Geographic distribution of zonal wind and UV albedo at cloud top level from VMC camera on Venus Express: Influence of Venus topography through stationary gravity waves vertical propagation

Abstract : Based on the analysis of UV images (at 365 nm) of Venus cloud top collected with VMC camera on board Venus Express [4,5], it is found that the zonal wind speed south of the equator (from 5°S to 15°s) shows a conspicuous variation with geographic longitude of Venus, correlated with underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. The cloud albedo map at 365 nm varies also in longitude and latitude, perhaps the result of increased vertical mixing associated to wave breaking, and decreased abundance of the UV absorber which makes the contrast in images.
Complete list of metadatas

https://hal-insu.archives-ouvertes.fr/insu-01213709
Contributor : Catherine Cardon <>
Submitted on : Thursday, October 8, 2015 - 6:40:40 PM
Last modification on : Monday, May 20, 2019 - 11:50:27 AM
Long-term archiving on : Saturday, January 9, 2016 - 10:41:33 AM

File

EPSC2015-87.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : insu-01213709, version 1

Citation

Jean-Loup Bertaux, I. V. Khatunstsev, Alain Hauchecorne, W. Markiewicz, Emmanuel Marcq, et al.. Geographic distribution of zonal wind and UV albedo at cloud top level from VMC camera on Venus Express: Influence of Venus topography through stationary gravity waves vertical propagation. European Planetary Science Congress 2015, Sep 2015, Nantes, France. pp.EPSC2015-87. ⟨insu-01213709⟩

Share

Metrics

Record views

767

Files downloads

122