S. Archibald, C. E. Lehmann, J. L. Gómezsdans, and R. A. Bradstock, Defining pyromes and global syndromes of fire regimes, Proc. Natl. Acad. Sci. USA, pp.6442-6447, 2013.
DOI : 10.1073/pnas.1211466110

M. S. Balshi, A. D. Mcguire, P. Duffy, M. Flannigan, D. W. Kicklighter et al., Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century, Global Change Biology, vol.106, issue.(Suppl. 1), pp.1491-1510, 2009.
DOI : 10.1111/j.1365-2486.2009.01877.x

P. S. Beck, S. J. Goetz, M. C. Mack, H. D. Alexander, Y. Jin et al., The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo, Global Change Biology, vol.34, issue.9, pp.2853-2866, 2011.
DOI : 10.1111/j.1365-2486.2011.02412.x

W. J. Bond, F. I. Woodward, and G. F. Midgley, The global distribution of ecosystems in a world without fire, New Phytologist, vol.9, issue.2, pp.525-537, 2005.
DOI : 10.1111/j.1469-8137.2004.01252.x

D. M. Bowman, J. K. Balch, P. Artaxo, W. J. Bond, J. M. Carlson et al., Fire in the Earth System, Fire in the Earth System, pp.481-484, 2009.
DOI : 10.1126/science.1163886

W. Cai, S. Borlace, M. Lengaigne, P. Van-rensch, M. Collins et al., Increasing frequency of extreme El Ni??o events due to greenhouse warming, Nature Climate Change, vol.20, issue.2, pp.111-11610, 1038.
DOI : 10.1038/nclimate2100

C. Carmona-moreno, A. Belward, J. Malingreau, A. Hartley, M. Garcia-alegre et al., Characterizing interannual variations in global fire calendar using data from Earth observing satellites, Global Change Biology, vol.16, issue.9, pp.1537-1555, 2005.
DOI : 10.1080/014311698216035

Y. Chen, J. T. Randerson, D. C. Morton, R. S. Defries, G. J. Collatz et al., Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies, Science, vol.334, issue.6057, pp.787-791, 2011.
DOI : 10.1126/science.1209472

E. Chuvieco, L. Giglio, and C. Justice, Global characterization of fire activity: toward defining fire regimes from Earth observation data, Global Change Biology, vol.33, issue.7, pp.1488-1502, 2008.
DOI : 10.1126/science.1128834

D. Groot, W. J. Cantin, A. S. Flannigan, M. D. Soja, A. J. Gowman et al., A comparison of Canadian and Russian boreal forest fire regimes, Forest Ecology and Management, vol.294, pp.23-34, 2013.
DOI : 10.1016/j.foreco.2012.07.033

J. Dufresne, M. Foujols, S. Denvil, A. Caubel, O. Marti et al., Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, and Vuichard, N.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, pp.2123-216510, 1007.
DOI : 10.1007/s00382-012-1636-1

URL : https://hal.archives-ouvertes.fr/hal-00794170

J. Fang, A. Chen, C. Peng, S. Zhao, C. et al., Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998, Science, vol.292, issue.5525, pp.2320-2322, 1949.
DOI : 10.1126/science.1058629

P. M. Fernandes, G. M. Davies, D. Ascoli, C. Fernández, F. Moreira et al., Prescribed burning in southern Europe: developing fire management in a dynamic landscape, Frontiers in Ecology and the Environment, vol.19, issue.s1, pp.4-1410, 1890.
DOI : 10.1002/esp.1837

R. D. Field, G. R. Van-der-werf, and S. S. Shen, Human amplification of drought-induced biomass burning in Indonesia since??1960, Nature Geoscience, vol.16, issue.3, pp.185-18810, 2009.
DOI : 10.1038/ngeo443

M. D. Flannigan, M. A. Krawchuk, W. J. De-groot, B. M. Wotton, and L. M. Gowman, Implications of changing climate for global wildland fire, International Journal of Wildland Fire, vol.18, issue.5, pp.483-507, 2009.
DOI : 10.1071/WF08187

. Yue, Modelling the role of fires in the global carbon balance sions from North American wildland fire, J. Geohys. Res., B, vol.116, pp.0-0510, 2011.

L. Giglio, J. T. Randerson, G. R. Van-der-werf, P. S. Kasibhatla, G. J. Collatz et al., Assessing variability and long-term trends in burned area by merging multiple satellite fire products, Biogeosciences, vol.75194, pp.1171-118610, 1171.

A. M. Gill and G. Allan, Large fires, fire effects and the fire-regime concept, International Journal of Wildland Fire, vol.17, issue.6, pp.688-695, 2008.
DOI : 10.1071/WF07145

D. J. Hayes, A. D. Mcguire, D. W. Kicklighter, K. R. Gurney, T. J. Burnside et al., Is the northern high-latitude land-based CO2 sink weakening?, Global Biogeochem. Cycles, vol.25, pp.301810-1029, 2011.

W. A. Hoffmann, E. L. Geiger, S. G. Gotsch, D. R. Rossatto, L. C. Silva et al., Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes, Ecology Letters, vol.27, issue.7, pp.759-768, 2012.
DOI : 10.1111/j.1461-0248.2012.01789.x

R. A. Houghton, J. L. Hackler, L. , and K. T. , The U.S. Carbon Budget: Contributions from Land-Use Change, Science, vol.285, issue.5427, pp.574-578, 1999.
DOI : 10.1126/science.285.5427.574

Y. Jin, J. T. Randerson, S. J. Goetz, P. S. Beck, M. M. Loranty et al., The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests, Journal of Geophysical Research: Biogeosciences, vol.33, issue.2, pp.103610-1029, 2012.
DOI : 10.1029/2006GL026972

M. Jung, M. Reichstein, H. A. Margolis, A. Cescatti, A. D. Richardson et al., Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite , and meteorological observations, J. Geohys. Res., B, vol.116, pp.0-0710, 1029.

E. S. Kasischke and E. E. Hoy, Controls on carbon consumption during Alaskan wildland fires, Global Change Biology, vol.40, issue.2, pp.685-699, 2012.
DOI : 10.1111/j.1365-2486.2011.02573.x

J. E. Keeley, C. J. Fotheringham, and M. Morais, Reexamining Fire Suppression Impacts on Brushland Fire Regimes, Science, vol.284, issue.5421, pp.1829-1832, 1999.
DOI : 10.1126/science.284.5421.1829

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.946

R. Kelly, M. L. Chipman, P. E. Higuera, I. Stefanova, L. B. Brubaker et al., Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years, Proc. Natl. Acad. Sci. USA, pp.13055-13060, 2013.
DOI : 10.1073/pnas.1305069110

G. N. Kiladis and H. F. Diaz, Global Climatic Anomalies Associated with Extremes in the Southern Oscillation, Journal of Climate, vol.2, issue.9, pp.1069-1090, 1989.
DOI : 10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2

T. Kitzberger, T. W. Swetnam, and T. T. Veblen, Inter-hemispheric synchrony of forest fires and the El Nino-Southern Oscillation, Global Ecology and Biogeography, vol.26, issue.3, pp.315-326, 2001.
DOI : 10.1191/095968398669095576

S. Kloster, N. M. Mahowald, J. T. Randerson, L. , and P. J. , The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN, Biogeosciences, vol.95194, pp.509-52510, 2012.

G. Krinner, N. Viovy, N. De-noblet-ducoudré, J. Ogée, J. Polcher et al., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochemical Cycles, vol.113, issue.D19, pp.101510-1029, 2005.
DOI : 10.1029/2002JD002559

URL : https://hal.archives-ouvertes.fr/insu-00374606

R. L. Langenfelds, R. J. Francey, B. C. Pak, L. P. Steele, J. Lloyd et al., Interannual growth rate variations of atmospheric CO2 and its ? 13 C, Global Biogeochem . Cycles, vol.4, issue.16, pp.21-22, 1029.

L. Quéré, C. Andres, R. J. Boden, T. Conway, T. Houghton et al., The global carbon budget, Earth Syst. Sci. Data, vol.55194, pp.165-18510, 1959.

F. Li, S. Levis, and D. S. Ward, Quantifying the role of fire in the Earth system ? Part 1: Improved global fire modeling in the Community Earth System Model (CESM1), Biogeosciences, vol.105194, pp.2293-231410, 2013.

F. Li, B. Bond-lamberty, and S. Levis, Quantifying the role of fire in the Earth system ? Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century, Biogeosciences, vol.115194, pp.1345-136010, 1345.

H. Liu and J. T. Randerson, Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence, Journal of Geophysical Research: Biogeosciences, vol.284, issue.D1, pp.10-1029, 1006.
DOI : 10.1029/2001JD000438

J. Liu, B. Wang, M. A. Cane, S. Yim, L. et al., Divergent global precipitation changes induced by natural versus anthropogenic forcing, Nature, vol.32, issue.7434, pp.656-65910, 1038.
DOI : 10.1038/nature11784

S. Luyssaert, P. Ciais, S. L. Piao, E. Schulze, M. Jung et al., The European carbon balance. Part 3: forests, Global Change Biology, vol.111, issue.5, pp.1429-1450, 2010.
DOI : 10.1111/j.1365-2486.2009.02056.x

URL : https://hal.archives-ouvertes.fr/hal-00552618

M. C. Mack, M. S. Bret-harte, T. N. Hollingsworth, R. R. Jandt, E. A. Schuur et al., Carbon loss from an unprecedented Arctic tundra wildfire, Nature, vol.16, issue.7357, pp.489-49210, 1038.
DOI : 10.1038/nature10283

B. I. Magi, S. Rabin, E. Shevliakova, and S. Pacala, Separating agricultural and non-agricultural fire seasonality at regional scales, Biogeosciences, vol.9, issue.8, pp.3003-301210, 2012.
DOI : 10.5194/bg-9-3003-2012

URL : http://doi.org/10.5194/bgd-9-5551-2012

M. E. Marlier, R. Defries, D. Pennington, E. Nelson, E. M. Ordway et al., Future fire emissions associated with projected land use change in Sumatra, Global Change Biology, vol.9, issue.1, pp.345-362, 2015.
DOI : 10.1111/gcb.12691

G. A. Meehl and W. M. Washington, El Ni??o-like climate change in a model with increased atmospheric CO2 concentrations, Nature, vol.382, issue.6586, pp.56-6010, 1038.
DOI : 10.1038/382056a0

F. Mouillot and C. B. Field, Fire history and the global carbon budget: a 1ox 1o fire history reconstruction for the 20th century, Global Change Biology, vol.13, issue.3, pp.398-420, 2005.
DOI : 10.1016/S0034-4257(03)00141-X

S. E. Page, F. Siegert, J. O. Rieley, H. V. Boehm, A. Jaya et al., The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, vol.354, issue.6911, pp.61-6510, 1038.
DOI : 10.1080/014311600210632

D. L. Peterson and K. C. Ryan, Modeling postfire conifer mortality for long-range planning, Environmental Management, vol.3, issue.6, pp.797-80810, 1986.
DOI : 10.1007/BF01867732

M. L. Pettinari and E. Chuvieco, Development of a global fuel map using the Fuel Characteristic Classification System, Glob. Ecol. Biogeogr, 2015.

S. Piao, S. Sitch, P. Ciais, P. Friedlingstein, P. Peylin et al., trends, Global Change Biology, vol.329, issue.7, pp.2117-2132, 2013.
DOI : 10.1111/gcb.12187

URL : https://hal.archives-ouvertes.fr/hal-00320555

I. A. Podgorny, F. Li, and V. Ramanathan, Large Aerosol Radiative Forcing due to the 1997 Indonesian Forest Fire, Geophysical Research Letters, vol.35, issue.D16, pp.10-1029, 1028.
DOI : 10.1029/2001JD000949

I. C. Prentice, D. I. Kelley, P. N. Foster, P. Friedlingstein, S. P. Harrison et al., Modeling fire and the terrestrial carbon balance, Global Biogeochemical Cycles, vol.313, issue.51, pp.300510-1029, 2011.
DOI : 10.1029/2010GB003906

C. Prudhomme, I. Giuntoli, E. L. Robinson, D. B. Clark, N. W. Arnell et al., Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment, Proc. Natl. Acad. Sci. USA, 2013.
DOI : 10.1073/pnas.1222473110

S. J. Pyne, P. L. Andrews, and R. D. Laven, Introduction to wildland fire, 1996.

J. T. Randerson, Y. Chen, G. R. Van-der-werf, B. M. Rogers, M. et al., Global burned area and biomass burning emissions from small fires, Journal of Geophysical Research: Biogeosciences, vol.112, issue.6, pp.401210-1029, 2012.
DOI : 10.1016/j.rse.2008.02.006

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1143&context=nasapub

A. V. Rocha and G. R. Shaver, Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity, Global Change Biology, vol.108, issue.189, pp.2831-2841, 2011.
DOI : 10.1111/j.1365-2486.2011.02441.x

A. Rogers, The use and misuse of V c,max in Earth System Models, Photosynthesis Research, vol.38, issue.4, pp.15-29, 2014.
DOI : 10.1007/s11120-013-9818-1

C. F. Ropelewski and M. S. Halpert, Global and Regional Scale Precipitation Patterns Associated with the El Ni??o/Southern Oscillation, Monthly Weather Review, vol.115, issue.8, pp.1606-1626, 1987.
DOI : 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2

C. F. Ropelewski and M. S. Halpert, Quantify- ing Southern Oscillation-Precipitation Relationships, J. Climate, vol.92, pp.1043-1059, 1996.
DOI : 10.1175/1520-0442(1996)009<1043:qsopr>2.0.co;2

R. C. Rothermel, A mathematical model for predicting fire spread in wildland fuels, Res. Pap. INT-115 UT: US Department of Agriculture, Intermountain Forest and Range Experiment Station, p.30, 1972.

D. P. Roy, L. Boschetti, C. O. Justice, and J. Ju, The collection 5 MODIS burned area product ??? Global evaluation by comparison with the MODIS active fire product, Remote Sensing of Environment, vol.112, issue.9, pp.3690-3707, 2008.
DOI : 10.1016/j.rse.2008.05.013

M. Saito, S. Luyssaert, B. Poulter, M. Williams, P. Ciais et al., Fire regimes and variability in aboveground woody biomass in miombo woodland, Journal of Geophysical Research: Biogeosciences, vol.14, issue.5, pp.1014-102910, 2014.
DOI : 10.1111/j.1365-2486.2005.00920.x

URL : https://hal.archives-ouvertes.fr/hal-01138869

D. Schimel and D. Baker, Carbon cycle: The wildfire factor, Nature, vol.3, issue.6911, pp.29-30, 2002.
DOI : 10.1029/1999GL900250

W. Seiler and P. J. Crutzen, Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Climatic Change, vol.199, issue.3, pp.207-24710, 1980.
DOI : 10.1007/BF00137988

A. C. Staver, S. Archibald, L. , and S. A. , The Global Extent and Determinants of Savanna and Forest as Alternative Biome States, Science, vol.334, issue.6053, pp.230-232, 2011.
DOI : 10.1126/science.1210465

K. Tansey, J. Grégoire, P. Defourny, R. Leigh, J. Pekel et al., A new, global, multi-annual (2000???2007) burnt area product at 1 km resolution, Geophysical Research Letters, vol.33, issue.1, pp.10-1029, 2008.
DOI : 10.1029/2007GL031567

K. Thonicke, A. Spessa, I. C. Prentice, S. P. Harrison, L. Dong et al., The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, vol.75194, p.10, 1991.

A. Timmermann, J. Oberhuber, A. Bacher, M. Esch, M. Latif et al., Increased El Niño frequency in a climate model forced by future greenhouse warming, Nature, vol.398, pp.694-69710, 1038.

M. G. Tosca, J. T. Randerson, C. S. Zender, M. G. Flanner, R. et al., Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?, Atmos. Chem. Phys, vol.105194, pp.3515-352810, 2010.
DOI : 10.5194/acp-10-3515-2010

URL : http://doi.org/10.5194/acp-10-3515-2010

M. R. Turetsky, E. S. Kane, J. W. Harden, R. D. Ottmar, K. L. Manies et al., Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands, Nature Geoscience, vol.90, issue.1, pp.27-3110, 1027.
DOI : 10.1038/ngeo1027

G. R. Van-der-werf, J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla et al., Continental-Scale Partitioning of Fire Emissions During the, El Niño Science, vol.303, pp.73-76, 1997.

G. R. Van-der-werf, J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla et al., Interannual variability in global biomass burning emissions from, Atmos . Chem. Phys, vol.65194, pp.3423-344110, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00296006

C. Yue, Modelling the role of fires in the global carbon balance Van der Climate regulation of fire emissions and deforestation in equatorial Asia, Proc. Natl. Acad. Sci. USA, pp.20350-20355, 2008.

G. R. Van-der-werf, D. C. Morton, R. S. Defries, J. G. Olivier, P. S. Kasibhatla et al., CO2 emissions from forest loss, CO2 emissions from forest loss, pp.737-738, 2009.
DOI : 10.1038/ngeo671

G. R. Van-der-werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu et al., Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires, Atmos. Chem. Phys, vol.105194, pp.11707-1173510, 1997.

T. T. Van-leeuwen, G. R. Van-der-werf, A. A. Hoffmann, R. G. Detmers, G. Rücker et al., Biomass burning fuel consumption rates: a field measurement database, Biogeosciences, vol.5194, issue.11, pp.7305-732910, 2014.

S. Venevsky, K. Thonicke, S. Sitch, and W. Cramer, Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study, Global Change Biology, vol.8, issue.2, pp.984-998, 2002.
DOI : 10.1046/j.1466-822X.2001.00175.x

D. S. Ward, S. Kloster, N. M. Mahowald, B. M. Rogers, J. T. Randerson et al., The changing radiative forcing of fires: global model estimates for past, present and future, Atmos. Chem. Phys, vol.125194, pp.10857-1088610, 2012.

A. L. Westerling, M. G. Turner, E. A. Smithwick, W. H. Romme, R. et al., Continued warming could transform Greater Yellowstone fire regimes by mid-21st century, Proc. Natl. Acad. Sci. USA, p.201110199, 2011.
DOI : 10.1073/pnas.1110199108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156206

R. A. Wilson, A reexamination of fire spread in free-burning porous fuel beds [Wildland fuels, forest fire management, model], USDA Forest Service Research Paper INT (USA), available at: http://agris.fao.org/agris-search/search.do?f=1983, US83048.xml;US8236661 (last access, 1982.

C. Wirth, D. M. Scherer-lorenzen, P. D. Körner, P. D. Schulze, and E. , Fire Regime and Tree Diversity in Boreal Forests: Implications for the Carbon Cycle, in: Forest Diversity and Function, pp.309-344, 2005.

C. Yue, P. Ciais, P. Cadule, K. Thonicke, S. Archibald et al., Modelling fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE ? Part 1: Simulating historical global burned area and fire regime, Geosci. Model Dev. Discuss, vol.75194, pp.2377-242710, 2014.

M. Zhao and S. W. Running, Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009, Science, vol.329, issue.5994, pp.940-943, 2000.
DOI : 10.1126/science.1192666