol.163, issue.3, pp.400-414, 2012.
DOI : 10.1016/j.protis.2011.07.005

V. E. Jassey, D. Gilbert, P. Binet, M. Toussaint, and G. Chiapusio, Effect of a temperature gradient on Sphagnum fallax and its associated living microbial communities: a study under controlled conditions, Canadian Journal of Microbiology, vol.57, issue.3, pp.226-235, 2011.
DOI : 10.1139/W10-116

URL : https://hal.archives-ouvertes.fr/hal-00682501

V. E. Jassey, peatland: climate warming affects plant-microbial interactions, Global Change Biology, vol.20, issue.3, pp.811-823, 2013.
DOI : 10.1111/gcb.12075

URL : https://hal.archives-ouvertes.fr/insu-00766326

M. Beniston, Future extreme events in European climate: an exploration of regional climate model projections, Climatic Change, vol.11, issue.1, pp.71-95, 2007.
DOI : 10.1007/s10584-006-9226-z

A. A. Venn, J. E. Loram, and A. Douglas, Photosynthetic symbioses in animals, Journal of Experimental Botany, vol.59, issue.5, pp.1069-1080, 2008.
DOI : 10.1093/jxb/erm328

J. Dolan, Mixotrophy in ciliates: A review of Chlorella symbiosis and chloroplast retention, Aquat. Microb. Ecol, 1992.

W. Schönborn, Untersuchungen über die Zoochlorellen-Symbiose der Hochmoor-Testaceen, Limnologica, vol.3, pp.173-176, 1965.

R. K. Booth, Testate amoebae as proxies for mean annual water-table depth inSphagnum-dominated peatlands of North America, Journal of Quaternary Science, vol.8, issue.1, pp.43-57, 2008.
DOI : 10.1002/jqs.1114

B. Fournier, E. Lara, V. E. Jassey, and E. A. Mitchell, Functional traits as a new approach for interpreting testate amoeba palaeo-records in peatlands and assessing the causes and consequences of past changes in species composition. The Holocene 25, pp.1375-1383, 2015.

M. Lamentowicz, Reconstructing climate change and ombrotrophic bog development during the last 4000years in northern Poland using biotic proxies, stable isotopes and trait-based approach, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.418, pp.1-17, 2015.
DOI : 10.1016/j.palaeo.2014.11.015

R. J. Payne, A natural experiment suggests little direct temperature forcing of the peatland palaeoclimate record, Journal of Quaternary Science, vol.8, issue.1, pp.509-514, 2014.
DOI : 10.1002/jqs.2732

T. Stocker, D. Qin, G. K. Plattner, M. Tignor, and S. K. Allen, Climate change 2013: The physical science basis, 2014.

M. Jochum, F. D. Schneider, T. P. Crowe, U. Brose, and E. J. O-'gorman, Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.93, issue.3, pp.2962-2970, 2012.
DOI : 10.1890/11-0982.1

M. E. Ledger, L. E. Brown, F. K. Edwards, and A. M. Milner, Drought alters the structure and functioning of complex food webs, Nature Climate Change, vol.163, issue.3, pp.223-227, 2013.
DOI : 10.1038/nclimate1684

F. Delarue, Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland, Science of The Total Environment, vol.511, pp.576-583, 2015.
DOI : 10.1016/j.scitotenv.2014.12.095

URL : https://hal.archives-ouvertes.fr/insu-01105287

J. W. Bjerke, S. Bokhorst, and T. Callaghan, lichen during sub-Arctic midwinter warming, Plant Ecology & Diversity, vol.75, issue.3-4, pp.383-392, 2013.
DOI : 10.1029/92JD02473

W. W. Adams, . Iii, C. R. Zarter, V. Ebbert, and B. Demmig-adams, Photoprotective Strategies of Overwintering Evergreens, BioScience, vol.54, issue.1, pp.41-49, 2004.
DOI : 10.1641/0006-3568(2004)054[0041:PSOOE]2.0.CO;2

H. Y. Adamson, R. G. Hiller, and M. Vesk, Chloroplast development and the synthesis of chlorophyll a and b and chlorophyll protein complexes I and II in the dark in Tradescantia albiflora (Kunth), Planta, vol.26, issue.4, pp.269-274, 1980.
DOI : 10.1007/BF00384654

B. K. Singh, R. D. Bardgett, P. Smith, and D. S. Reay, Microorganisms and climate change: terrestrial feedbacks and mitigation options, Nature Reviews Microbiology, vol.26, issue.11, pp.779-790, 2010.
DOI : 10.1038/nrmicro2439

E. Dorrepaal, Carbon respiration from subsurface peat accelerated by climate warming in the subarctic, Nature, vol.13, issue.7255, pp.616-619, 2009.
DOI : 10.1038/nature08216

O. W. Heal, Observations on the Seasonal and Spatial Distribution of Testacea (Protozoa: Rhizopoda) in Sphagnum, The Journal of Animal Ecology, vol.33, issue.3, pp.395-412, 1964.
DOI : 10.2307/2561

E. A. Mitchell, Horizontal Distribution Patterns of Testate Amoebae (Protozoa) in a Sphagnum magellanicum Carpet, pp.290-300, 2000.

K. Maxwell and G. N. Johnson, Chlorophyll fluorescence?a practical guide, J. Exp. Bot, vol.51, pp.659-668, 2000.

R. J. Ritchie, Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents, Photosynthesis Research, vol.210, issue.1, pp.27-41, 2006.
DOI : 10.1007/s11120-006-9065-9

H. K. Lichtenthaler, [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods in enzymology, 1987.
DOI : 10.1016/0076-6879(87)48036-1

S. W. Jeffrey and G. Humphrey, New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochemie und Physiologie der Pflanzen, vol.167, issue.2, pp.191-194, 1975.
DOI : 10.1016/S0015-3796(17)30778-3

J. C. Pinheiro and D. M. Bates, Mixed-effects models in S and S-PLUS. Statistics and Computing, 2000.

Z. Lindo, M. Nilsson, and M. J. Gundale, Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change, Global Change Biology, vol.37, issue.7, pp.2022-2035, 2013.
DOI : 10.1111/gcb.12175