NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution - Archive ouverte HAL Access content directly
Journal Articles Geoscientific Model Development Year : 2015

NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution

(1) , (1) , (1) , (2) , (3) , (4, 2) , (2) , (2) , (2) , (2) , (5) , (5) , (6)
1
2
3
4
5
6

Abstract

An established iceberg module, ICB, is used interactively with the Nucleus for European Modelling of the Ocean (NEMO) ocean model in a new implementation, NEMO–ICB (v1.0). A 30-year hindcast (1976–2005) simulation with an eddy-permitting (0.25°) global configuration of NEMO–ICB is undertaken to evaluate the influence of icebergs on sea ice, hydrography, mixed layer depths (MLDs), and ocean currents, through comparison with a control simulation in which the equivalent iceberg mass flux is applied as coastal runoff, a common forcing in ocean models. In the Southern Hemisphere (SH), drift and melting of icebergs are in balance after around 5 years, whereas the equilibration timescale for the Northern Hemisphere (NH) is 15–20 years. Iceberg drift patterns, and Southern Ocean iceberg mass, compare favourably with available observations. Freshwater forcing due to iceberg melting is most pronounced very locally, in the coastal zone around much of Antarctica, where it often exceeds in magnitude and opposes the negative freshwater fluxes associated with sea ice freezing. However, at most locations in the polar Southern Ocean, the annual-mean freshwater flux due to icebergs, if present, is typically an order of magnitude smaller than the contribution of sea ice melting and precipitation. A notable exception is the southwest Atlantic sector of the Southern Ocean, where iceberg melting reaches around 50% of net precipitation over a large area. Including icebergs in place of coastal runoff, sea ice concentration and thickness are notably decreased at most locations around Antarctica, by up to ~ 20% in the eastern Weddell Sea, with more limited increases, of up to ~ 10% in the Bellingshausen Sea. Antarctic sea ice mass decreases by 2.9%, overall. As a consequence of changes in net freshwater forcing and sea ice, salinity and temperature distributions are also substantially altered. Surface salinity increases by ~ 0.1 psu around much of Antarctica, due to suppressed coastal runoff, with extensive freshening at depth, extending to the greatest depths in the polar Southern Ocean where discernible effects on both salinity and temperature reach 2500 m in the Weddell Sea by the last pentad of the simulation. Substantial physical and dynamical responses to icebergs, throughout the global ocean, are explained by rapid propagation of density anomalies from high-to-low latitudes. Complementary to the baseline model used here, three prototype modifications to NEMO–ICB are also introduced and discussed.
Fichier principal
Vignette du fichier
GEOSCIENTIFIC MODEL DEVELOPMENT - NEMO-ICB.pdf (7.98 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

insu-01205192 , version 1 (25-09-2015)

Identifiers

Cite

Robert Marsh, V. O. Ivchenko, N. Skliris, Steven G. Alderson, Grant R. Bigg, et al.. NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geoscientific Model Development, 2015, 8 (5), pp.1547-1562. ⟨10.5194/gmd-8-1547-2015⟩. ⟨insu-01205192⟩
262 View
220 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More