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Champallier

PII: S0009-2541(15)30078-4
DOI: doi: 10.1016/j.chemgeo.2015.10.031
Reference: CHEMGE 17740

To appear in: Chemical Geology

Received date: 11 February 2015
Revised date: 24 August 2015
Accepted date: 20 October 2015

Please cite this article as: Laumonier, Mickael, Scaillet, Bruno, Arbaret, Laurent,
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ABSTRACT 

 

Deformation experiments involving hydrous magmas of different compositions (basalt and 

haplotonalite) have been performed in a Paterson press at 300 MPa, in the temperature range 

600°C-1020°C, with water-saturated melts, during 2-4 hours. Prior to deformation the two 

end-member magmas were annealed at either 950°C or 1000°C, yielding magmas with crystal 

contents in the range 31-53 wt% and 2 sets of viscosity contrasts. Under the experimental 

conditions investigated (i.e. moderate shear rates <10
-3

 s
-1

), mixing/mingling textures appear 

at temperatures > 950°C. In the temperature range 950-985°C a few mixing and mingling 

textures occur, though both end-members essentially retain their physical integrity. It is only 

at, or above, 1000°C that a dramatic jump in mingling efficiency happens, corresponding to a 

crystal fraction of 45 vol%. Textures include entrainment of mafic crystals into the felsic 

magma, mafic-felsic banding, enclave formation, diffusion-induced interface, the latter only 
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over limited distances (< 300 microns) due to the short run durations. In the most strained 

parcels of interacting magmas, complex mixing/mingling textures were produced, similar to 

those observed in volcanic and plutonic rocks in arc settings. The experiments show that 

mixing between hydrous felsic and mafic magmas takes place at around 1000°C, a 

temperature which is almost 200°C lower than mixing under dry conditions. Magma mixing 

is commonly invoked as a trigger for volcanic eruptions; our experiments suggest that such 

eruptions can be driven by small (~15°C) temperature fluctuation in the reservoir. Our results 

also suggest that slow replenishment of a felsic reservoir by mafic inputs will likely result in 

stratification between end-members rather than in a homogeneous mixture. 

KEY WORDS: 

Magma mixing; mingling; hydrous; shearing; deformation; texture; enclave 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1. INTRODUCTION 
Magma mixing is commonly observed in nature, in particular in arc magmas, which 

are characterised by an abundance in volatiles, notably water (Anderson, 1976; Armienti et 

al., 1983; Blake, 1984; Castro et al., 1990; Coombs et al., 2002; De Rosa et al., 1996; Druitt et 

al., 1999; Martin et al., 2006a,b; Pons et al., 2006; Pal et al., 2007; Woods & Cowan, 2009; 

Davì et al., 2010; Eichelberger 2010; Perugini & Poli, 2012). The effects of mixing are 

particularly evident when evolved magma chambers stored at upper crustal pressures (P < 400 

MPa) are replenished by batches of hot (up to 1250°C) and mafic magmas (e.g. Sparks et al., 

1977; Sakuyama, 1979; 1981; Bacon, 1986; Civetta et al., 1991; Nakamura, 1995; Pallister et 

al., 1996; Mandeville et al., 1996; Wiebe, 1996; Venezky & Rutherford, 1997; Clynne, 1999; 

Miller et al., 1999; Browne et al., 2006; Pal et al., 2007; Eichelberger, 2010; Ruprecht & 

Bachmann, 2010). Magma mixing has an important role in the dynamics of the processes 

occurring in magmatic reservoirs and it has been proposed as a triggering mechanism of 

volcanic eruptions (e.g., Sparks et al., 1977; Pallister et al., 1996; Eichelberger, 2010; Kent et 

al., 2010; Ruprecht & Bachmann, 2010; La Felice & Landi, 2011; Druitt et al., 2012). Mixing 

depends on the rheological properties of magmas that are in turn strongly affected by 

volatiles. In particular, dissolved water strongly decreases melt viscosity (Dingwell et al., 

1996), affects the fraction of crystals present at a given temperature, which, in turn, affects 

magma viscosity (Champallier et al., 2008; Caricchi et al., 2007; Picard et al., 2011). 

Consequently water and volatiles, in general, strongly influence magma behavior and eruptive 

style, depending on whether the magma holds or loses its volatiles during its transfer to 

surface (e.g., Jaupart & Allègre, 1991; Martel et al., 1998; Laumonier et al., 2011). However, 

dynamic experiments designed to explore magma mixing processes at the water-rich 

conditions found in arc settings in particular are absent (Kouchi & Sunagawa, 1982; 1985; 

Watson & Jurewicz, 1984; Wyllie et al., 1989; Carroll & Wyllie, 1989; van der Laan & 

Wyllie, 1993; De Campos et al., 2008; 2011). So far, most works have been conducted at 
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atmospheric pressure (i.e. using dry magmas), high temperature (1200 to 1400°C), under 

static conditions or at high strain rates (~10
2
 s

-1
 by Kouchi & Sunagawa, 1982; 1985; ~10

-1
 s

-1
 

by De Campos et al., 2008; 2011; and ~10
-2

 s
-1

 by Morgavi et al., 2013a; 2013b). Such 

conditions, in particular strain rate, are consistent with volcanic eruption processes, but 

exceed those characteristic of magma reservoirs prior to eruption (10
-4

 s
-1

, Chadwick et al., 

1988; Albertz et al., 2005; Hodge et al., 2012). Recently, Laumonier et al. (2014a) deformed 

two chemically distinct and dry magmas at conditions close to expected magmatic ones, i.e. 

900 < T < 1200°C, 300 MPa and strain rate of 10
-5

 to 10
-3

 s
-1

. The geometry used imposes 

simple shear at the interface between the two end-members, to simulate replenishment of a 

reservoir by a mafic dyke intrusion (Fig. 1A).  These dry experiments reproduce most of the 

textures of magma mixing and mingling observed in rocks (enclaves, stretched filament, 

isolated crystal in disequilibrium with their host), clarifying the details of the mechanisms 

occurring during the incipient stages of mixing. The fraction and the arrangement of crystals 

appears to be a critical factor for magma mixing, in particular via the existence of crystal 

network, which controls the magma rheology (e.g., Philpotts et al., 1998; Martin et al., 2006a; 

Laumonier et al., 2014a; Caricchi et al., 2012). However, the dry conditions explored by 

Laumonier et al. were aimed at limiting quench effects, to better document mixing textures 

and related mechanisms. Here, we extend our efforts toward hydrous conditions using a 

methodology similar to that in Laumonier et al. (2014a). To the best of our knowledge this is 

the first time that the effect of water on the mixing capacity of magmas is experimentally 

investigated under conditions of temperature, pressure, and strain rate relevant to subduction 

zone settings.  

 

2. EXPERIMENTAL PROCEDURE 
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2.1. Starting material 

A natural basalt and a synthetic haplotonalite were selected as the mafic and felsic 

end-members for torsion experiments, allowing a direct comparison with previous dry 

experiments (Laumonier et al., 2014a). The basalt (composition in Table 1) was sampled from 

the massive part of the Cape Balos flow on Santorini volcano, Greece (Nicholls, 1971; Druitt 

et al., 1999). It contains phenocrysts of olivine (Fo75) that are set in a matrix of plagioclase, 

clinopyroxene, magnetite with rare ilmenite and orthopyroxene. Xenocrysts of olivine (Fo78) 

and plagioclase (An90) are also present, the latter sometimes displaying core sieved textures 

and inverse compositional zoning (cores: An55-60, rims An80) (Nicholls, 1971; Andújar et 

al., 2015). The phase equilibria of the mafic material have been investigated by Andujar et al. 

(2015) and are used as a guideline for our work. The haplotonalitic glass (Table 1) was 

produced by Schott A.G. (Germany). In the P-T-H2O range explored it crystallizes 

plagioclase only and the relationships between crystal fraction, water content, and 

temperature have been previously determined (Picard, 2009; Picard et al., 2011; Laumonier et 

al., 2011). The chemical and rheological behaviors of such a plagioclase suspension in a felsic 

glass are similar to natural felsic magmas (trachyte to rhyolite, e.g. Calanchi et al., 1993; Ferla 

& Meli, 2006; Davi et al., 2010).  

These two starting materials were first hydrated and annealed in an Internally Heat 

Pressure Vessel (IHPV) at 300 MPa and 950 or 1000°C, depending on the target crystal 

fraction. The felsic magmas synthesized at 950°C and 1000°C have crystal contents (Φs) of 

38 and 31 vol.% respectively, with ~10 µm long plagioclase (An29 to An35) having an aspect 

ratio of 2-3, along with a few percent of bubbles (<2% in volume) and glass (Fig. 2A; Table 

1). The mafic syntheses contain 53 vol% (at 950°C) and 45 vol % (at 1000°C) of amphibole + 

plagioclase + pyroxene + magnetite and glass (Fig. 2C & D, Table 1). More details about the 

preparation and syntheses can be found in the supplementary information. 
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2.2. Deformation experiments 

2.2.1. Experimental set up for deformation experiments 

Cylinders from first step synthesis products were drilled out (13.78 to 14.96 mm 

diameter) and cut into thin disks (1.16 to 3.34 mm thick) to build the experimental torsion 

assembly while some pieces from different locations in the syntheses were selected to check 

the suspension homogeneity. Our deformation set up consists of 4 interleaved wafers of 

felsic/mafic magma synthesized at the same temperature and alternating in composition, 

always with a felsic disk located atop of the “stack” (Fig. 1B). Layers are named according to 

their position and composition, e.g. numbering from the top, and ρ and β symbols for felsic 

and mafic compositions, respectively (Fig. 1B). In all experiments except the run conducted at 

the lowest temperature (3 layers: ρ1, β2 and ρ3), the upper layer was ρ1 and the lower one is 

β4 providing 3 interfaces between end-members. The faces of each disk were ground to have 

parallel sides (thickness variation lower than 0.02 mm) and polished to reduce interface 

irregularities. The stack of disks (5.33 to 10.93 mm thick) was wrapped in a platinum foil, 

which did not significantly chemically interact with the sample during the experiments. This 

assemblage was inserted in turn in a copper or iron jacket and sandwiched between pistons to 

be located in the isothermal zone of the furnace (± 2°C on 35 mm length determined during 

furnace calibration). Although in nature strong thermal gradients likely exist between mixing 

magmas, in this study we tried to avoid any temperature gradient to better constrain the role 

of melt fraction on mixing. Our experiments hence model the conditions of mixing once 

thermal equilibrium has been reached between the end-members. The column so prepared 

was inserted in a Paterson press (Paterson instrument, Australian Scientific Instruments) at 

ISTO to perform torsion experiments at constant strain rate. Such a deformation configuration 

reproduces simple shear conditions and allows the deformation of one material only without 

forcing the whole stack to deform, such as happening during the replenishment of a felsic 
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reservoir by a mafic dyke (Fig. 1; e.g. Castro, 1987). During preliminary tests, we used a 

different sample geometry consisting of two half cylinders, one mafic and one felsic, sharing 

a vertical interface. However such a geometry was not mechanically sustainable, the rapid 

collapse of the less viscous material imparting an off-axis rotation of the entire column which 

could lead to severe damages of the apparatus: hence it was not used any further. 

2.2.2. Experimental conditions 

Seven torsion, and one static experiments were performed at 300 MPa, in the 

temperature interval 600-1020°C (Table 2). The prevailing oxygen fugacity was measured 

with a Shaw membrane during a calibration experiment and found to be 1 log unit above the 

Nickel-Nickel oxide solid buffer (fO2 ≈ NNO+1±0.5) (Scaillet et al. 1992). Torsion was 

applied during 1 to 4 hours at strain rates 2.10
-4

 <   < 9.10
-4

 s
-1

 allowing to achieve relatively 

large finite strains (0.7 < γ < 5.1). Most torsion experiments were performed in the 

temperature range 950°C-1020°C, with an iron jacket (Table 2). Torsion experiments started 

by the pressurization of the vessel up to ~220 MPa, followed by heating which permits to 

reach the final pressure (300 MPa). Mixing experiments were performed using starting 

materials whose synthesis temperature was the closest to that of the deformation experiment 

(Table 2). The temperature difference relative to that of the synthesis may induce melting 

(PP262, PP293 & PP295, Table 2) or crystallization (PP258, PP265 & PP296), during the 1-

hour lap time allowed before torsion was applied. The lap time of low temperature 

experiments (600°C and 715°C) lasted 15 minutes so as to minimize crystallization. Torsion 

was applied until jacket failure was noticed by the drop of the load applied on the column 

holding the sample and experiments were ended by an isobaric quench (~60°C/mn). 

Additional details on the experimental set-up and techniques can be found in Paterson & 

Olgaard (2000).  
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After experiments, samples were recovered and embedded in epoxy resin for textural 

observation and chemical microanalyses. Generally, the initial geometry of each layer is well 

preserved, no significant compaction or vertical shrinkage was noticed (see lengths before and 

after experiments, determined from SEM pictures, Table 2). Observations were made on 

tangential sections far enough from the sample periphery to avoid interferences resulting from 

the jacket deformation (see details in supplementary information). The textural and chemical 

results of the four experiments characterizing the transition from non-mixing to mixing 

conditions are detailed (950-1000°C; Table 2).  

 

3. RESULTS 

3.1. Strain distribution and macroscopic observations 

During torsion experiments the jacket that moulds the sample is also affected by the 

deformation (Paterson & Olgaard, 2000). Thus, the local strain distribution along sample 

length (affecting each layer) can be directly inferred by photo reconstruction and image 

analysis of the outer jacket (Fig. 3). Whenever the strain is not homogeneously distributed 

across the stack, the deflection of vertical linear markers on the jacket, together with standard 

trigonometric relationships, are used to determine the local strain distribution (Fig. 3). The 

quantification of the local strain was confirmed by calculations based on the twisting angle 

and the sample dimension (Paterson & Olgaard, 2000).  

While experiments conducted at subsolidus temperature exhibit a strong partitioning 

of the deformation, the ones above 950°C display deformational textures generally affecting 

both layers (Fig. 3). In detail, SEM pictures show that the felsic material, also being less 

viscous, still preferentially accommodated the strain until 985°C (Fig. 4A-C). In contrast, at T 

> 1000°C, abundant mingling features such as irregular interfaces between end-members, 

boudinage and mafic enclaves (in the sense of aggregates of mafic minerals) in the felsic 
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magma were produced, despite a relatively low strain γbulk < 1.3 (Fig. 4D & E). In those 

experiments conducted at T > 1000°C, both end-members were clearly deformed, in 

agreement with the near homogeneous strain distribution observed on the jacket (Fig. 3D).  

Lastly, two of the seven experiments (PP295 and PP261) were affected by extrusions 

of material through holes in the jacket (Fig. 3B & D). Although such extrusions were 

uncontrolled they shed light on mingling and mixing features produced at higher strain 

(supplementary information).  

3.2. Microscopical observations 

3.2.1. Phase proportions 

The crystal content was determined by SEM-image analysis of areas in mafic layers that were 

close to the felsic component and having a surface > 0.8 mm² to avoid local heterogeneities. 

Textural analyses concerning the PP261 experiment were performed over a smaller area (0.35 

mm²) for the enclave and farther from the contact because of the interface complexity (see 

below). While the experiments conducted at low temperature (600 and 715°C) have a phase 

assemblage and proportions similar to the starting material (Fig. 2C & 5A; Table 1), felsic 

and mafic layers in experiments conducted at T>950°C display considerable textural changes 

relative to starting products, in particular a higher crystal content in both magmas, as a result 

of quench crystallization. For instance, the melt fraction in mafic layers decreased from 48-58 

to 24-32 vol.% (Fig. 5A). The experiment conducted at 985°C (grey squares on Figure 5) has 

the lowest melt fraction as a result of a large increase in plagioclase proportion, more than 4 

times the starting values (Fig. 5B). Olivine occurs in all experiments at 950°C or higher 

temperature (up to 3% in volume). Oxides are generally absent, but occasionally observed 

(e.g. PP261, PP285). In felsic layers the crystal fraction is similar to that of the corresponding 

synthesis at low temperature (715°C), but increases in all run products annealed at higher 
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temperatures, up to 65 vol.% in the products of PP296. No dependence of the melt/crystal 

fraction with temperature, duration or finite strain of the experiment could be established. 

Changes in crystal fraction in the felsic layers also result from diffusion at the interface, more 

or less affected by deformation. 

3.2.2. Textures 

In the run products of PP285 (950°C), PP295 (975°C) and PP296 (985°C), interfaces 

are no more straight but wavy (dashed line labeled 1, Fig. 6A to C). Despite their regular and 

nearly cylindrical shape, mafic layers underwent little deformation. A few single plagioclase 

and pyroxene crystals coming from the mafic layers are found in the felsic one (yellow arrow 

on Figure 6A). The SPO intensity defined by plagioclase in the felsic layers is low (<1.02) 

except in the experiment PP296 that suffered a high bulk strain. Crystal fractions of synthesis 

experiments are no longer preserved: the plagioclase population in the felsic layers is denser 

close to the mafic layer creating a halo 50 µm (PP285) to 270 µm (PP296) thick (dashed line 

labeled 2, Fig. 6), with crystal fractions up to 65%, whereas areas farther from mafic layers 

contain 47% of plagioclase.  

Despite the relatively low amount of deformation reached in the experiments at 1000 

and 1020°C (respectively =1.3 and =0.7), interfaces between end-members are also 

characterized by embayments and lobes at the scale of tens of µm (Fig. 6D). Wavy contacts 

are accompanied by isolated crystals and parcels of mafic magma, hereafter called “mafic 

enclaves”, the latter having rounded shape and sizes ranging from tens of µm (aggregates 

constituted of a few crystals) up to 1 mm (Fig. 6D & E). Enclaves have a texture similar to the 

inner mafic layer one. Around the enclave presented in Figure  6E, a light SPO developed in 

the felsic layer made of 49% plagioclase, with intensities of 1.03 and 1.04, coinciding with 

the direction of the interface between the enclave and its host (Fig. 6E). The poorly developed 
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SPO of plagioclases around the enclave in the felsic layer supports the localization of the 

deformation instead of the development of a pervasive fabric.  

3.3. Compositions of phases 

Unfortunately, the extensive quench crystallization affecting the run products severely 

complicates the interpretation of compositional data, in particular melt, hence obscuring their 

possible implications for natural contexts. For this reason we limited data acquisition 

essentially to the analyses of crystals in run products obtained at 1000°C considering the 

following domains or textures: 

-“>500”: inner parts of mafic layers, relatively far (500 µm minimum) from the 

contact with the felsic component. Such parts are likely to have had little to no interactions 

with the felsic component; 

-“<150”: external parts of the mafic layers, at 150 µm maximum from the contact; 

-“interface”: such as the layer bridging the boudins (Fig. 6D) or that close to the lobe 

(Fig. 6D, F); 

-“enclave”: the enclave (in the sense of rounded crystals aggregate) produced in the 

PP261 experiment (Fig. 5E); 

-“isolated”: crystals located in the felsic layer with a composition and a texture 

different from the typical plagioclase population crystallizing from the haplotonalitic liquid. 

-“ρ>300”: concerns only the plagioclases in the felsic end-member at a distance >300 

µm from any mafic layer and may be compared with the composition of plagioclase from the 

felsic synthesis (Htn). The phases from torsion experiments are compared with those from the 

1000°C synthesis and the static experiment also conducted at 1000°C. 
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3.3.1. Plagioclase 

Plagioclase cores are similar to the plagioclase in the starting suspension (An80-An92) 

whereas rims are more sodic with An50-An76 (Fig. 7A). Plagioclases produced in the static 

experiment systematically developed a rim wherever they are located in the mafic layer. In 

general, plagioclases from torsion experiments are similar, with a large rim (An39-An77) to 

core (An79-An93) zonation. Analyzed plagioclases located within the mafic layers (>500) 

have a rim that extends to An44, slightly less calcic than those from the mafic inner parts 

(>500) of the static experiment (An50). In contrast, rims of crystals close to felsic 

component (<150µm; An37-An77) and non zoned acicular crystals located in the interface 

layer (An40-An67, Fig. 7A) have compositions less calcic than those in the residual mafic 

melt. Such acicular plagioclases are larger when located close to the mafic layer. The smallest 

ones occur close to the felsic component and could not be analyzed because of their size. 

Some plagioclases having similar size and aspect ratio to those from the mafic layer do also 

occur in the interface layer, with an anorthite content typical of the core composition (An82-

An93). Theses plagioclases are frequently surrounded by acicular crystals, whose occurrence 

makes difficult the analysis of the thin rim overgrowth. Isolated large plagioclases in the 

haplotonalite, presumably from the mafic component, are also zoned with a calcic core 

composition (An79-An90) and a sodic rim (An40). Plagioclases with a typical felsic 

composition (~An35) were only observed within the felsic layer (ρ>300). 

3.3.2. Olivine 

Olivine, which is absent from the starting syntheses performed in conventional IHPV, 

is present in both static and torsion experiments conducted in the Paterson Press (Table 1). In 

the static experiment, olivine has a Fo content ranging between Fo70 and Fo77 (Fig. 7B). The 

olivines of torsion experiments display a larger Fo content variation, especially in the mafic 
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areas close to the felsic component (Fo64-Fo81 in <150 areas). Olivines within the interface 

layer, from enclaves or isolated, display a more restricted variability in Fo (Fo75-80), though 

Fo is not higher than in <150 areas, from where they might be sourced (Fig. 7B).  

3.3.3. Pyroxene 

The composition of pyroxene is shown in Fig. 7C. Pyroxenes from the static 

experiment have a composition similar to those from the starting mafic suspension when they 

are located within the mafic layer (>500), whereas close to the haplotonalite (<150) their 

composition varies along a trend with constant Ferrosilite ≈ 12%, and varying Ca and Mg 

contents (Fig. 7C) though changes in En and Wo contents remain small. In torsion 

experiments, most pyroxenes have a composition quite similar to the starting pyroxenes (Fig. 

7C). Pyroxenes from the interface layers, enclaves, the inner (>500) and the outer (<150) 

parts of the mafic layers, also roughly follow the Fs = 0.12 trend (Ca concentration ranging 

between 32 and 47 molar %). 

 

3.3.4. Glass 

Glass analyses of static and torsion experiments reveal SiO2 contents ranging between 

55 and 69 wt% (Fig. 8), falling between the SiO2 content of the starting glasses, though some 

analyses are more mafic. In contrast, the CaO concentration ranges between 2.6 and 8.2 wt.%, 

which plot slightly above the trend between both end-members (Fig. 8). Most melt analyses 

located in the external parts of the mafic layers (<150) and within enclaves have 

compositions slightly more evolved than the starting mafic one (higher SiO2 and lower CaO 

content). In contrast, melt pockets between acicular crystals of the interface layer display 

heterogeneous melt compositions (SiO2 ranging from 56 to 68 wt.%; Fig. 8). 
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4. DISCUSSION 

4.1. General considerations 

The textures produced in the torsion experiments record, in part, the incipient stages of 

mafic-felsic interaction processes when the shearing deformation is parallel to the interface at 

relatively low strain rates, once the thermal equilibrium has been reached. As already stated, 

this scenario reproduces the local deformation pattern happening during the replenishment of 

a reservoir when a magma rises through dykes in a reservoir, though experimental strain rates 

might also be applicable to some volcanic processes (Castro, 1987; Albertz et al., 2005; 

Chadwick et al., 1988; Fig. 1A). Although we do not claim that our experiments reproduce 

faithfully all processes happening during magma mixing, we believe that they likely mimic 

the incipient stage of mixing at a microscale in natural hydrous magmas.  

Due to faster kinetics resulting from the high water content (e.g. Dingwell et al., 

1996), the cooling rate of the vessel could not prevent the development of quench crystals 

whose occurrence partly obscures textural observations. Interpretation of experimental 

products is based on the first step syntheses that were ended by a drop quench, hence allowing 

better preservation of the HP/HT phase proportions. Although attention was paid to the 

development of fabric with applied strain, quench effects are too severe to extract any useful 

information in this field, as well as for the quantification of mixing intensity. The fact that 

plagioclase fabrics of the felsic layers are nearly isotropic (Fig. 5) should be viewed as a 

direct consequence of crystallisation during cooling in an almost isotropic stress field. Only in 

the lowest temperature experiments (600°C-700°C) does the fabric record the effect of 

deformation, showing that under the investigated conditions the mafic magma is unaffected, 

while plagioclases in the felsic magma are re-oriented at the vicinity of the contact with the 

mafic layer (Supplementary materials). 
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The presence of olivine and oxide in torsion products most likely reflects changes in 

the prevailing oxygen fugacity, as other parameters (T, P, H2O) were kept constant. 

Experimental work performed on the Balos basalt from Santorini supports this observation: at 

NNO+3.5 and water-saturated conditions olivine is not stable whereas magnetite + 

clinopyroxene or magnetite + clinopyroxene + amphibole predominate at ≥1000ºC and 950ºC, 

respectively (Andújar et al., 2015). In contrast, at NNO, the stable mineral assemblage is 

olivine + clinopyroxene + plagioclase ± magnetite for temperatures > 985ºC; and amphibole 

co-crystallizes with these phases in the range 985-975ºC (Andújar et al., 2015). Thus, the 

occurrence of olivine in torsion experiments records the lower fO2 conditions in the Paterson 

experiments relative to those prevailing in synthesis experiments, but without significantly 

changing the crystal fraction (Andújar et al., 2015). 

4.2. Interpretation of chemical results 

Chemical data reflect interactions produced during the experiments, i.e. from the 1-

hour lap time before deformation to the cooling of the experiment. The diffusion distance of 

the main elements anticipated from the application of the diffusivity laws is consistent with 

what is observed in run products; for instance, the self diffusivity of Mg is about 10
-8

 to 10
-9 

cm²/s in hydrous felsic melts (van der Laan & Wyllie, 1993; Mungall et al., 1999; Zhang et 

al., 2010) and the expected diffusion distance after 2 hours is ~90 to ~360 µm (calculated 

using the relationships x = (Dt)
1/2

, x being distance in m, D diffusivity in m
2
/s and t time in s), 

in agreement with the chemical halo highlighted by elemental mapping (supplementary 

information) which extends over 200 µm at higher temperature (1000°C, PP261). Similarly, 

the expected distances by self diffusion of Ca (10
-8

 to 2.10
-7 

cm²/s) after 2 hours are 260 to 

520 µm (van der Laan & Wyllie, 1993; Watson, 1981; Zhang et al., 2010). Therefore, 

assuming that the presence of crystals does not affect diffusion properties, chemical mixing 

occurring prior to deformation is likely to have been affected by strain. 
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There are no significant compositional differences between clinopyroxenes 

crystallizing under either static or dynamic conditions whereas plagioclase and olivine define 

larger compositional intervals (Fig. 7), which may reflect the effect of mixing but also that of 

quench. Similar compositions of crystals whatever their localisation indicate efficient crystal-

melt separation compared to the timescale of chemical equilibration. In static experiments 

olivine composition is Fo77-Fo70 and plagioclase is An80-An50 whilst in related torsion 

experiments, olivine and plagioclase compositions extend towards lower Mg (Fo64) and Ca 

(An40) values, suggesting that deformation enhances mixing process, probably via the 

entrainment of mafic minerals into felsic liquids. This is also supported by the wide 

compositional diversity of liquids which are sometimes more mafic than those obtained under 

synthesis conditions (Fig. 8). Clearly, however, it is also on liquid compositions that quench 

effects are maximised, which calls for caution in interpreting experimental trends solely in 

terms of mixing processes. Owing to profuse quench effects, chemical inferences from our 

experiments are necessarily very limited, though in agreement with observations made on dry 

compositions (Laumonier et al., 2014a), which show that the stacked, contrasted magmas 

produces a range of phase compositions, either solids or liquids. This is despite the relatively 

short run durations, < 4 hours. A large range of compositions has been also observed in 

previous experimental studies simulating mixing under static conditions (e.g., Johnston & 

Wyllie, 1988).  

4.3. Effect of water on mixing 

4.3.1. Development of mingling/mixing features in hydrous magmas 

The hydrous experiments described here document the progressive development of 

mingling and mixing textures over a 50°C temperature interval (under our experimental 

conditions). The first mingling feature appears at 950°C and corresponds to the mechanical 
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incorporation of isolated mafic crystals into the felsic magma (Fig. 6B), such as pyroxene and 

calcic plagioclase (An80-An92). When immersed in the felsic component, isolated 

plagioclases developed a sodic rim (An40 to An70), producing a normal zoning pattern (Fig. 

6 & 7). This contrasts with isolated plagioclases observed in dry conditions, characterized by 

resorption features and poorly developed rim (Laumonier et al., 2014a). At 950°C and higher 

temperatures, diffusion operates and can be observed in the felsic layers: the crystallization of 

plagioclase with more calcic composition around mafic layers results from the diffusion of 

calcium from the mafic component (Fig. 6). The effective diffusion of Fe and/or Mg is also 

marked by the halo of tiny Fe-Mg minerals in the PP296 experiment (Fig. 6C). The PP296 

experiment can be compared to the PP156 run of Laumonier et al. (2014a): both lack 

mingling textures, despite being just 10-15°C below the temperature at which profuse 

mixing/mingling textures were produced. However, diffusion has clearly occurred in the 

hydrous experiment. Therefore, water allows mixing to operate even at temperatures slightly 

below the crystal rheological threshold (~0.50). 

At 975 and 985°C, interface instabilities are generated (Fig. 6B & C) but the mafic 

layers still maintain their cylindrical shape in spite of a relatively high finite strain (γ = 5.1, 

PP296, Fig. 4). The first clear change in layer shape is observed in the runs performed at 

T>1000°C where both end-members are folded and stretched to boudin-like geometries, 

presumably because of the collapse of the touching crystal network. Hence, it appears that, at 

crystal fractions lower than 45%, mafic layers dislocate and produce enclaves, larger-scale 

lobes and embayments (e.g. Hodge et al., 2012).  

4.3.2. Origin of diktytaxitic textures 

The presence of acicular microcrystals within the margins of enclaves is often 

interpreted as resulting from fast cooling of the hotter mafic enclave in its cold host (e.g. 

Bacon, 1986; Gerbe & Thouret, 2004; Troll et al. 2004; Martin et al., 2006b; Davì et al., 
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2010). Such a fast crystallization leads to volatile exsolution and resulting bubbles which are 

entrapped within the crystals network, forming diktytaxitic texture (Fig. 6F & Fig. 9A). 

However, our experimental observations offer an alternative explanation: they suggest that the 

rim composed of crystals in many enclaves is not the result of a fast cooling only, but may 

come from the existence of a chemical gradient in the transition zone. As shown in dry 

experiments, the interface between chemically contrasted magmas is subject to chemical 

reactions (Laumonier et al., 2014a). Our hydrous experiments also produced a layer 

composed of plagioclase (fraction ~0.35), amphibole (~0.20), inherited pyroxenes (0.05) and 

dacitic melt (0.40). Most amphiboles and plagioclases in the layer are acicular but they are 

relatively large, approaching the size of crystals of the starting material (Fig. 6G), which 

suggest that they have started to grow before the quench, reflecting crystallization at P and T. 

The absence of such a rim around the enclave produced in PP261 can be explained by the fact 

that chemical diffusion was erased by higher local strain, in spite of a Mg-enriched 

haplotonalite halo (Fig. S2). A chemical gradient between two hydrous magmas was also the 

cause of the development of a reaction zone such as reported by Johnston & Wyllie (1988). In 

these experiments, a change in clinopyroxene composition with respect to its position to the 

interface was reported. Carroll & Wyllie (1989) also produced a reaction layer in their 

hydrous experiments between peridotite and granite at 1050 °C and 1.5 GPa, consisting of 

small pyroxenes. The weak chemical variation observed in clinopyroxenes in our experiments 

is possibly the result of the deformation, favoring the interaction zone and thus enhancing 

homogenization. Therefore, chemical gradients between enclaves and their magma host may 

play a role on the development of rims, which is not limited to the chilling effect of a hot 

mafic blob. Textural features from enclaves from Soufrière Hills supports such an hypothesis 

(Fig. 9); the external parts of a basaltic-andesitic enclave contain significantly more 

amphiboles, and a halo of plagioclases separates the enclave from the andesitic host, 
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resembling the amphibole and plagioclase layers produced in our experiments (Fig. 6F & 

11B). The orientation of the amphiboles at the periphery of the enclave is not perpendicular to 

the contact, but roughly parallel to it, indicating that some flow occurred after their 

crystallization. Therefore, amphibole is more likely to result from a chemical transition rather 

than from a quench process only. According to our results, such a texture is possible at a 

relatively low crystal fraction, which is consistent with the abundance of melt in both the 

enclave and its host.  

4.3.3. Importance of the crystal fraction and viscosity contrast 

The comparison with the dry experiments of Laumonier et al. (2014a) shows that the 

presence of water decreases the temperature at which magma mixing and mingling happens 

by 170°C; the widespread mafic magma remobilization indeed sets in suddenly at 1000°C, as 

compared to 1170°C under dry conditions. Such a difference is close to the one between the 

liquidus temperature between hydrous and dry basaltic magmas (Andùjar et al., 2015). Water 

shifts down the liquidus temperature, thus the crystallisation and consequently magma mixing 

capacities. Our experiments are thus in agreement with the concept of a rheological threshold, 

as proposed by e.g. Philppots et al. (1998) and Martin et al (2006a) and more recently by 

Laumonier et al. (2014a). The onset of dismembering of the whole mafic layer occurs 

between 985 and 1000°C, corresponding to a crystal fraction close to 45% and similar to 

mixing experiments at dry conditions (Laumonier et al., 2014a). At 985°C and lower 

temperatures, the crystal fraction is high enough to build a rigid (touching) crystal network 

controlling the mush rheology that even strain cannot break at our experimental conditions. A 

modest temperature rise of 15°C results in the diminution of the crystal fraction, allowing the 

dismembering of the crystal network and subsequent magma mingling. However, in detail, a 

few minor and discrete mingling textures (isolated crystals, crenulated contact) do occur 

before the onset of large scale dislocation of the mafic layers, such as in the charge at 950°C 
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(Fig. 6A), establishing a more progressive transition between mixed and unmixed magmas 

than that observed under dry conditions. Such a progressive transition might result in the 

lower melt viscosity under hydrous conditions. 

At subsolidus tempertures (600 and 715°C), the viscosity contrast between the mafic 

and felsic melts does not exceed 0.3 log unit (Laumonier et al.; 2014b). However, neither 

mingling nor mixing features were produced in those conditions. In fact, the viscosity contrast 

between magmas (melt plus crystals) is about 1 log unit, which seems large enough to prevent 

mixing (under our deformation conditions), as observed under dry conditions (Laumonier et 

al., 2014a). Therefore, our results support the important role of the crystal fraction, which 

controls bulk viscosity, on the remobilization and mixing of dry and hydrous magmas. Within 

the range of strain rates explored here, a difference in the viscosities of interacting magmas 

(either hydrous or dry) of about an order of magnitude is enough to prevent them from being 

mixed.  

Lastly, the material extruded out of the samples during PP261 and PP295 experiments 

bears texturally complex mingling/mixing features (see supplementary materials). Although 

strain, strain rate and also the deformation geometry cannot be precisely determined, the other 

parameters (in particular T) are similar to those reigning in the sample. The PP295 experiment 

conducted at 975°C shows that the rheological transition has been upset in the case of 

extrusions: there, the crystal network hindering magma mingling in the interior sample was 

locally broken by a different regime of deformation when the magma was extruded through a 

hole in the jacket, creating filament and rounded shape textures. On this basis it can be 

concluded that mixing processes are considerably enhanced by elevated rates of deformations 

(compare Fig. 4 and Fig. S2), as found in other experimental studies or by a particular 

geometry of the interface forcing both magmas to be deformed (e.g. De Campos et al., 2011 ; 

Morgavi et al., 2013a, b). The textures produced in the extrusions are similar to those 
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observed in the main samples at T>1000°C (PP261 & PP293) but better developed, 

presumably as a result of the high strain underwent by the magma (also including the 

production of stretched filaments; Fig. S2). Hence, we suggest that a relatively high crystal 

fraction (~0.50) may not be adequate to mixing and mingling in magma reservoir, but still 

feasible (until a certain fraction) in the volcanic conduit where higher strain and strain rate 

occur or in highly dynamic reservoirs where convective rates allow high strain rates to be 

attained (Woods & Cowan, 2009; Pritchard et al., 2013). 

4.4. Implications for reservoir replenishments 

In the light of these results we suggest that reservoirs being slowly replenished will 

have less possibility to produce well-mixed magmas, in accord with the results of analogical 

experiments (e.g. Turner & Campbell, 1986; Jellinek et al., 1999; Hodge et al., 2012). Strain 

rates in convecting reservoirs are inferred to be quite low, <10
-6

 s
-1

 (e.g., Spera et al., 1988; 

Albertz et al., 2005) which therefore suggests that mixing between rheologically contrasted 

magmas (i.e. with viscosities differing by more than 1 order of magnitude) are unlikely to be 

efficient at this location. In contrast, mixing during vigorous, or forcefull, injection may lead 

to thoroughly mixed material or hybrids, as illustrated by the extrusions and experiments 

involving natural basalt and rhyolite differing in viscosity by ~ 4 orders of magnitude, which 

nevertheless were mingled and mixed at higher temperature (T>1350°C) and strain rates (~10
-

2
 s

-1
; De Campos et al., 2011; Morgavi et al., 2013a, 2013b). Considering that the P-T-H2O 

conditions investigated here cover those likely to prevail in most arc magmas reservoirs 

(Scaillet et al., 1998; Andújar and Scaillet, 2012), our experiments constrain the temperature 

at which mixing can operate. As a general rule, our results suggest that injection of a mafic 

forerunner into a crystal-rich silicic host will not produce hybrid products if the equilibration 

temperature of the blended mixture remains below 950°C. The final temperature of 

equilibration depends, inter alia, on the relative masses of interacting end-members (Sparks 
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and Marshall, 1986; Frost and Mahood, 1987; Laumonier et al., 2014b) and so there is no 

unique solution to this problem. However, it can be anticipated that the slow replenishment 

via small mafic inputs of a large felsic reservoir, will not give rise to prolonged and 

widespread thermal excursions, and hence will lead to conditions unfavourable to mixing: 

slow replenishment will more likely end up producing stratified intrusions rather than a 

homogeneous whole body. Consequently, we suggest that mixing features encountered in 

highly crystallized magmas (> 50% crystals) may have been produced before their 

crystallization (closer to liquidus conditions, Scaillet et al., 2000; Caricchi et al., 2012) or in 

extreme strain rate environments such as in volcanic conduits where the strain rates, during 

eruption, exceed the average plutonic ones (e.g., Koyaguchi & Blake, 1989; Pritchard et al., 

2013). That the mixing efficiency changes rapidly over a small temperature interval suggests 

in turn that small temperature variations may give rise to abrupt changes in the fluid dynamics 

of injected reservoirs. Eruptions triggered by mafic inputs may thus record the case of felsic 

reservoirs lying close to the rheological threshold prior to mafic injection. 

5. CONCLUSION 

 
We present the results of the first experiments on mixing and mingling of hydrous 

magmas performed at P-T-H2O conditions relevant to arc contexts (P = 300 MPa, T < 1020°C 

and water contents up to 6.5 wt.% in the melt). Our low strain rate torsion experiments on 

hydrated wafers of felsic/mafic magmas fully reproduce the mingling textures observed in 

natural magmas (isolated crystals, boudin-like structures, enclaves) and mixing textures like 

the development of chemical halo and transition layers. Such layers consist of a dense 

population of plagioclase, and acicular crystals, melt and bubbles, altogether resembling the 

diktytaxitic texture often observed in natural enclave margins that may result from the rapid 

crystallization of a chemical transition between magmas. Mixing and mingling of hydrous 

magmas appears feasible at low crystal fraction (< 50 vol.%) and low viscosity contrast 
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(within one order of magnitude), and at temperatures shifted by ~200°C when compared to 

similar but dry magmas (Laumonier et al., 2014a). Finally, the transition between mixing and 

unmixing regimes appears more progressive in water-bearing magmas. However, mingling 

can occur at crystal fractions higher than the critical crystallinity, in particular under extreme 

strain rate conditions. Those conditions prevail in volcanic conduits, suggesting that mixing 

involving highly crystallized magmas may be the consequence of volcanic eruptions. 
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FIGURE CAPTIONS 

Figure 1: Shear deformation occurring during reservoir replenishment and reproduced in 

torsion experiments. (A) Simple shear may occur between a rising dyke or propagating sill of 

mafic magma within a felsic intrusion at relatively high shear rate (10
-5

 to 10
-2

 s
-1

; Albertz et 

al., 2005). (B) Stack of sample geometry used for static and torsion experiments. The colours 

grey and black refer to the felsic and the mafic end-members, respectively. The black arrows 

indicate the sense of shearing. 

 

Figure 2: SEM picture of starting synthetic suspensions of haplotonalite (felsic) and basalt 

(mafic), synthesized at 950°C and 1000°C. The felsic suspensions include melt (m), 

plagioclase (Pl) and bubbles (Bb) while the mafic suspensions are composed of melt, 

plagioclase, amphibole (Amp), clinopyroxene (Px), magnetite oxide (Ox), and bubbles. Φs is 

the crystal fraction of the suspension. The initial Shape Preferred Orientation of the felsic 

suspensions has been determined and the ellipsoid of the fabric is indicated with the long axis 

orientation and the intensity i of the SPO. The bar scale represents 100µm. See the text for 

phase proportions and details. 

 

Figure 3: Reconstructed panorama of deformed samples still embedded in their jacket. Stack 

and relative layer thicknesses are indicated on the left side. Strain markers have been 

highlighted by a white line, dashed when not visible. The strain distribution is homogeneous 

at T > 950°C (see also Fig. S5). Experiments conducted at 975 and 1000°C (B & D) produced 

extrusions out of the jacket, in which mafic (m) and felsic (f) materials are visible. 

 

Figure 4: SEM pictures of large sections showing the relative position of layers after torsion 

experiments. The scale bar on the bottom left corner represents 2 mm. A sketch of the layer 
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position is drawn on the right side. The sense of shear presented in (A) is common to all 

sections. Note that panels D is relatively close to the periphery of the sample, and might 

display features resulting from the effects of simple shear and the local deformation of the 

jacket. 

 

Figure 5: (A) Phase proportions of the mafic layers. (B) Phase proportions for the area 

comprised between 0 and 150 µm from the contact with the felsic magma, normalized to the 

950 and 1000°C phase proportions of the static mafic layers. The olivine fraction in (B) could 

not be calculated due to its absence in the starting suspension. 

 

Figure 6: Details on particular textures produced in torsion experiments (see Fig. 4 for 

localization). Same crystal legend as Figure 1a, and Ol stands for olivine. The scale bar on the 

bottom left corner represents 100µm and the sense of shear presented in (A) is the same in all 

sections. Close to mafic layer, plagioclase crystals of the felsic layer are highlighted by white 

segments (A) and reveal the Shape Preferred Orientation developed at the interface, within the 

felsic layer. Local crystal fraction (percentages) and shape preferred orientation (ellipsoid and 

SPO intensity) were analysed on areas corresponding to the pictures. Dashed lines 1, 2 and 3 

surround the mafic layer, the plagioclase-rich and ferromagnesian + plagioclase-rich layers, 

respectively. White arrows show isolated crystals mechanically extracted from the mafic layer 

in (B) and enclaves in (I). Arrows in (F & H) show bubble trails. Abbreviations are: m:melt, 

Pl:plagioclase, Bb:bubbles, Amp:amphibole, Px: clinopyroxene, Ox: magnetite oxide. See 

text for further details. 

 

Figure 7: Molar anorthite content of plagioclase in 1000°C and “reheated” Syntheses, static 

and torsion experiments. Mg# of olivine (B) and pyroxene (C, after classification of 

Morimoto et al, 1988) in experimental products. See the text for mineral provenance. 
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Figure 8: CaO vs. SiO2 wt.% of glasses from syntheses, static and torsion experiment. 

 

Figure 9: Natural examples of magma mixing from (A) Adamello Massif (Blundy and Sparks, 

1992), (B) Lipari products (Davì et al., 2010) and Montserrat Hills Volcano (C).  
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Table1: Compositions of the starting materials and run products 
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The felsic Dry* glass is the nominal composition given by Schott, A.G., Hydrated* glass is 

calculated. Standard deviations in terms of least unit cited are indicated by italic font. 

Compositions were acquired using a Cameca SX 50 microprobe at 15kV and 6nA. Glass 

analyses were done with defocused beam (covering an area of ~ 25μm
2
) whereas a focused 

beam (~ 1μm
2
) was used for crystal analyses. Glass and minerals are normalized to 100% 

anhydrous. Water content was calculated by mass difference. Mg# is the molar ratio 

Mg/(Mg+Fe*) and An is the molar ratio Ca/(Ca+Na). 
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Table 2: Static and torsion experiments conducted in Paterson apparatus 
  Sample     

Exp. 
N° 

T°C 
Exp. 

T°C 
Synth. 

Diam. Length ρ1 β2 ρ3 β4 
strain 
rate 

Bulk 
strain 

Dur. 
(h) 

Length 
after Exp. 

PP265 600 950 14.96 5.33 2.07 1.16 2.10  2.E-04 0.7 3 5.29 

PP258 715 950 14.96 10.93 3.34 1.42 3.27 2.90 5.E-04 1.7 2 10.67 

PP285 950 950 14.82 7.39 1.65 1.82 2.08 1.84 5.E-04 1.7 2 7.30 

PP295 975 950 14.68 7.37 1.66 1.78 1.78 2.15 2.E-04 2.0 5 7.31 

PP296 985 1000 13.78 8.21 1.63 2.06 2.27 2.25 8.E-04 5.1 4 8.19 

PP261 1000 1000 14.92 8.31 1.98 1.93 1.39 3.01 3.E-04 1.3 2 8.08 

PP293 1020 1000 13.79 8.71 1.50 2.40 2.45 2.36 9.E-04 0.7 2 8.68 

PP262 1000 950 14.92 9.12 1.94 2.00 2.03 3.05 0 0 2 9.02 

 

Abbreviations: Exp. N° (experiment number), T°C Exp (experimental temperature in Celsius 

degrees), T°C Synth. (temperature of synthesis in Celsius degrees), Diam. (diameter), Dur. 

(duration of the experiment, including equilibration lap time and deformation time). ρ1, β2, 

ρ3, β4 are the layers composing the sample (see Fig. 1). Dimensions (diameter, initial length, 

thickness of each layer and length after experiment) are given in mm.  
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Highlights (mandatory) 

 

 

 

We performed the first dynamic mixing experiments between hydrous magmas 

Mixing textures are isolated crystals, boudins, enclaves, “diktytaxitic” layers 

Mixing of hydrous magmas occurs at T=170°C lower than between similar but dry magmas 

Mingling and mixing appears feasible at crystal fraction ϕ < 50 vol% 

Mingling may occur at ϕ>50 vol% under higher strain rate conditions (volcanic conduit) 


