G. Berger, M. J. Toplis, E. Treguier, C. Uston, and P. Pinet, Evidence in favor of small amounts of ephemeral and transient water during alteration at Meridiani Planum, Mars, American Mineralogist, vol.94, issue.8-9, pp.1279-1282, 2009.
DOI : 10.2138/am.2009.3230

D. L. Bish, X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater, Science, vol.341, issue.6153, p.6153, 2013.
DOI : 10.1126/science.1238932

URL : https://hal.archives-ouvertes.fr/hal-01291799

J. L. Bishop, P. Schiffman, and R. Southard, Geochemical and mineralogical analyses of palagonitic tufts and altered rinds of pillow basalts in Iceland and applications to Mars, Volcano-Ice Interaction on Earth and Mars, pp.371-392, 2002.

J. C. Bridges and S. P. Schwenzer, The nakhlite hydrothermal brine on Mars, Earth and Planetary Science Letters, vol.359, issue.360, pp.359-360, 2012.
DOI : 10.1016/j.epsl.2012.09.044

J. C. Bridges, D. C. Catling, J. M. Saxton, T. D. Swindle, I. C. Lyon et al., Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes, Space Sci. Rev, vol.96, pp.365-392, 2001.
DOI : 10.1007/978-94-017-1035-0_13

T. Bristow, The origin and implications of clay minerals from Yellowknife Bay, Gale Crater, Mars, doi:10.2138/am-2014-5077, Hydrogeologic evolution of Gale Crater and its relevance to the exobiological evolution of Mars, pp.235-245, 1999.

J. G. Catalano, Thermodynamic and mass balance constraints on iron-bearing phyllosilicate formation and alteration pathways on early Mars, Journal of Geophysical Research: Planets, vol.32, issue.10, pp.2124-2136, 2013.
DOI : 10.1029/2005GL024253

H. G. Changela and J. C. Bridges, Alteration assemblages in the nakhlites: Variation with depth on Mars, Meteoritics & Planetary Science, vol.29, issue.12, pp.1847-1867, 2010.
DOI : 10.1111/j.1945-5100.2010.01123.x

V. Chevrier, F. Poulet, and J. Bibring, Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates, Nature, vol.33, issue.7149, pp.60-63, 2007.
DOI : 10.1038/nature05961

R. M. Cornell and U. Schwertmann, Transformations, in The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, pp.185-40710, 2003.

J. D. Debraal, M. H. Reed, and G. S. Plumlee, Calculated mineral precipitation upon evaporation of a model Martian groundwater near 0 °C, Chemical Weathering on Mars, LPI Tech. Rep, pp.92-96, 1993.

D. Caritat, P. , I. Hutcheon, and J. L. Walshe, Chlorite Geothermometry: A Review, Clays and Clay Minerals, vol.41, issue.2, pp.219-239, 1993.
DOI : 10.1346/CCMN.1993.0410210

A. G. Fairén, A cold hydrological system in Gale Crater, Mars, Planets Space Sci, pp.93-94, 2014.

K. A. Farley, In situ radiometric and exposure age dating of the Martian surface, Science, 2014.

J. Filiberto and S. P. Schwenzer, Alteration mineralogy of Home Plate and Columbia Hills-Formation conditions in context to impact, volcanism, and fluvial activity, Meteoritics & Planetary Science, vol.104, issue.336, 2013.
DOI : 10.1111/maps.12207

R. Gellert, Initial MSL APXS activities and observations at Gale Crater, Mars, paper presented at 44th Lunar and Planetary Science Conference Abstracts #1432, The Woodlands, pp.18-22, 2013.

S. R. Gíslason and S. Arnórsson, Dissolution of primary basaltic minerals in natural waters: saturation state and kinetics, Chemical Geology, vol.105, issue.1-3, pp.117-135, 1993.
DOI : 10.1016/0009-2541(93)90122-Y

J. L. Gooding, Chemical weathering on Mars thermodynamic stabilities of primary minerals (and their alteration products) from mafic igneous rocks, Icarus, vol.33, issue.3, pp.483-513, 1978.
DOI : 10.1016/0019-1035(78)90186-0

J. P. Grotzinger, A habitable fluvio-lacustrine environment at, pp.10-1126, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01293840

S. Gudbrandsson, D. Wolff-boenisch, S. R. Gislason, and E. H. Oelkers, An experimental study of crystalline basalt dissolution from 2???pH???11 and temperatures from 5 to 75??C, Geochimica et Cosmochimica Acta, vol.75, issue.19, pp.5496-5509, 2011.
DOI : 10.1016/j.gca.2011.06.035

E. M. Hausrath and S. L. Brantley, Basalt and olivine dissolution under cold, salty, and acidic conditions: What can we learn about recent aqueous weathering on Mars?, Journal of Geophysical Research, vol.19, issue.7, pp.10-1029, 2010.
DOI : 10.1029/2010JE003610

L. J. Hicks, J. C. Bridges, and S. J. Gurman, Ferric saponite and serpentine in the nakhlite martian meteorites, Geochimica et Cosmochimica Acta, vol.136, pp.194-210, 2014.
DOI : 10.1016/j.gca.2014.04.010

M. Kühn, Reactive Flow Modeling of Hydrothermal Systems, Lecture Notes in Earth Sciences, vol.103, 2004.
DOI : 10.1007/b13902

R. J. Leveille, Chemistry of fracture-filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars, Journal of Geophysical Research: Planets, vol.99, issue.6136, pp.2398-241510, 2014.
DOI : 10.1126/science.1237317

URL : https://hal.archives-ouvertes.fr/hal-01301702

A. C. Mcadam, M. Y. Zolotov, M. V. Mironenko, and T. G. Sharp, Formation of silica by low-tempertaure acid alteration of Martian rocks: Physical-chemical constraints, J. Geophys. Res, vol.113, pp.800310-1029, 2008.

S. M. Mclennan, Elemental geochemistry of sedimentary rocks in, pp.10-1126, 2014.

D. W. Ming, Volatile and organic compositions of sedimentary rocks in, pp.10-1126, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01238192

A. Minissale, O. Vaselli, D. Chandrasekharam, G. Magro, F. Tassi et al., Origin and evolution of ???intracratonic??? thermal fluids from central-western peninsular India, Earth and Planetary Science Letters, vol.181, issue.3, pp.377-394, 2000.
DOI : 10.1016/S0012-821X(00)00200-4

R. V. Morris, Chemical composition of crystalline, smectite, and amorphous components for Rocknest soil and John Klein and Cumberland mudstone drill fines using APXS, CheMin, and SAM data sets from Gale Crater, Mars, Lunar Planet, 2014.

M. Nachon, Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars, Journal of Geophysical Research: Planets, vol.10, issue.5-6, pp.10-1002, 1991.
DOI : 10.5194/bgd-10-2269-2013

URL : https://hal.archives-ouvertes.fr/hal-01301703

H. W. Nesbitt, Petrogenesis of siliciclastic sediments and sedimentary rocks, in Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments, GeoText, pp.39-51, 2003.

E. H. Oelkers and J. Schott, Thermodynamic Databases for Water-Rock Interaction, Reviews in Mineralogy and Geochemistry, vol.70, issue.1, pp.1-124, 2009.
DOI : 10.2138/rmg.2009.70.1

S. M. Pelkey and S. M. Jakorsky, Surficial Geologic Surveys of Gale Crater and Melas Chasma, Mars: Integration of Remote-Sensing Data, Icarus, vol.160, issue.2, pp.228-257, 2002.
DOI : 10.1006/icar.2002.6978

S. M. Pelkey, B. M. Jakorsky, and P. R. Christensen, Surficial properties in Gale Crater, Mars, from Mars Odyssey THEMIS data, Surficial properties in Gale Crater, Mars, from Mars Odyssey THEMIS data, pp.244-270, 2004.
DOI : 10.1016/j.icarus.2003.09.013

M. H. Reed, Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase, Geochimica et Cosmochimica Acta, vol.46, issue.4, pp.513-528, 1982.
DOI : 10.1016/0016-7037(82)90155-7

M. H. Reed, Seawater-basalt reaction and the origin of greenstones and related ore deposits, Economic Geology, vol.78, issue.3, pp.466-485, 1983.
DOI : 10.2113/gsecongeo.78.3.466

M. H. Reed and N. F. Spycher, User Guide for CHILLER: A Program for Computing Water-Rock Reactions, Boiling, Mixing, and Other Reaction Processes in Aqueous-Mineral-Gas Systems and Minplot Guide, 2006.

P. C. Ryan and R. C. Reynolds, The Chemical Composition of Serpentine/Chlorite in the Tuscaloosa Formation, United States Gulf Coast: EDX vs. XRD Determinations, Implications for Mineralogic Reactions and the Origin of Anatase, Clays and Clay Minerals, vol.45, issue.3, pp.339-352, 1997.
DOI : 10.1346/CCMN.1997.0450305

M. E. Schmidt, Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile-rich igneous source, Journal of Geophysical Research: Planets, vol.46, issue.E12, pp.64-8110, 2014.
DOI : 10.1029/2008JE003225

URL : https://hal.archives-ouvertes.fr/hal-01010023

S. P. Schwenzer and D. A. Kring, Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars, Geology, vol.37, issue.12, pp.1091-1094, 2009.
DOI : 10.1130/G30340A.1

S. P. Schwenzer and D. A. Kring, Alteration minerals in impact-generated hydrothermal systems ??? Exploring host rock variability, Icarus, vol.226, issue.1, pp.487-496, 2013.
DOI : 10.1016/j.icarus.2013.06.003

S. P. Schwenzer, Gale Crater: Formation and post-impact hydrous environments, Planetary and Space Science, vol.70, issue.1, pp.84-95, 2012.
DOI : 10.1016/j.pss.2012.05.014

S. P. Schwenzer, Puncturing Mars: How impact craters interact with the Martian cryosphere, Earth and Planetary Science Letters, vol.335, issue.336, pp.335-336, 2012.
DOI : 10.1016/j.epsl.2012.04.031

K. L. Siebach, J. P. Grotzinger, L. C. Kah, K. M. Stack, M. Malin et al., Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale crater, Mars, Journal of Geophysical Research: Planets, vol.340, issue.6136, pp.1597-161310, 1002.
DOI : 10.1126/science.1237317

S. W. Squyres, Detection of Silica-Rich Deposits on Mars, Science, vol.320, issue.5879, pp.1063-1067, 2008.
DOI : 10.1126/science.1155429

K. M. Stack, Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars, Journal of Geophysical Research: Planets, vol.82, issue.1-4, pp.1637-166410, 2014.
DOI : 10.1016/j.sab.2013.02.003

A. Stefánsson, S. R. Gíslason, and S. Arnórsson, Dissolution of primary minerals in natural waters, Chemical Geology, vol.172, issue.3-4, pp.251-276, 2001.
DOI : 10.1016/S0009-2541(00)00262-X

E. M. Stolper, The Petrochemistry of Jake_M: A Martian Mugearite, Science, vol.341, issue.6153, p.341, 2013.
DOI : 10.1126/science.1239463

URL : https://hal.archives-ouvertes.fr/hal-01315524

A. H. Treiman, Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater, American Mineralogist, vol.99, issue.11-12, pp.2234-2250, 2014.
DOI : 10.2138/am-2014-4763

B. J. Thomson, N. T. Bridges, R. Milliken, A. Baldridge, S. J. Hook et al., Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data, Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data, pp.413-432, 2011.
DOI : 10.1016/j.icarus.2011.05.002

A. Wallendahl and A. H. Treiman, Geochemical models of low-temperature alteration of Martian rocks, paper presented at Lunar and Planetary Science XXX: abstract #1268, 1997.

R. M. Williams, Martian Fluvial Conglomerates at Gale Crater, Martian fluvial conglomerates at Gale Crater, pp.1068-1072, 2013.
DOI : 10.1126/science.1237317

URL : https://hal.archives-ouvertes.fr/hal-01315518

M. Y. Zolotov and M. V. Mironenko, Timing of acid weathering on Mars: A kinetic-thermodynamic assessment, Journal of Geophysical Research, vol.32, issue.52, pp.10-1029, 2007.
DOI : 10.1029/2006JE002882