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Abstract We show the results and evaluation with independentmeasurements from assimilating bothMOPITT
(MeasurementsOf Pollution In The Troposphere) and IASI (Infrared Atmospheric Sounding Interferometer) retrieved
profiles into the Community Earth System Model (CESM). We used the Data Assimilation Research Testbed
ensemble Kalman filter technique, with the full atmospheric chemistry CESM component Community
Atmospheric Model with Chemistry. We first discuss the methodology and evaluation of the current data
assimilation system with coupled meteorology and chemistry data assimilation. The different capabilities
of MOPITT and IASI retrievals are highlighted, with particular attention to instrument vertical sensitivity
and coverage and how these impact the analyses. MOPITT and IASI CO retrievals mostly constrain the CO
fields close to the main anthropogenic, biogenic, and biomass burning CO sources. In the case of IASI CO
assimilation, we also observe constraints on CO far from the sources. During the simulation time period
(June and July 2008), CO assimilation of both instruments strongly improves the atmospheric CO state as
compared to independent observations, with the higher spatial coverage of IASI providing better results on
the global scale. However, the enhanced sensitivity of multispectral MOPITT observations to near surface CO
over the main source regions provides synergistic effects at regional scales.

1. Introduction

Carbonmonoxide (CO) is a primary criteria pollutant, with both natural and anthropogenic sources, and plays
an important role in tropospheric chemistry and climate [Kanakidou and Crutzen, 1999; Myhre et al., 2013,
Intergovernmental Panel on Climate Change Fifth Assessment Report]. It is directly emitted as a product
of incomplete combustion from industrial and urban fossil/biofuel burning as well as large-scale biomass
burning and to a lesser extent directly emitted by plants and oceans. CO is also produced in the atmosphere
by photochemical oxidation of anthropogenic and biogenic volatile organic compounds (VOC). This consti-
tutes a large secondary source of CO especially in the tropics [Griffin et al., 2007]. The reaction of CO with the
hydroxyl radical (OH), which is the main oxidant in the troposphere, is considered the principal sink of CO.
OH is also strongly tied with the production of CO through its oxidation of CH4 and other hydrocarbons.
Hence, the abundance of CO (and its associated lifetime in the troposphere) is inversely proportional to
OH distribution [Shindell et al., 2006]. For example, the longer lifetime (less OH) and larger emissions during
winter are responsible for observed peaks in CO during March in the Northern Hemisphere (NH) [Stein et al.,
2014]. With an average CO lifetime of about 1–2months, CO serves as a tracer of pollution emission and
transport, and as a proxy for emissions and distributions of other species coemitted with CO that are not
easily observed. The highest CO concentrations are found in the lowermost troposphere over urbanized
regions in Asia, North America (and to a lesser extent in Europe), and over biomass burning regions mostly
over the tropical rainforests and savanna grasslands in the Amazon, Central Africa, and Southeast Asia. Large
CO enhancements are also observed during episodic fires in the NH summer (e.g., Russian fires in 2010).
Understanding the trends in total column CO, which has shown a decrease of around 1%/year in the NH
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[Worden et al., 2013], has implications for greenhouse gases CO2 and tropospheric O3 (CO is a precursor) and
CH4 (less CO reduces CH4 lifetime via OH).

Accurate spatiotemporal distribution of CO abundance is therefore important for both air quality and
chemistry/climate. Observed abundance of CO is currently utilized in the evaluation of global chemistry and
climate models, especially in representing emissions and transport of constituents and the oxidizing capacity of
the troposphere. Based on observations, it has been shown that global models underestimate NH extratropical
CO, which is attributed to the underestimation of surface emissions in the models [Shindell et al., 2006]. Of all
the tropospheric primary pollutants, CO is one of the most extensively observed species from space. Global
monitoring of CO in the last two decades has been facilitated by the deployment of spaceborne instruments using
nadir geometry to measure infrared radiances. One of the first nadir sounders that gave a global dense coverage
with enhanced sensitivity to tropospheric CO is the Measurement Of Pollution In The Troposphere (MOPITT)
instrument on the Terra mission (NASA) launched in late 1999. The new version of the MOPITT CO multispectral
(thermal infrared (TIR) and near infrared (NIR)) retrievals [Deeter et al., 2011] has enhanced surface sensitivity over
many land regions, compared to TIR only retrievals and provides an improved estimate of CO near source
locations. More recently, the Infrared Atmospheric Sounding Interferometer (IASI) instrument was launched in
2006 on board the first Europeanmeteorological polar-orbiting satellites, MetOp-A. IASI currently provides amuch
better spatial coverage of tropospheric CO, which is retrieved frommeasurements in the TIR [Clerbaux et al., 2009].
A second instrument, mounted on the MetOp-B satellite, was recently launched in September 2012, while a third
instrument is planned to be mounted on the MetOp-C satellite with the launch scheduled for 2018. Both MOPITT
and IASI instruments provide extensive retrievals of total CO column and vertical profiles.

Over the last decade, several studies have performed global CO data assimilation of MOPITT and IASI retrievals
as well as inverse modeling of CO sources. Data assimilation (DA) provides a systematic means to (a) integrate
these satellite retrievals into chemistry/climate models (i.e., reanalysis) and (b) confront models with these data
to gain insights on how to improve their predictive capability (i.e., better representation of sources, transport,
and sinks). Data assimilation of MOPITT CO was initiated at the National Center for Atmospheric Research
(NCAR) by Lamarque et al. [2004] using a suboptimal Kalman filter and the MOZART (Model for Ozone and
Related chemical Tracers) chemical transport model (CTM). Yudin et al. [2004] used the same data assimilation
system to optimize CO emissions in MOZART. Later, Arellano et al. [2007] assimilated MOPITT CO, in addition to
meteorological conventional observations, in a chemistry/climate model (Community Earth System Model-
Community Atmospheric Model with Chemistry (CESM-CAM-chem)) using the ensemble Kalman filter
approach of the Data Assimilation Research Testbed (DART). Global MOPITT CO data assimilation started later
over Europe with Claeyman et al. [2010] and El Amraoui et al. [2010] where assimilation was performed with
a CTM using a 3-D variational data assimilation scheme. Recent studies such as Jiang et al. [2013] assimilated
the new multispectral version of MOPITT CO retrievals to study the influence of vertical transport errors on
inferred CO sources. Assimilation of IASI CO retrievals has also been performed in recent years. Fortems-
Cheiney et al. [2009] used IASI and MOPITT CO retrievals separately at 700 hPa to estimate CO emissions.
They showed in particular that the smaller vertical sensitivity of IASI (TIR-based) is compensated by its horizontal
coverage. Klonecki et al. [2012] assimilated IASI CO total columns in a global CTM, and recently, Inness et al.
[2013] presented an 8 year long reanalysis of atmospheric composition into a CTM that includes, among other
sounders, assimilation of MOPITT and IASI CO total columns.

The first aim of this paper is to provide an extensive description and evaluation of the updated CESM-CAM-
chem and DART chemical data assimilation system first used by Arellano et al. [2007]. A methodological
aspect is provided throughout the paper in order to give useful insights to the ensemble-based chemical data
assimilation community. To our knowledge, this is one of the first ensemble-based DA applications for which
MOPITT CO profiles and IASI CO profiles are jointly assimilated with meteorological observations in a
chemistry/climate model. The joint assimilation provides unique opportunities to elucidate the capability
of these retrievals to constrain the global model given differences in spatiotemporal coverage and vertical
sensitivities/resolution between MOPITT and IASI. The second aim of this paper is hence to define and
describe the capabilities of each instrument to improve the modeled spatiotemporal distribution of CO
and its associated emissions. Synergies of MOPITT CO and IASI CO in this joint assimilation will be discussed.

This paper is organized as follows: Section 2describes in detail theMOPITT and IASI retrievals aswell as the data
assimilation setup. In particular, we describe and discuss observational characteristics of MOPITT and IASI CO
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profile retrievals in termsof sampling, horizontal coverage, and vertical sensitivities. This is followedbydescrip-
tions of DART and CAM-chem. Section 3 presents a description of the design and a discussion of results of the
observing system experiments that we have carried out for this work. Section 4 provides a detailed evaluation
against independent measurements and discussion of the contribution of each assimilated instrument in the
model from the tropics to the arctic region. Section 5 gives the summary and conclusions of this paper.

2. Assimilation Setup
2.1. Low-Earth-Orbiter CO Observations
2.1.1. MOPITT
The Measurement Of Pollution In The Troposphere (MOPITT) instrument is onboard the NASA Terra, which is
a Sun-synchronous polar-orbiting satellite. With a swath width of 640 km perpendicular to the satellite track,
MOPITT provides a near global coverage every 3–4 days with 22 × 22 km2 horizontal resolution. Figure 1 (top)
shows the coverage of MOPITT on 6 July 2008. MOPITT is a gas-filter correlation radiometer (GFCR) measuring
thermal infrared (TIR) and near-infrared (NIR) radiances in the absorption bands of CO and CH4 [Drummond
et al., 2010]. In this paper, we use the V5J multispectral CO product as described in Deeter et al. [2011]. This
is a relatively new CO retrieval using the TIR and NIR channels in MOPITT. These retrievals allow enhanced
sensitivity in the lower troposphere in daytime observations over land. It should be noted, however, that this
product exhibits relatively large random retrieval errors [Deeter et al., 2013] (see section 2.1.3 for details)

Figure 1. (top) MOPITT and (bottom) IASI footprints and total column effective VMR of CO (see text for details) for 6 July 2008.
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compared to the TIR-only product. TheMOPITT V5J product consists of a 10-layer CO profile (in volumemixing
ratio or VMR) and total column (inmolecules per square centimeter) retrievals. The profile consists of a floating
surface level followedby100 hPa thick layers from900 hPa to100 hPa. The retrievalmethod requires cloud-free
observations anduses analgorithmbasedonoptimal estimation approach asdescribedbyRodgers [2000]with
CO parameters in log10(VMR). The a priori error covariance matrix prescribed in the retrieval algorithm uses a
variance of 30% at all levels and an error vertical correlation length of 100 hPa [Deeter et al., 2010]. It also uses
the variable a priori CO profile from the MOZART-4 (Model for Ozone and Related chemical Tracers, version 4)
[Emmons et al., 2010] climatology. The retrieval product also includes key diagnostics such as the averaging
kernel and retrieval error covariance matrices. The averaging kernel expresses the sensitivity of a given layer
of the retrieved profile relative to the true CO state. As such, the retrieval equation can be expressed as follows:

log10y
MOPITT
ret ¼ AMOPITT log10 ytrue þ I � AMOPITT

� �
log10 y

MOPITT
apr (1)

where yMOPITT
ret is the retrieved profile, ytrue is the true CO state, yMOPITT

apr is the a priori profile, AMOPITT is the MOPITT
averaging kernel matrix, and I is an identity matrix. Please refer to section 2.2.4 for description of the
methodology to take into account A in the construction of the observation operator for MOPITT CO assimilation.
In the current data assimilation setup, we only consider the error variance (diagonal elements of the retrieval
error covariance matrix) as a first-order estimate of the retrieved error ( ϵMOPITT

ret ). Similar approach has been
employed by recent state–of-the-art assimilation studies on CO partial column or profile, such as El Amraoui et al.
[2014] where they used the diagonal elements of the covariance matrix and Jiang et al. [2013] where they
specified the error covariance as a factor (e.g., 20%) of the retrieved profile values. Accounting for the
off-diagonal elements of the error covariance matrix in the ensemble Kalman filter scheme is an ongoing
work that requires robust testing and algorithm development, which will be presented in a further study.

The MOPITT CO V5J product has been evaluated against independent measurements [Deeter et al., 2012]. In
particular, it has been evaluated over the Continental United States (CONUS) using both in situ vertical profiles
and NOAA ground-based measurements. Validation results based on the in situ profiles (smoothed by the
MOPITT retrieval a priori profile and averaging kernel) indicate that retrieval biases from 400 hPa to surface
levels are less that ±5%.However, a persistent positive bias of 14% is observedon theupper tropospheric levels
[Deeter et al., 2013]. For this reason, we only use the levels below 300 hPa. Although a later version of the
multispectral product is currently available (MOPITT V6J [Deeter et al., 2014]) with a corrected bias in the
upper troposphere (3.4%), this product exhibits a larger bias near the surface (8.9%) and consequently
was not appropriate for use in this study.
2.1.2. IASI
The Infrared Atmospheric Sounding Interferometer (IASI) is one of the instruments onboard MetOp-A, which
is also a polar-orbiting satellite. Due to a large swath width of 2200 km perpendicular to the satellite track, IASI
provides global coverage in 2 days. Figure 1 (bottom) show the coverage of IASI on 6 July 2008. The horizontal
resolution is 12 × 12 km2 circular footprint on the ground. IASI is a Fourier transform spectrometer (FTS) that
measures infrared radiances. The CO IASI data are retrieved using the Fast Optimal Retrievals on Layers for
IASI (FORLI-CO) retrieval code [Hurtmans et al., 2012]. The FORLI algorithm retrieves CO profiles on 19 layer
under cloud-free conditions. The retrieval method uses the same optimal estimation scheme described by
Rodgers [2000]. The a priori information used in the retrieval is a constant single profile and an error covariance
matrix that are constructed using a database of observation (Measurement of Ozone and Water Vapor by
Airbus In-service Aircraft (MOZAIC)/In-service Aircraft for a Global Observing System flights and Atmospheric
Chemistry Experiment-FTS retrievals [Clerbaux et al., 2008]) complemented with global model (Laboratoire
de Météorologie Dynamique-INteraction with Chemistry and Aerosols) information to account for both
polluted and background conditions [Turquety et al., 2009].

The IASI CO product consists of retrieved VMR profiles with 19 altitude levels corresponding to vertical layers
of 1 km thickness starting from the surface to 18 km. The last level represents a layer from 18 km to the top of
the atmosphere. Like MOPITT, each profile has an associated retrieval error covariance matrix and an
averaging kernel matrix. The retrieval equation can be expressed as follows:

yIASIret ¼ AIASIytrue þ I � AIASI
� �

yIASIapr (2)

where yIASIret is the retrieved profile, ytrue is the true CO state, yIASIapr is the a priori CO profile, AIASI is the IASI
averaging kernel matrix, and I is an identity matrix. As with MOPITT, we only consider the error variance
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(diagonal elements of the retrieval error covariance matrix) and consider a retrieved error profile ϵIASIret in the
data assimilation.

The IASI CO FORLI product has been evaluated against independent measurements in several recent studies.
DeWachter et al. [2012] usedMOZAIC flights and Kerzenmacher et al. [2012] used Network for the Detection of
Atmospheric Composition Change Fourier transform infrared (NDACC FTIR) sites for validation. The IASI CO
FORLI retrievals show biases no higher than 13% compared to MOZAIC flights. Comparisons with NDACC
FTIR sites and IASI CO total columns showed that there is no significant bias on a global scale.
2.1.3. Differences Between MOPITT and IASI
Table 1 summarizes some of the differences between MOPITT and IASI. One of the most obvious differences
is the number of observations provided and their coverage. Both instruments are on low Earth orbit satellites
with Sun-synchronous orbits. MOPITT on TERRA has a descending (ascending) node of 10:30 A.M. (10:30 P.M.),
while IASI on MetOp-A has a descending (ascending) node of 9:30 A.M. (9:30 P.M). The IASI measurement
swath allows nearly global coverage in 2 days, while the MOPITT swath provides global coverage in 3–4 days
[Drummond et al., 2010]. Figure 1 shows daily total CO column retrieved by IASI and MOPITT during 6 July
2008 (both night and day) as an example. IASI swaths of contiguous ascending (or descending) tracks almost
overlap near the equator. On the other hand, the MOPITT swaths are narrower leaving gaps of unmonitored
regions within a given day. These spatial and temporal variations in data coverage limit the ability for a given
sounder to observe the highly variable nature of the tropospheric CO distribution. A higher coverage
obviously increases the chances to capture large gradients of pollution and to track its transport downwind
of source regions. In addition to horizontal spatial coverage, MOPITT- and IASI-collocated CO total column
values exhibit differences due to instrument design (e.g., correlation radiometer versus interferometer with
subsequent differences in performance, e.g., spectral resolution and signal to noise), possible biases, retrieval
algorithms that use different a priori information for CO profiles and error covariance matrices and hence
different instrument sensitivity.

Figure 2 shows examples of averaging kernels to demonstrate the different characteristics of A for each
instrument for two observation types and provide degrees of freedom for signal (DFS). Following Rodgers
[2000], the DFS is calculated as the trace of A and quantify the numbers degrees of freedom of a measure-
ment are related to signal. The averaging kernels in Figure 2 were collocated in the same 1° × 1° latitude long-
itude box and in the same 6h time window, and IASI averaging kernel have been regridded on MOPITT
vertical grid (see methods provided by Von Clarmann and Grabowski [2007] and Zhang et al. [2010]). The first
example is over land in daytime with good thermal contrast conditions, and the second is over the Pacific
Ocean at night with less favorable thermal contrast conditions. These examples show typical shapes of aver-
aging kernel that can be found in the satellite CO data. The daytime land averaging kernels (Figure 2, top row)
show higher DFS and enhanced sensitivity toward the surface. This is especially the case for MOPITT data
since the V5J product uses TIR/NIR retrieval that allows a peak of sensitivity at the surface. For IASI retrievals,
the lowest peak of sensitivity is located around 800 hPa in addition to significant sensitivity to the upper
tropospheric levels. Ocean averaging kernels (Figure 2, bottom row) are more representative of the rest of
the measured conditions, i.e., oceans and/or nighttime that are 85% of observations. These cases have lower
DFS than daytime/land, with most of the sensitivity located in the middle and upper troposphere. For the
ocean and/or night observations, MOPITT retrievals use only TIR radiances since NIR radiances are only signif-
icant for daytime/land. Because of biased MOPITT data in the upper troposphere we did not assimilate the
levels from 100 hPa to 300 hPa (see section 2.1.1). The remaining MOPITT averaging kernel profiles over
oceans are flat and have low values of sensitivity over the entire troposphere. Conversely, ocean IASI

Table 1. Key Differences Between IASI and MOPITT Sampling and Error Characteristics (Statistics Are Computed for All
Scenes: Night and Day Times, Sea and Land Surfaces)

Data

Obs/Day Obs/Day

Global Coverage Average Area of Ai Average Relative ErrorRaw Data After Preprocessing

MOPITT 10 levels 7 levels 3–4 days 0.73 20–30%
105 footprints 6 × 103 footprints

IASI 19 levels 10 levels 2 days 1.04 15–25%
4 × 105 footprints 2 × 104 footprints
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Figure 2. (left column) Collocated MOPITT and (middle column) IASI averaging kernel matrices (top row) for land/day
conditions and (bottom row) for ocean/night conditions. The right column represents the corresponding IASI averaging
kernels gridded to the MOPITT vertical resolution.
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averaging kernels still show a peak of sensitivity that is switched from 800 hPa to 600 hPa as well as sensitivity
to the upper tropospheric levels.

Differences in averaging kernel functions from the MOPITT and IASI instruments can be attributed to instru-
mental and retrieval factors. First, the multispectral dimension (TIR +NIR) of MOPITT allows a peak of sensitiv-
ity at the surface during daytime [Worden et al., 2010] that a TIR-only retrieval (i.e., IASI) can produce only
under relatively rare conditions of very high thermal contrast [Boynard et al., 2014], while the IASI instrument
has higher TIR sensitivity than MOPITT [George et al., 2015]. Second, the MOPITT and IASI retrieval
algorithms use different state vectors, a priori and noise covariance matrices. Some of the differences in DFS
between MOPITT and IASI are due to how surface emissivity and water vapor are treated in the state vector
(the MOPITT algorithm assumes a fixed water vapor profile from NOAA/National Centers for Environmental
Prediction (NCEP) but retrieves emissivity simultaneously with CO while IASI uses a fixed emissivity but adjusts
the water vapor amount). Another difference in retrievals is in the covariance where the IASI a priori covariance
includes stronger off-diagonal correlations than MOPITT. Differences in the retrieval a priori covariance error
matrix in the optimal estimation retrieval can result in different averaging kernel functions (i.e., DFS
and averaging kernel row areas, see Table 1) and hence different retrieval errors for the same radiance
measurements [see Rodgers, 2000] (section 2.6). However, by applying the IASI a priori covariance and
profile to retrievals with MOPITT data, it appears that instrument differences, such as measurement type
(GFCR versus FTS) and noise, and the different parameters in the state vector outweigh the differences
due to a priori covariance in the comparison of averaging kernels [George et al., 2015].

Because we did not assimilate the MOPITT level profiles from 100 hPa to 300 hPa, MOPITT and IASI DFS are
not straightforwardly comparable. In our current data assimilation setup each retrieved level is assimilated
as an observation. For those reasons we also use the area of Ai as a metric of sensitivity. Following Rodgers
[2000], the area of Ai (sum of the ith row of A) is found to be approximately unity at levels where the retrieval
is most sensitive and, in general, can be thought of as a rough measure of the fraction of the retrieval that
comes from the data, rather than the a priori. On a global average for all retrieval levels and taking night
and day values, IASI exhibits an area that is around unity (1.03), while MOPITT shows a lower area of about
0.73 (see Table 1). Results would be higher for MOPITT if only land and day retrievals were taken for the
calculation, which are the scenes that benefit the TIR/NIR combination with enhanced sensitivity at the
surface. Night and day MOPITT and IASI measurements are assimilated.

2.2. Data Assimilation System
2.2.1. CESM-CAM-chem
We use the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM)
[Lamarque et al., 2012] version 1.1.1 as the model component of the data assimilation system. This is a coupled
climate/chemistry/land/ocean/ice model for simulating the Earth’s climate system. In this study, we used the
F_2000_MOZMAM_CN compset (all updates and bug fixes have been added as described in Tilmes et al.
[2015]), which simulates only the atmosphere and land including their interactions while employing a data
ocean (sea surface temperature mode) and prescribed sea ice. The atmosphere model is the Community
Atmospheric Model with Chemistry (CAM-chem) version 5 with online meteorology (using CAM5 physics
[Conley et al., 2012]) and online full chemistry scheme (MOZART-4 tropospheric chemistry). The MOZART-4
tropospheric scheme has been described and evaluated by Emmons et al. [2010]. The standard MOZART
mechanism includes 85 gas-phase species, 12 bulk aerosol compounds, 39 photolysis, and 157 gas-phase
reactions for the troposphere, while the chemistry in stratosphere (between 50hPa and the top of the model)
is prescribed using a climatology. The CAM-chem component of CESM has been described and evaluated by
Lamarque et al. [2012]. CAM-chemborrows heavily fromMOZART-4. In particular, many of the parameterizations
needed to represent atmospheric chemistry in a global model are adapted or expanded from their equivalents
in MOZART-4. In this paper, we use a model resolution of 2.5° longitude by 1.9° latitude with 30 vertical levels
covering the troposphere and the lower stratosphere. The vertical layers range from the surface to 4 hPa, with
8 levels representing the planetary boundary layer and 19 tropospheric levels.

Simulations of CO concentrations in the atmosphere are calculated by a continuity equation consisting of the
following terms: direct emission and chemical production by VOC oxidation, loss through CO-OH reaction, and
dry deposition as well as redistribution through transport (e.g., advection, convection, and turbulent mixing).
Lamarque et al. [2012] and Tilmes et al. [2015] showed that the modeled CO distribution in the high NH
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latitudes is underestimated when compared to surface, aircraft, and satellite observations, indicating an over-
estimate of the CO loss by OH or underestimate of its emissions or chemical production. Monks et al. [2015]
diagnosed the methane lifetime as an indication of the OH abundance and found that CAM-chem has higher
OH among other models. The anthropogenic emissions are based on the Atmospheric Chemistry and
Climate Model Intercomparison Project historical emissions (1960–2000) and Representative Concentration
Pathway 8.5 future scenario emissions [Lamarque et al., 2010]. Biomass burning emissions are provided by
the Fire Inventory from NCAR version 1.5 (FINNv1.5 [Wiedinmyer et al., 2011]). Biogenic emissions are
generated offline using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1)
[Guenther et al., 2012]. Daily emissions from MEGAN and FINN are monthly averaged and are emitted in
the surface level. Using monthly average for fire emission inventory is likely a source of error knowing that
fires have daily evolving signatures. Following Gaubert et al. [2014], an ensemble of perturbed states is used
to represent errors in emissions using an additive noise that is randomly sampled from a pseudo-normal
distribution [Evensen, 2003, Appendix E]. Here we use a fixed standard deviation and horizontal correlation
length. The same noise is applied over time with a spatial correlation length of 2000 km, and for all source
types (i.e., biogenic, anthropogenic, oceanic, and biomass burning). This correlation length has been chosen
based on qualitative inspection of spatiotemporal patterns of emissions around the globe. We use a standard
deviation of 40% for CO and 30% for nonmethane volatile organic compounds, HCN, CH3CN, NO, and NH3.
This is in the range of previous ensemble-based chemical data assimilation studies [Miyazaki et al., 2012].
2.2.2. Data Assimilation Research Test Bed
The Data Assimilation Research Testbed (DART) [Anderson et al., 2009] is a community data assimilation
software package that has been developed since 2002 at NCAR. DART is based on the ensemble Kalman filter
(EnKF) technique originally introduced by Evensen [1994]. This software has been carefully designed to
provide high modularity that allows an easy interface for a variety of models. It facilitates ensemble-based
data assimilation (DA) without needing to construct adjoints of the model and observation operators as in
the case of variational-based DA.

The EnKF scheme is basically an ensemble of Kalman filters (KF). Following Kalman theory, the EnKF recur-
sively integrate observations into the forecast of a numerical model of the dynamical system (in our case,
CAM-Chem). The main goal is to produce an improved estimate or analysis of the mean state (in our case
the physical and chemical state of the atmosphere). Instead of calculating (e.g., extended KF) or prescribing
(e.g., Optimal Interpolation or 3D-Var) the associated error covariance of the mean forecast state, the EnKF
scheme carries out an ensemble of model forecasts through addition of representative observation and
model perturbations and use the resulting ensemble statistics (covariance) to represent flow-dependent
errors relative to the ensemble mean. This approach has been shown to converge to a Kalman filter for large
ensemble sizes Evensen [1994], without needing to calculate the evolution of the error covariances, which
otherwise is impractical to implement for large geophysical systems. In practice, small ensemble sizes are
used for computational expediency.

DARTmainly uses a “deterministic”variant of EnKF calledensemble adjustmentKalmanfilter (EAKF) introduced
by Anderson [2001]. It ensures that both posterior (or analysis) mean (i.e., expected value of the ensemble) and
the posterior spread (i.e., standard deviation of the ensemble) are consistent with Kalman filter theory. Since
DART uses small ensemble sizes, it also employs (like all EnKF variants) several approximations. In particular,
it uses covariance inflation and localization tominimize degeneracy in covariancematrices, errors in sampling
and filter divergence (please refer to Anderson [2009 and references therein] for more discussion on these
approximations). For the purpose of this study, we describe in section 2.2.3 the details of the filter procedure
including inflation and localization schemes employed in this work.

We use a 30-member ensemble over a 6 hourly assimilation window for all assimilation experiments that we car-
ried out. This choice is based on the work of Arellano et al. [2007], which showed good results using a 20-member
ensemble with a 6h window using DART and CAM-chem CO data assimilation. As with Arellano et al. [2007], the
current DA configuration assimilatesmeteorology. NOAA/NCEP conventional meteorological observations of sur-
face pressure, air temperature, winds, and specific humidity (including land surface, marine surface, radiosonde,
pibal, and aircraft reports from the Global Telecommunications System, profiler and U.S. radar-derived winds,
Special Sensor Microwave Imager oceanic winds and total column water retrievals, and satellite wind data from
the National Environmental Satellite Data and Information Service, http://rda.ucar.edu/datasets/ds337.0/) are
assimilated in CESM-CAM-chem/DART. Note that no satellite radiance assimilation is performed. A detailed
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evaluation of the performance of the meteorological analysis can be found in the supporting information
associated to this paper. We refer the reader to Raeder et al. [2012] for the full description, extensive
validation of meteorological DA in CAM/DART.
2.2.3. Filter Procedure
In this section, we discuss the algorithm of the EAKF scheme briefly described above. Readers who are already
familiar with this algorithm may move forward to section 3. For notation purposes, we represent y and x as
variables in observation space andmodel state space, respectively. The assimilation cycle begins with a 6hmodel

advance for each jth ensemble member to produce an ensemble forecast (prior) of the model state (xfj ). These

forecasts are then transformed into expected observations (yfm;j ) using a unique observation operator h

(see section 2.2.4) for a given observation type: i.e., yfm;j ¼ h xfj
� �

. One can then compute the associated

ensemble forecast meany f
m and ensemble spreadσ f

m (i.e., sample standard deviation) of themodel in the obser-

vation space. Prior to adjusting yfm;j, y
f
m, and σfm to match a given observation yo with its associated error σo, we

apply our first approximation by increasing the ensemble spread of the model state in order to minimize filter

divergence due to insufficient variance. In particular, we apply an inflation factor λ toxfj in the followingmanner:

xfj ¼
ffiffiffi
λ

p
xfj � x f

� �
þ x f (3)

where x f is the ensemble mean. The inflation factor is computed such that the total spread is about the
distance between the ensemble mean and the observation, i.e.,

yo � y f
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ σfm
� �2 þ σoð Þ2

q
(4)

Here we use an adaptive inflation as described by Anderson [2009] and implemented for example in Raeder
et al. [2012]. We note that inflation increases the spread of the model states (and expected observations)
while preserving the error covariances.

To adjust each ensemble member yfm;j , we use a local least squares framework [Anderson, 2003] to compute

an analysis yam;j such that the ensemble mean yfm closely matches with yo and that the ensemble spread σfm is

reduced consistent with σo, in essence satisfying the analysis equations of a Kalman filter. The analysis in
observation space, which is the first step in the two-step framework described by Anderson [2003], is given by

yam;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σo2

σo2 þ σfm2

s" #
y f
m;j � y f

m

h i
þ

y f
m

σfm2
þ yo

σo2

h i
1

σfm2
þ 1

σo2

h i (5)

and the corresponding increment in observation space is

Δym; j ¼ yam; j � yfm; j (6)

This is a deterministic approach to adjust the ensemble members, which differentiates EAKF (square-root filters)

with other stochastic variants of EnKF. Note that the increment is a function of the error variances, σo
2 and σfm2.

The next step is to update the model states. The analysis increment Δxj for each ensemble member in the model
space is computed as the product ofΔym,j and a linear regression coefficient calculated as the covariance of x

f and

yfm across the ensemble,σ xf ; yfm
� �

, divided by the variance σfm
� �2

[Anderson, 2003]. These two steps constitute the

analysis equation of the mean state in a Kalman filter. The forecast error covariance is estimated via the ensemble
forecasts as a result of model perturbations (e.g., Buehner [2005], and for this work please see section 2.2.1), rather
than typical approximations such as the National Meteorological Center method using lagged forecasts [e.g.,
Parrish and Derber, 1992] or methods based on innovation statistics [e.g., Desroziers et al., 2005].

Since a small ensemble size is typically used, we apply a covariance localization function α to minimize sampling
error. In effect, the analysis increments described above is “localized” across neighboring model states and
dampened with increasing distance from observation location. The final expression of the increment is as follows:

Δxj ¼ α
σ xf ; yfm
� �
σfm
� �2 Δym;j (7)
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The localization function in this study is made up of two components. First, we multiply a Gaspari-Cohn (GC)
correlation function [Gaspari and Cohn, 1999] to the analysis increment. This function effectively limits the
increments within a local volume around the location of the observation. The GC function has basically a
Gaussian shape with values starting from 1 (over the observation location) and tapering off isotropically to
0 with increasing distance from the observation location. The GC function is characterized by a half-width
parameter, which defines the distance at which the GC value is 0.5. In assimilating meteorological observa-
tions, we use the half-width parameter of the GC function to be 0.2 radians in the horizontal (~1200 km)
and 400 hPa in the vertical, as has been chosen in Raeder et al. [2012]. For chemistry (CO), we reduce the
half-width to 0.1 rad in the horizontal and 200 hPa on the vertical. The choice of reducing the cutoff is justified
by high horizontal satellite data sampling and strong horizontal and vertical gradients in the CO fields, which
can lead to spurious increments for low ensemble sizes as in the case here. Sensitivity tests on these length
scales ranging from 0.1 to 0.2 rad in the horizontal and/or from 100 hPa to 200 hPa in the vertical (not shown)
did not significantly change the results presented here. To locate the center (maximum) of the GC function in
the vertical (for CO retrievals), we use the vertical location of the maximum value of the retrieval averaging
kernel profile. It is important to keep in mind that the length scales for the GC function used here for localiza-
tion do not represent the length scales of the forecast error covariances that are typically defined a priori in
suboptimal Kalman filters. As mentioned above, the error covariance in EAKF is defined by the ensemble
statistics. These are not necessarily isotropic (i.e., depends only on spatial distance). In fact, the error
covariance typically show flow-dependent structures, which are more representative of model forecast errors
due, for example, to errors in representing emissions, transport, and/or removal mechanisms. The GC
function does not alter this structure but only localizes the error covariance.

The second component of the localization scheme pertains to localizing the impact of certain observation
types to a group of model state variables. This is called state variable localization. In this work, observations
of temperature, winds, surface pressure, and specific humidity will only impact meteorological state variables
(e.g., temperature). For example, the increment Δym,j(T ) from a temperature observation can be used to
produce an analysis increment of model states other than temperature (e.g., Δxj(U, V) of horizontal wind)
whenever there is significant local sensitivity (i.e., regression coefficient is nonzero in equation (5)). For this
study, we localize the impact of increments due to CO observations to only influence the model CO states.
Under this current DA framework, there is, however, an opportunity to investigate the potential constraints
of CO observations on other state variables (i.e., other chemical or meteorological variables). This topic of
chemical/dynamic balance is important and will be discussed in a further study.
2.2.4. Assimilation of Full Nadir CO Profiles: Design of the Observation Operator
Observation operators for MOPITT and IASI have been implemented using the retrieval equation similar to

yCAMret ¼ ASAT yCAM þ I � ASAT
� �

ySATapr (8.1)

where ySATapr and ASAT are the a priori CO profile and averaging kernel matrix from either satellite product
(MOPITT or IASI), respectively; yCAM is the CO profile from the original CAM-chem profile xCAM on the
retrieval grid, and yCAMret is the “smoothed” CAM-chem profile that is directly comparable to the IASI or
MOPITT retrieved profiles (yIASIret , y

MOPITT
ret ). Note that the MOPITT observation operator is in log VMR space

(see section 2.1.1). We apply the exponential function to yCAMret in equation (1) in the case of MOPITT
data to transform the smoothed model profile (in log10 VMR space) to VMR space during the filter
procedure. In the case of MOPITT the observation operator is then:

yCAMret ¼ 10 ASAT log10 yCAMþ I�ASATð Þ log10 ySATaprð Þ (8.2)

It has been shown (see Figure S1 in the supporting information) that equation (8.2) gives similar results to
equation (8.1), and hence, equation (8.2) (equation (1)) can be approximated to equation (8.1) (equation (2)).
The error associated to this approximation ismostly below10%of the retrieval error, hence not affecting significantly

the data assimilation results. Adding the retrieval a priori I � ASAT
� �

ySATapr on the observation operator removes the

retrieval a priori contribution in the innovation vector. By combining equations (8.1) and (2) the innovation is then

yo � yCAMret ¼ ASAT ytrue � yCAM
� �

(9)
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Consider j retrieval levels, where each retrieval level corresponds to a partial column with N model levels

(N ≥ 1). We can define a model partial column zCAMi for the ith given model level as follows:

zCAMi ¼ ΔPiN a

gMCO
xCAMi (10)

where ΔPi is the pressure thickness of the model layer,N a is the Avogadro’s number, g is the acceleration of
gravity, and MCO is the molecular weight of CO. A model partial column on the retrieval grid will then be

zCAM=SAT
j ¼

XN

i¼1
zCAMi (11)

By transforming a partial column to VMR one would do

yCAMj ¼ gMCO

ΔPiN a
zCAM=SAT
j (12)

By replacing zCAM=SAT
j using the equations above, the pseudo-VMR calculation on the retrieval grid is reduced

to the following weighted mean where the weights are the associated model layer pressure thickness. In a
given retrieval layer consider model layers ranging from a to b:

yCAMj ¼
Xb

i¼a

ΔPiXb

i¼a
ΔPi

xCAMi (13)

For model layers that are in between two retrieval layers, bottom (top) model layer pressure needs to be
replaced by the bottom (top) retrieved layer pressure for exact calculation. Each value of the retrieved profile
is then assimilated sequentially during the filter procedure. For straightforward comparison (see section 2.1.3)
and data compression purposes, we transformed IASI CO to match the vertical grid of MOPITT (i.e., the num-
ber of profile values is reduced from 19 to 10; see Figure 2 and methods provided by Von Clarmann and
Grabowski [2007] and Zhang et al. [2010]). Because there is more than one measurement per model grid
box and per assimilation window from either MOPITT or IASI, we also compute superobservations to match
the horizontal resolution between MOPITT (22 km), IASI (12 km), and CAM-chem (2.5° × 1.9° i.e., around
200 km). See Appendix A for the superobservation procedure.

3. Observing System Experiments
3.1. Experiment Design and Implementation
3.1.1. Spin-Up and Control Run
CAM-chem has been spun-up from 1 January 2006 to 1 April 2008 with unperturbed emissions starting from a
climatological state [Lamarque et al., 2012]. A 2month meteorology-only assimilation is then performed
starting from 1 April 2008 using a 30-member ensemble. For this run, we used perturbed CO emissions
(as described in section 2.2.1) in order to generate a reasonable CO ensemble spread (CO ensemble
spin-up) while constraining modeled meteorology. Temperature is initially perturbed with a random noise
of 0.5 K in order to initiate the assimilation cycling procedure (see section 2.2.3). CO is carried along in the
ensemble model run and as part of the state vector. This setup generates an ensemble spread in meteoro-
logical variables and also in CO since each ensemble member is driven in the model run (forecast) by
perturbed meteorology (including inflation) and CO emissions. For this setup, CO is not statistically
influenced (in the analysis step) by the meteorological observations assimilated in CAM-chem.
Subsequent meteorology-only assimilation is then carried out after this 2month CO ensemble spin-up,
starting 1 June2008.We refer to this subsequent assimilation as our control run (CR). Table 2gives a summary
of all the experiments performed for the study.

We use the same meteorological DA setup as described and validated by Raeder et al. [2012] and similar
conventional observations as used for the (National Center for Environmental Prediction) NCEP-NCAR reana-
lyzes. We show in Figure 3 key assimilation diagnostics for the first month of CO ensemble spin-up. In particular,
we show time series statistics of observation minus ensemble mean forecast (OmF) and observation minus
ensemble mean analysis (OmA) for temperature and wind to highlight successful meteorological assimilation
for the spin-up and subsequent CR. Here the OmA is always smaller than OmF, showing that the assimilation
(analysis) is effective in bringing the model closer to observations for each 6-hourly analysis cycle. Also, the
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OmF and OmA show a general decreasing trend over time, suggesting improvements in the model forecast
with data assimilation. The bottom plots of Figure 3 also show the ratios of OmF and the total spread, which
is expressed as the square root of the sum of ensemble variance (including inflation) and observation error var-
iance (please see section 2.2.3 for details on the error variances). This metric, which is also called Reduced
Centered Random Variable (RCRV) [Candille et al., 2007], provides a measure of the agreement of the ensemble
spread and observational error with the amplitude of the forecast error. The second moment of the RCRV

(root-mean-square (RMS) of RCRV) mea-
sure the agreement of the ensemble
spread and the specified error with the
observed amplitude of the forecast
error. RMS of RCRV should converge to
1 after the spin-up. For CR, we find that
meteorology needs around a week to
spin-up. The OmF and OmA stabilize
around a low threshold value and
RCRV stays close to 1 after spin-up.

Figure 4 shows the average CO concen-
tration and CO spread for the month of
June 2008 after the 2month spin-up.
Here we highlight the utility of the current
setup (online CTM) to generate physically
and dynamically consistent spread in CO
based on systematic propagation of errors
in meteorology (transport term in CO
continuity equation) and assumed errors
in CO emissions. CO spread varies across
the emission and transport regions of
CO. The highest spread can be seen in
the main source regions (i.e., mostly over
populated areas like China and biomass
burning areas like Equatorial Africa).
Lower CO spread can be seen in the
Southern Hemisphere mainly due to
lower emissions (less land/biogenic and
anthropogenic presence). Conversely, we
see higher spread in the tropics and
Northern Hemisphere mostly due to
higher emissions. Finally, the influence of
transport in the CO spread can be easily
seen over the Pacific.
3.1.2. IASI, MOPITT, and
Combined Runs
We carried out three additional sets of
assimilation experiments including jointly
assimilating conventional meteorological

Figure 3. (top plots) Six-hourly RMS of observation minus forecast (OmF,
green lines) and observation minus analysis (OmA, red lines). (bottom
plots) RMS of RCRV for (a) winds and (b) temperature during April 2008.

Table 2. Summary of Experiments

Experiment

Meteorology MOPITT CO IASI CO

Assimilation Assimilation Assimilation

CR: Control run Yes No No
MR: MOPITT assimilation run Yes Yes No
IR: IASI assimilation run Yes No Yes
DR: Double assimilation run Yes Yes Yes
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observations with (1) MOPITT CO (MOPITT
assimilation run (MR)), (2) IASI CO (IASI
assimilation run (IR)), and (3) MOPITT and
IASI CO (Double assimilation run (DR)),
see Table 2. These experiments are
conducted for June and July 2008. We
use the ensemble CO at the end of the
spin-up (31 May) as initial conditions for
these experiments. We consider June
2008 as a spin-up period during which
the data assimilation system itself is evalu-
ated, and July 2008 as well-constrained
CO fields where the assimilation impacts
of each instrument are diagnosed.

Figure 5 shows the time series of OmF,
OmA, and RCRV for MR and IR. Here we
consider several retrieval cases: (1) all
observations (Figures 5a and 5b), (2)
observations with low sensitivity to the
lowermost troposphere (LMT) peaking
above 700hPa (Figures 5c and 5d), and
(3) observations with high sensitivity to
the LMT peaking below 700hPa (Figures
5e and 5f). Based on Figure 2 and discus-
sion on retrieval sensitivity, observations
for Case 2 are most likely representative

of CO over remote regions (transported and free tropospheric CO) but excluding IASI observations that are sen-
sitive over remote regions. Observations for Case 3 can be thought of as CO over source regions (near surface CO
over land close to emissions). For all cases, (Case 1), the global statistics of OmA in MR and IR is always lower than
the OmF showing that CO data assimilation is generally effective in bringing the modeled CO closer to either
MOPITT or IASI. However, the RCRV score for Case 1 indicates values under 1.0 for both MR and IR (around 0.6
and 0.8, respectively) suggesting that globally the error estimates are larger than the actual distance between
model CO forecast and observations. This sign of “overfitting” is more evident in MR. We elucidate the cause of
this overfitting by comparing the statistics for Case 2 and Case 3 relative to Case 1. The RCRV score for Case 2 is
significantly lower than 1.0 especially in MR, while it is close to 1.0 for Case 3 for bothMR and IR. This suggests that
the global statistics are driven by retrievals sampling and values of CO. Statistics of OmF are expected to be low as
magnitudes of free tropospheric CO are about a factor of 2 lower than CO near source regions and errors in model
transport are relatively lower than emissions. In the beginning of the assimilation, lower RCRV and lower OmF sta-
tistics can be found in Case 2 than Case 3 of MR and IR. This consequently drops and stabilizes after about a
week of assimilation similar to Case 1. We also note here that constraining surface CO in the model through
assimilation of higher LMT sensitive retrievals (Case 3) near source regions aids in bringing modeled free tro-
pospheric CO closer to observations provided transport and CO sink are captured well in the model. This is
true with MR, which exhibits larger OmF statistics than IR due to higher LMT sensitivity in MOPITT combined
with large underestimation of anthropogenic emissions in CAM-chem [e.g., Shindell et al., 2006] and the use
of monthly mean wildfire emissions. This sign of overfitting is exacerbated by larger retrieval error estimates
(e.g., superobservations and retrieval prior error) and our assumption of uncorrelated errors in retrieved CO pro-
files. However, a simple tuning of observation error may be prone to assimilating instrument/retrieval noise
instead. Further evaluation of the assimilation performance through comparison with independent measure-
ments is described and discussed in section 4 of this paper. Briefly, our comparisons show improvements in sta-
tistics across all regions in both MR and IR.

3.2. Comparison of DA Increments (AmF) Runs

In this section, we investigate the average adjustments of model CO fields in the assimilation for MR and IR as
well as DR. Figure 6 displays the root-mean-square (RMS) of the relative increments (AmF/F) defined here as

Figure 4. Average tropospheric (surface, 200 hPa) (top) CO field and
(bottom) relative CO spread in percent, for June 2008 determined from
the control run.
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posterior ensemble mean (analysis) minus prior ensemble mean (forecast) divided by the prior mean. We use
the RMS of these increments relative to the forecast as a metric to identify short-term systematic error
patterns in the model. Here we choose the RMS statistic rather than the mean as it represents the overall
variability of the increments expressed in terms of precision (standard deviation) and bias.

Overall, the RMS on the relative increments in IR are higher than in MR. This can be mainly attributed to the
combined effect of the more frequent sampling (broader spatiotemporal coverage), important free tropo-
spheric sensitivity and lower relative retrieval errors in IASI. This is evident in the middle to upper troposphere
where large increments persist across the transport pathways of CO (e.g., Asian CO advected across the
Pacific toward North America). As described earlier, the averaging kernels in IASI retrievals suggest sensitivity

Figure 5. RMS of observation minus forecast (OmF, green lines top plots) and observation minus analysis (OmA, red lines top plots) and RMS of RCRV (green lines
bottom plots) for: all (a) MOPITT and (b) IASI observations, (c and d) observations remote from sources, and (e and f) observations close to sources during June 2008.
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to the troposphere regardless of geographical region and atmospheric conditions. IR also shows large incre-
ments over the source regions (lower troposphere) but with patterns extending around emission locations
relative to MR, which is consistent with its coverage and sensitivity. On the other hand, MR shows more loca-
lized (in both horizontal and vertical) increments over the source regions. There are obvious MR increments in
the Amazon, South Africa, and northern India that differ with IR. While over the Amazon neither IR nor MR
show upper tropospheric increments, MR shows significant lower tropospheric increments. The South
Africa increments are most likely signatures of convective lifting, while the Amazon increments are most
likely related to MR sensitivity emissions. These are either convective regions or large CO sources for which
MOPITT has relatively larger constraints (high LMT sensitivity over land/daytime and reasonable sensitivity
in the upper troposphere). However, MOPITT TIR/NIR retrievals are dependent on atmospheric and surface
parameters that considerably decrease the sensitivity over the oceans and over unfavorable land conditions
(e.g., night, low thermal contrast, surface emissivity, and among others).

The third column of Figure 6 shows the RMS of relative increments in DR. In general, the DR increments are
combinations of MR and IR increments indicating complementary information between IASI and MOPITT
under certain conditions. Consistent with previous discussion (IR versus MR), MOPITT detects a biomass burn-
ing signature in the lower troposphere of the Amazon basin that is not that well detected by IASI. Such strong
CO signatures that are close to the surface can be constrained by MOPITT. IASI detects CO not directly at the
surface but above, where the CO source signature is weaker, and hence, IR provides smaller increments. On

Figure 6. RMS of relative increments (posterior state minus prior state divided by the prior state) during July 2008 for
(first column) MOPITT assimilation (MR), (second column) IASI assimilation (IR), and (third) MOPITT + IASI assimilation (DR).
Different layers of the troposphere are diagnosed: full troposphere (Trop, surface, 200 hPa), lower troposphere (Low Trop,
surface, 800 hPa), middle troposphere (Mid Trop, 800 hPa–400 hPa), and upper troposphere (Upp Trop, 400 hPa–200 hPa).
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the other hand, above the northern Pacific in the middle to upper troposphere, DR increments are smaller
than IR increments suggesting the impact of MOPITT in providing constraints on the sources (here Asia) that
are long-range transported over Pacific, resulting to lesser DR increments in the remote regions from the
sources. In summary, the multispectral retrievals of MOPITT provide additional sensitivity toward the surface
that improved constrains on CO over source regions, while the daily global coverage and broader sensitivity
of IASI for the entire troposphere provides best constraints downwind of the sources.

3.3. Comparison of Assimilated CO Fields Runs

We present in Figure 7 the mean differences between the assimilation experiments (MR, IR, and DR) and the
control experiment (columns) for several regions of the troposphere (rows). This is to diagnose whether the
assimilated CO fields are on average increased, decreased, or unchanged by assimilating MOPITT and/or IASI.
We find a consistent and significant increase in CO for all experiments across the Northern Hemisphere. This
increase is larger with IR (up to 50 ppbv) than MR (up to 30 ppbv). As discussed in previous section, MRmostly
provides constraints near source locations whereas IR increments are broader (globally and across the
troposphere). The large underestimation of CO in NH [e.g., Lamarque et al., 2012; Tilmes et al., 2015] has
been corrected in all assimilation runs. This bias is likely due to an underestimation of CO and VOC emissions
from anthropogenic and biomass burning inventories as previously pointed out by Stein et al. [2014], Emmons

Figure 7. Differences between assimilated CO and CO from control run during July 2008: (first column) MOPITT assimilation
minus control (MR-CR), (second column) IASI assimilation minus control (IR-CR), and (third column) MOPITT + IASI assimilation
minus control (DR-CR). Different layers of the troposphere are diagnosed: full troposphere (Trop, surface, 200 hPa), lower
troposphere (Low Trop, Surface, 800 hPa), middle troposphere (Mid Trop, 800 hPa–400 hPa), and upper troposphere
(Upp Trop, 400 hPa–200 hPa).
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et al. [2015], Tilmes et al. [2015], and Monks et al. [2015]. However, it is difficult to fully ascertain the relative
contribution of the uncertainties in emission and chemical loss due to OH from this analysis alone.

We also find that in the tropics MR shows larger decreases in the CO fields relative to IR. This is the case in
the lower to middle troposphere over sources regions in Equatorial Africa, Amazonia, and northern India
(about 10–20ppbv). The pattern of decrease is also spatially broader (in horizontal and vertical) for MR than
IR. Since the MR increments described earlier are localized near the sources, this suggests the propagation of
the model adjustments near the source toward the outflow regions. On the other hand, the IR increments
are broader resulting in lower decreases in CO fields downwind (more corrections in the transport pathway).
In any case, both MR and IR suggest a decrease in CO fields in the tropics throughout the troposphere. It is
interesting to note that Jiang et al. [2013] showed that assimilating MOPITT V5J surface level retrievals results
in decreases in direct CO emissions in tropical convective regions and a strong decrease of middle and upper
tropospheric CO, which is consistent with our results.

In the case of DR, the differences are very similar to IR indicating the dominant impact of assimilating IASI in
CAM-chem. This is true in the NH with patterns of increase in CO as well as in the tropics with a tendency to
lowering CO. We find that assimilating IASI has the ability to correct errors in model transport due to its
broader coverage and sensitivity and lower errors.

3.4. Synergies Between MOPITT and IASI

A common definition of synergy is the creation of a whole that is greater than the simple sum of its parts.
Here we design the following synergy diagnostic, which is based on equation (4) of Barré et al. [2014], to
diagnose whether combining MOPITT and IASI retrievals can bring any added value:

SYN ¼ DR-CRj j- IR-CRþMR-CRj j½ �=CR: (14)

This diagnostic, which can be negative, zero or positive, is the difference between the magnitude of the
impact of DR (i.e., |DR�CR|) to the magnitude of the sum of the impacts of IASI-only and MOPITT-only
assimilation (i.e., |IR�CR+MR�CR|) relative to CR. It can be interpreted as follows:

1. A negative synergy means that the DR effect is lower than the sum of IR and MR effects. This can be
interpreted as redundant information that the two assimilations bring in the analysis. For example, IASI
assimilation already corrects the fields and MOPITT has less or nothing to correct afterwards.

2. A zero synergy means the DR effect is exactly the sum of IR and MR effects. In this case the two retrievals
assimilated are complementary and the information they bring into the system is not redundant.

3. A positive synergy means that the DR effects are more than the sum of IR and MR effects. This is consid-
ered as the actual synergy following the definition given above. As an example, consider the first retrieval
assimilated corrects the CO field. The second retrieval samples the same field and when assimilated
further corrects the CO field. This synergy can be effective in the case of large forecast errors that cannot
be constrained by one type of retrieval alone.

It should be noted that synergies can also be affected by the nonlinearity of the chemical model; e.g., CO
changes by data assimilation can feedback on the CO production and loss through changes in OH. For
example, local large increase in CO potentially decreases local OH abundance (CO loss). This change could
result to decrease in the oxidation of VOCs (CO production). In this study, however, we find very few instances
of significantly large CO changes that lead to strong local chemical response in the model. This is due to the
large spatial scale (2°) of our modeling system. Hence, we find that the CO impact on the model is mainly
driven by frequent revisit time (1 to 3 days) of MOPITT and IASI (assimilation effect) compared to model
chemical response.

Figure 8 presents synergy diagnostics as a monthly average (Figure 8, left) and instantaneous field at 15 July
2008 00UTC (Figure 8, right) for different regions in the troposphere (rows). On average, the synergy is negative
with the strongest negative values over NH high latitudes. This can be attributed to the longer CO lifetime in
this region, where the dynamics of the system are driving its distribution and abundance, and hence resulting
in less observational frequency necessary to constrain thefield. TheCO lifetime is longer in higher latitudes due
to its dependence on OH distribution, which decreases from the tropics to the poles [Monks et al., 2015,
Emmons et al., 2015]. As such, the two types of constraints from MOPITT and IASI are most likely redundant
in this region. In the tropics, however, we see close to zero synergy values indicating the complementary
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information of MOPITT and IASI especially near source and outflow regions. For the instantaneous synergy
fields,wefind similar patterns butwith larger spatial variations. Over regionswhere forecast errors remain large
(e.g., biomass burning and urban regions), the combined assimilation of MOPITT and IASI can be synergistic.
Positive synergies can be seen in either the source region (southern Africa) or CO plumes transported
downwind (over Pacific Ocean).

4. Data Assimilation System Evaluation

In this section, we evaluate the assimilated CO fields (MR, IR, and DR) against independentmeasurements and
retrievals to provide a measure of DA system performance. We grouped our evaluation based on the specific
domains of available observations (i.e., global/ Thermal Emission Spectrometer (TES), Arctic/Polar Study using
Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport
(POLARCAT), and Continental United States/U.S. Environmental Protection Agency (EPA)).

4.1. Global Evaluation Against TES

Tropospheric Emission Spectrometer (TES) [Beer et al., 2001; Beer, 2006; Rinsland et al., 2006] is an infrared
Fourier transform spectrometer onboard the Aura satellite. Similar to MOPITT and IASI, TES measures TIR
radiances in the CO band. TES nadir footprints of 5 × 8 km are separated by around 60 km along the orbit
track. TES retrievals of CO profiles are described by Bowman et al. [2006] and validated by Luo et al.
[2007a] using aircraft measurements. We use the TES measurement to evaluate the data assimilation

Figure 8. Values of the synergy relative to the control run. The left column is the July 2008 averagewhile the right column is
the 15 July 2008 00:00 UTC statistics. Different layers of the troposphere are diagnosed: full troposphere (Trop, surface,
200 hPa), lower troposphere (Low Trop, surface, 800 hPa), middle troposphere (Mid Trop, 800 hPa–400 hPa), and upper
troposphere (Upp Trop, 400 hPa, 200 hPa).
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performance on the free troposphere at global scale. To evaluate the model against TES retrievals, we
smoothed the model experiments with the associated TES CO averaging kernel matrix and retrieval and a
priori profiles using equation (8.1). Similar to IASI, TES CO averaging kernels mostly peak in the free tropo-
sphere and tend to be close to zero toward the surface. An example of TES CO averaging kernels can be found
in Figures 10 and 11 of Luo et al. [2007b]. The average retrieval relative error ranges from 10% to 20% for TES
CO profile. It is important to note that TES sensitivities peaks on free tropospheric levels. TES averaging ker-
nels exhibit similar shapes as IASI and MOPITT over remote regions. Over source regions, the MOPITT aver-
aging kernels peak at the surface which can result to data assimilation increments near the surface
contributing to the free tropospheric constraint through transport of CO (see section 3.3).

Figure 9. Comparison between CO from DA experiments and TES CO during July 2008. First column is the comparison of
average profiles, second column is the unbiased root mean square error of the assimilation run to the TES profiles, and third
column is the correlation between TES profiles and assimilation runs. First row: Northern Hemisphere (NH), second row:
tropics (Trop).
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Figure 9 displays the overall statistics of the different assimilated CO (MR, IR, and DR) and modeled CO (CR)
relative to TES CO across broad regions of the globe. This includes the mean profiles unbiased root-mean-
square error (RMSE) (RMSED), and correlation coefficients across the month of July 2008 in the Northern
Hemisphere and Tropics. Over the Northern Hemisphere, the statistics show that CR is negatively biased
up to 25 ppbv in the free troposphere relative to TES. This bias is reduced to less than 5 ppbv for MR and
to almost no bias for IR and DR. The RMSED is slightly reduced for all assimilation experiments, while the
correlation is strongly improved in the free troposphere, especially with IR and DR. Over the tropics, CR
CO exhibits low systematic mean error (under 5 ppbv), a slight negative bias in the free troposphere and
a slight positive bias in the upper troposphere, relative to TES CO. MR reinforces the negative bias in the
middle troposphere and corrects the positive bias in the upper troposphere. IR and DR slightly correct
the negative bias in the middle troposphere. They also show best improvements in RMSED and correlation
with MR showing modest results. Over the Southern Hemisphere, the bias in CR CO relative to TES is small
with a 5 ppbv overestimation in the middle troposphere (not shown). While the low bias over the tropics is

Figure 10. Same TES evaluations as in Figure 9 but for the specific regions shown in the top plot.
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not improved in the data experiments, IR and DR experiments slightly improve the RMSED and correlation
consistent with the “information content” of IASI.

Figures 10–12 present similar statistics of system performance relative to TES, but now focusing on specific
regions of the globe. The selected regions include EA (East Asia), RP (Remote Pacific), NA (North America),
RA (Remote Amazonia), and SA (Southern Amazonia). We selected EA, RP, and NA (Figures 10 and 11) to diag-
nose the impact of assimilating CO retrievals across the northern extratropics on constraining continental CO
and long-range transport over the Pacific Ocean. EA includes key anthropogenic sources (i.e., northern China,
Korea, and Japan) and biomass burning source from Siberia during July 2008. The IR and DR experiments
perform better than MR owing to IASI’s coverage. This is particularly the case during summer over East
Asia, where very cloudy conditions limit the number of valid retrieved pixel [Barré et al., 2015]. A broader cov-
erage, like IASI, provides more opportunity to sample cloud free scenes in this region. Over RP where Asian
pollution is typically transported, all DA experiments present almost the same performance on correlation

Figure 11. Same TES evaluations as in Figure 9 but for the specific regions shown in the top plot of Figure 10.
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and RMSED. MR on the other hand shows smaller bias correction. Constraining CO close to the sources
(MOPITT) or globally in the free troposphere (IASI) provides very similar forecast statistic scores in this region.
Slight synergistic effects can be observed on the middle troposphere as CO in DR is closer to TES CO in terms
of bias, RMSED, and correlation than CO in IR and MR. Similar statistics can be seen in NA for MR, IR, and DR.

As discussed earlier (section 3.3), MR generates stronger andmore extended patterns of decreasing CO relative
to IR and DR over the tropics (Figure 7). We selected SA and RA to elucidate this difference (Figure 12). Over the
source region (SA), all DA runs degraded the forecasts in the lower and middle troposphere (from surface to
600hPa on TES vertical levels), whereas the runs improved forecasts in the upper troposphere relative to TES
CO. The degradation is interpreted to be mainly due to errors in modeled vertical transport rather than bias in
IASI and MOPITT retrievals given similar DA impact on MR and IR. This is supported by findings of Jiang et al.
[2013] among others that CTMs struggle to represent vertical transport of fire emissions in the tropical region.
Over RA, onlyMR significantly degraded the forecasts,mostly reversing the CO bias from positive (CR) to negative

Figure 12. Same TES evaluations as in Figure 9 but for the specific regions shown in the top plot of Figure 10.
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and increasing (decreasing) the RMSED (correlation) in the middle and lower troposphere. IR and DR only
improve the bias relative to TES CO. These results suggest that neither IASI nor MOPITT assimilation is performing
well in this region. Currently, this issue is not fully understood. The current results suggest that constraints close to
the CO sources (MR) over the tropics generate additional error due to vertical transport errors, transporting strong
data assimilation increments at wrong atmospheric levels. This error is propagated and remains in the model
toward the remote regions. If the constraint is over tropical remote regions (IR and DR) then the transported error
is partially corrected. Because IASI sensitivity is strong over remote areas below 400hPa, this error is transported
and corrected over remote areas and in the upper troposphere. Conversely, because MOPITT sensitivity is weak
over remote areas and below 400hPa, this error is transported and not corrected over remote areas and in the
middle and lower troposphere. Examination of Figure 2 show that MOPITT sensitivity is comparable to IASI
sensitivity in the upper troposphere although significantly lower in the middle and lower troposphere over
remote regions. This is reflected in Figure 12 whereMR removes the bias relative to TES in the upper troposphere
and significantly degrades the scores in themiddle and lower troposphere while a residual bias is still observed in
IR and DR from the lower troposphere to the upper troposphere.

4.2. Arctic Evaluation Against POLARCAT

The POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate,
Chemistry, Aerosols, and Transport) mission is an international project that involved various aircraft platforms
(NOAA WP-3D, NASA DC-8, CNRS ATR-42, DLR Falcon-20, and Antonov-30). It was designed to study the
impact of pollution on atmospheric composition and climate change in the Arctic. The measurements used
in this paper for comparison with our experiments were carried out during the summer campaign (i.e.,
30 June to 14 July 2008) to sample Arctic air masses originating from regions influenced by North
American, Asian, European, and Siberian emissions. The location of the measurement flights used in this
study can be found in Figure 15 of Emmons et al. [2015] (from 50°N to 90°N and from 0°W to 160°W).
Figure 13 presents scatterplots comparing CO from all experiments with POLARCAT CO. Statistics of the com-
parisons are summarized in Figure 13. As discussed in the TES comparison, CR is negatively biased (in this

Figure 13. Evaluation of assimilation runs against POLARCAT flights from 30 June 2008 to 14 July 2008. CR, MR, IR, and DR
cases are shown in the top left, top right, bottom left, and bottom right, respectively. Each plot provides corresponding
statistics: Bias, unbiased root mean square error (RMSED) and correlation.
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case by 32 ppbv). Assimilation reduces
this bias to �4 ppbv for MR, to
+3 ppbv for IR and to almost no bias
for DR. In terms of RMSED and cor-
relation, MR shows the best improve-
ment whereas CO in IR was slightly
degraded. This can be interpreted by
IR significantly adjusting the CO fields
remote to the source regions as
opposed to MR mostly constraining
Arctic CO close to its sources. In the
IR case, increments that are not
advected during several forecast
model cycles can lead to less physical
CO variability. Errors in data assimila-
tion increments can be due to errors
in IASI measurements generating
noise in forecast CO fields or sampling
errors in forecast error covariance
matrix (calculated from the ensemble
statistics) generating spurious cor-
relations during the analysis of the
modeled CO field. Kerzenmacher et al.
[2012] has found that IASI retrieval
errors may be underestimated over polar
latitudes. In this study, similar error
underestimation can lead to larger analy-
sis increments from a number of retrieval
noise assimilated in CAM-Chem. This
potentially explains the degradation in
RMSED and correlation for IR and DR in
polar latitudes. Improvements in MR
1suggest that the CO lifetime in the
extra-tropics (more precisely in high lati-
tudes) is well represented in the model
and that the bias in CR can be attributed
mostly to emissions.

4.3. Continental and Regional Evaluation Against U.S. EPA

Here we use the U.S. EPA (Environmental Protection Agency) ground measurement sites over the Continental
United States (CONUS). The surface monitoring data used in this study are available for download from the
U.S. EPA’s Air Quality System database (http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm).
Since the spatiotemporal resolution of the forecast is coarse (around 2° in horizontal and 6h) to represent accu-
rately the CO surface variability over CONUS, we only selected sites with similar coarser representativeness (i.e.,
sites designated as rural and suburban) and extracted COdata every 6h over July 2008. The suburbanmonitoring
sites could be often located near strong localized pollution sources creating a strong source-to-receptor relation-
ship that is a challenge to duplicate in coarse model resolution [Pfister et al., 2011]. We hence expect the models
and data assimilation experiments to be significantly negatively biased, due to the difference of representative-
ness between the surface sites (local measurements) and the model having a 2×2° representative grid box. We
used all regulatory measurements with precision of 0.1 ppmv. Despite this low precision, these surface observa-
tions can be used for evaluating the overall performance at the surface. This is the reason why we use only those
data to diagnose the surface bias over large areas (CONUS and California). Figure 14 provides time series of aver-
age bias for the entire CONUS and for stations located in California, as well as a time series of bias improvements
(e.g., ∣bias(CR)∣-∣bias(MR)∣) in MR, IR, and DR.

Figure 14. Evaluation of control run (CR, green), MOPITT run (MR, blue),
IASI run (IR, red), and MOPITT + IASI run (DR, purple) against CONUS U.S.
EPA ground rural and suburban stations. (a and c) Time series of each
assimilation run for CONUS and California, respectively. (b and d) The
corresponding bias improvement relative to CR. X axis dates are
formatted as month-day-hour.
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For the entire CONUS, the surface CO bias is improved by 50 ppbv in IR and DR and 25 ppbv for MR. For
California sites, IR and MR show similar performance with a bias reduction around 50 ppbv. This suggests
the larger impact of coverage (overpass frequency) in constraining surface CO over moderately remote
regions (rural) and near to source regions (suburban). While the sensitivity of IASI retrievals does not peak
directly at the surface (more at the upper boundary layer levels; Figure 2), it appears to be capable to partially
constrain the surface layers (possibly through boundary layer mixing and ventilation). Over California where
EPA sites are closer to strong CO sources, the impact of assimilating MOPITT (MR) is enhanced. This is because
of very favorable conditions (very few clouds and very good thermal contrast) for MOPITT in combination
with its enhanced surface sensitivity.

Complementary effects (where synergy is close to 0) can also be observed in Figure 14. DR CO is most of the
time closer to U.S. EPA CO than IR or MR. This is especially the case over California. The bias improvements in
DR are higher than in IR andMR. DR provides scores more than twice as good as IR andMR independently (i.e.,
Figure 14d from 10 July to 15 July), meaning that IASI and MOPITT different capabilities are complementary
used in the assimilation process.

5. Summary and Conclusions

In this paper, we describe in detail the implementation of the new version of the chemical data assimila-
tion system based on NCAR’s CESM-CAM-chem/DART. In particular, we apply the chemical data assimila-
tion system to investigate and assess the impact of assimilating CO retrieved profiles from two
instruments (IASI and MOPITT) on constraining the forecast and analysis of CO in CAM-chem. Our work-
ing hypothesis, based on detailed examination of the differences between the two data sets, is that the
two instruments provide different and complementary capabilities in constraining CO. While the multi-
spectral retrievals from MOPITT have enhanced sensitivity toward the surface and across the main CO
source regions, its coverage is relatively limited. On the other hand, retrievals from IASI, while less
sensitive to the surface, exhibit sensitivity to the free troposphere across the globe and broader
horizontal coverage.

We carried out three sets of experiments to elucidate the nature of the individual (MR and IR) and combined (DR)
impacts of these retrievals relative to a control run (CR) and to independent CO measurements corresponding to
different spatiotemporal scales (TES, POLARCAT, and U.S. EPA). The overall evaluation against independent data
shows that the chemical data assimilation system performs well in terms of bringing significant improvements
on the CO forecasts in CAM-chem for all experiments. We also looked closely at key model space diagnostics
(DA increments) and differences of assimilated CO fields (MR, IR, and DR relative to CR). We find that MR mostly
constrains the CO fields close to themain anthropogenic and biomass burning sources, while IR constrains mostly
CO downwind from the source regions. This is generally consistent with our working hypothesis.

This work represents our first step toward assimilating multispecies and/or multiplatform retrieval products
into CESM-CAM-chem/DART. Below, we summarize the key insights we found in this work, which may be use-
ful for future chemical DA activities:

1. The coverage of IASI versus the sensitivity of MOPITT plays a large role in the nature of the impacts and
constraints. The larger coverage of IASI allows better detection of pollution scenes and transported
plumes of high CO concentration. The MOPITT multispectral retrieval provides enhanced sensitivity at
the surface over main CO source regions but has weak sensitivity to the middle troposphere over remote
regions. Conversely, IASI does not generally have the strong sensitivity at the surface but exhibits sensitiv-
ity over the free troposphere. These differences in the two instruments are clearly reflected in the DA
increments where the CO fields are constrained according to the instruments’ coverage and retrieval sen-
sitivities. The MOPITT increments are mostly in the lower troposphere and close to the major CO sources,
while IASI increments are spread more globally and extend throughout the troposphere. Our evaluation
with independent measurements indicates that MR does not correct the bias over the Northern
Hemisphere as well as IR. IR also shows better performance over anthropogenic source regions (Eastern
Asia and CONUS) than MR. However, MR provides equivalent or better results over the NH remote regions
(Northern Pacific and Arctic). This is not the case over the tropical regions where MR further degrades the
model forecasts.
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2. This work points out possible deficiencies in representing CO in CAM-chem. As pointed out in several
sections of this paper, the model emissions are mostly responsible for the systematic CO negative bias
in NH. MR corrects the CO fields mostly close to the source and removes the bias in its majority.
Because MOPITT has limited coverage compared to IASI, it is, however, difficult to quantify unequivocally
the relative contribution of errors from the sources and sinks of CO to the NH bias. In the tropics, we find
that MR degrades CO in remote regions more than IASI, which we attribute to model error propagation. In
particular, our analysis suggests the potential role of errors in model vertical transport in bringing
modeled CO further from observations. We note that detailed investigation and diagnostics over longer
time of integration are needed to elucidate this issue.

3. The combined assimilation of MOPITT and IASI retrievals in CAM-chem (DR) provides synergistic effects.
Here we propose a novel diagnostic to show conditions where the two sources of assimilated informa-
tion are redundant, complementary, or synergistic. On a monthly average time scale, IASI and MOPITT
assimilated retrievals share redundant information. It is shown that redundancy is the strongest over
Arctic regions, where CO lifetime is expected to be longer than in lower latitudes. Synergistic or comple-
mentary effects are observed over shorter time and regional scales close to the source regions. As an
example, bias correction of surface CO over California can be improved synergistically over a few days
with DR.

4. One limitation of this work remains on neglecting the off-diagonal terms of the retrieval error covariance
matrix that are important for inter-comparison studies. Accounting for retrieval error off-diagonal terms in
sequential data assimilation require additional algorithm development that would be addressed in
further studies.

Appendix A: Superobservations

Since the horizontal resolution of the CO satellite data retrievals (around 20 km) is much finer than CAM-
chem (2.5° × 1.9°), we adopt the superobservation approach to produce more representative data
comparable to the coarser model resolution. In addition, it is computationally cheaper to use
superobservations in global satellite data assimilation. The approach is to average the observations
(including errors and averaging kernels) across each 1.9° latitude × 2.5° longitude bin. We perform the
weighted averaging using relative observation errors as the weights. The weighted average is
calculated as

yo ¼
XN

i¼0
wi yið Þ (A1)

wi ¼ σ�2
i y2iXN

i¼0
σ�2
i y2i

� � (A2)

where yo is the superobservation, yi is original observation value, σ2i is the error variance, and wi is the weight.
The error average σy can be calculated using the variance-covariance matrix C of all the observation errors
within the given bin as:

σy ¼
XN

i¼0

XN

j¼0
wiwjCij
� � ¼ XN

i¼0

XN

j¼0
wiwjρijσiσ j

� �
(A3)

Because the off diagonal terms of C are not known, we evaluate them by estimating the error correlations ρij
as a Gaussian function of distance dij:

ρij ¼ e� d2ij=2L
2ð Þ (A4)

Here L is a correlation length that has to be estimated. We then adjust L such that it satisfies the following
condition on the reduced χ2 function with ν= (N� 1)2 degrees of freedom:

χ2ν ¼
1

N � 1ð Þ2
XN

i¼0

XN

j¼0

yi � yoð Þ yj � yo
� �

ρijσiσj
→1 (A5)
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Figure A1 shows the χ2ν versus the number of observations in a given bin for correlation length L ranging from

0.1° to 1°. We found that on average a correlation length of L= 0.7° give the best average χ2ν match to 1 at
global scale and for all IASI and MOPITT levels.
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