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Abstract. Regional climate model MAR (Modèle Atmo-

sphérique Régional) was run for the region of Dome C lo-

cated on the East Antarctic plateau, during Antarctic summer

2011–2012, in order to refine our understanding of meteoro-

logical conditions during the OPALE tropospheric chemistry

campaign. A very high vertical resolution is set up in the

lower troposphere, with a grid spacing of roughly 2 m. Model

output is compared with temperatures and winds observed

near the surface and from a 45 m high tower as well as sodar

and radiation data. MAR is generally in very good agree-

ment with the observations, but sometimes underestimates

cloud formation, leading to an underestimation of the sim-

ulated downward long-wave radiation. Absorbed short-wave

radiation may also be slightly overestimated due to an under-

estimation of the snow albedo, and this influences the surface

energy budget and atmospheric turbulence. Nevertheless, the

model provides sufficiently reliable information about sur-

face turbulent fluxes, vertical profiles of vertical diffusion

coefficients and boundary layer height when discussing the

representativeness of chemical measurements made nearby

the ground surface during field campaigns conducted at Con-

cordia station located at Dome C (3233 m above sea level).

1 Introduction

The aim of this paper is to evaluate MAR (Modèle Atmo-

sphérique Régional) simulations during the OPALE cam-

paign at Dome C in austral summer 2011–2012 (from late

November 2011 to mid-January 2012), to support the inter-

pretation of observations of tropospheric chemistry. A partic-

ular purpose is to characterize the behaviour and the vertical

structure of the boundary layer at Dome C during this period.

A similar study was carried out previously above the East

Antarctic plateau, based on summer-time observations at

Kohnen station in Dronning Maud Land, albeit only with a

more simplistic 1-D model (Van As et al., 2006).

Dome C is an area where observation and modelling of

the boundary layer have already been performed due to

its particular location (Swain and Gallée, 2006; Sadibekova

et al., 2006; King et al., 2006; Gallée and Gorodetskaya,

2010; Genthon et al., 2010, 2013; Brun et al., 2011; Las-

caux et al., 2011; Argentini et al., 2013; Pietroni et al.,

2014). Furthermore, Dome C was recently selected as the

test site for the next Gewex Atmospheric Boundary Layer

Studies (GABLS4) model intercomparison (see http://www.

cnrm.meteo.fr/aladin/meshtml/GABLS4/GABLS4.html). In

spite of its remote location, Concordia station, operated year-

round, is logistically well supported for a number of rea-

sons. Dome C had been chosen as part of the EPICA project

for drilling the ice core with the longest climate chronol-

ogy ever recorded, allowing one to study the climate of the

last eight glacial cycles (EPICA community members, 2004).

The EPICA project initiated extensive meteorological obser-

vations at Dome C, in order to establish, among other things,

the relationship between local and global climate. There-

fore, setting up a regional model at the Dome C drilling

site enables one (i) to assimilate large-scale meteorological

conditions and (ii) to simulate local atmospheric conditions,

which contributes to establishing this relationship. The good
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management of logistics between the Concordia station and

the Antarctic coast (Terre Adélie) and the low optical tur-

bulence at Dome C also promoted the site for astronomical

observations (see e.g. Swain and Gallée, 2006; Sadibekova

et al., 2006). The main characteristic of meteorological con-

ditions at Dome C is that turbulent conditions in the near-

surface atmosphere are only effective in a rather shallow

layer, especially during night-time (Pietroni et al., 2014).

During day-time the sensible heat fluxes are much larger than

the latent heat fluxes, because of low temperatures and sub-

sequently very low atmospheric moisture content (King et

al., 2006). Consequently, the conditions for development of

a well-mixed layer during daytime are optimal, in contrast

to the situation in coastal Antarctica such as Halley station

(King et al., 2006). This means that the simulation of sum-

mer case studies at Dome C will be very useful in validat-

ing the turbulence scheme of atmospheric models. Sodar and

sonic anemometer measurements were done at the Concor-

dia station to monitor the turbulent structure of the planetary

boundary layer (PBL) in connection with the temperature in-

version and to estimate the PBL height in the framework of

the ABLCLIMAT (Atmospheric Boundary Layer Climate)

project (Argentini et al., 2013).

The 45 m high tower built up at Concordia is also a very

useful tool for observing such conditions (Genthon et al.,

2010, 2013). Short-term meteorological simulations have al-

ready been done over Dome C with a coupled atmosphere–

snow model, focusing on the behaviour of the snow model

(Brun et al., 2011). Long-term simulations of the Antarc-

tic climate have also been done, with a focus on their be-

haviour at Dome C. Swain and Gallée (2006) and Lascaux

et al. (2011) used respectively the limited area models MAR

(without any reinitialization of meteorological variables) and

Meso-NH to compare the optical properties of the atmo-

sphere at Dome C with those of other potential Antarctic sites

for astronomical observations using a large telescope. Gallée

and Gorodetskaya (2010) validated MAR for winter condi-

tions, emphasizing the difficulty in accurately simulating the

downward long-wave radiation and proposing to include the

influence of small airborne snow particles in the parameter-

ization of the radiation transfer. MAR has also been used to

provide information on the atmospheric turbulence at Dome

C in summer, which appears to very significantly control the

vertical flux and concentration profiles of numerous atmo-

spheric chemical species (Legrand et al., 2009; Kerbrat et al.,

2012; Dommergue et al., 2012; Frey et al., 2013). Finally, 2

years of observations at the Dome C tower were used to com-

pare a long-term simulation of MAR with ECMWF analyses,

showing the interest in representing the atmosphere with a

fine vertical resolution (Genthon et al., 2013). Here we go

a step further by evaluating in detail the model for summer

conditions during the OPALE campaign.

The general motivation of the present research is to pro-

vide tools from a meteorological point of view for future

campaigns dedicated to investigating the chemical composi-

tion of the Antarctic boundary layer above the East Antarctic

plateau. Thus, the first objective of this paper is to evaluate a

meteorological model that is capable of simulating transport

and that can be coupled to a chemical routine.

The second objective of the paper is to provide key phys-

ical parameters of the atmospheric boundary layer for the

interpretation of data gained during the OPALE campaign

as detailed in companion papers (see Legrand et al., 2014;

Kukui et al., 2014; Frey et al., 2014; Preunkert et al., 2014).

Transport processes are not considered during the 2011–2012

OPALE campaign and we will focus on situations character-

ized by an atmospheric circulation localized over the Antarc-

tic plateau, where chemical properties of the air are rather

homogeneous from one point to another. This means that

from a meteorological point of view atmospheric turbulence

plays the most important role in the fate of atmospheric NOx ,

HONO, HCHO, or H2O2 emitted by the snow pack. Key pa-

rameters are surface turbulent fluxes and the height of the

boundary layer, which is determined by vertical turbulent

diffusion. These parameters are used in companion papers

to determine the contribution of turbulence to the concen-

tration of key atmospheric species emitted from the surface,

driving the oxidant budget in the near-surface atmosphere at

Dome C. MAR turbulent vertical diffusion coefficients are

used by Preunkert et al. (2014) and the uncertainty of the lat-

ter in HCHO mixing ratios is discussed. Legrand et al. (2014)

also use the same MAR outputs to force their 1-D box model

to simulate HONO mixing ratios. Kukui et al. (2014) per-

formed similar calculations using the same MAR output.

Frey et al. (2014) use MAR boundary layer heights to deter-

mine when they may apply the Monin–Obukhov similarity

theory for calculating the turbulent fluxes of NOx in the sur-

face boundary layer. Other parameters like cloud cover and

wind direction are considered for chemical analyses. For ex-

ample, situations with an overcast sky were not considered,

nor situations for which the wind direction is from Concordia

station, since the air is then contaminated by pollutants emit-

ted by the station. Sunny sky conditions were preferred since

the assumption of a similar downward short-wave (DSW) ra-

diation from sunny day to sunny day may be made. From

a meteorological point of view, these criteria also allow us

to avoid most of the situations for which clouds are under-

estimated by MAR, leading to erroneous behaviour of the

surface energy budget, and subsequently of atmospheric tur-

bulence, as explained by Legrand et al. (2014). Fortunately,

such behaviour of MAR allows us to analyse the best part

of the simulation, which corresponds to the same days for

which the analysis of chemical species is the easiest.

The remainder of the paper is divided into four parts. The

experimental set-up and the main characteristics of the MAR

model are described in Sects. 2 and 3. The fourth section is

dedicated to the evaluation of the model, looking in particular

at the impact of the simulated radiative transfer on the surface

atmospheric energy budget and atmospheric turbulence.

Atmos. Chem. Phys., 15, 6225–6236, 2015 www.atmos-chem-phys.net/15/6225/2015/
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2 Meteorological observations

2.1 ISAC (Istituto di Scienze dell’ Atmosfera e del

Clima)

One-year in situ turbulence and radiation measurements, as

well as sodar observations, were carried out at the Concordia

station from December 2011 up to December 2012 as part of

the ABLCLIMAT project (Argentini et al., 2013).

The SL sodar (surface-layer sodar, Argentini et al., 2011)

is an improved version of the sodar described by Argentini

and Pietroni (2010), with the possibility of zooming into the

atmospheric surface-layer thermal turbulent structure. With

the SL sodar, the PBL height h is estimated following Casas-

anta et al. (2014). During convective conditions, h was de-

termined as the height above the zone of weak backscattered

intensity of the acoustic waves emitted by the sodar. Under

stable conditions, h was retrieved either from the minimum

of the first derivative of the backscattered signal, or from its

maximum curvature.

Measurements of turbulence were made with a Metek

USA-1, a three-axis sonic thermo-anemometer (sampling

frequency of 10 Hz) installed on a 3.5 m mast. The heat

and momentum fluxes are estimated using the eddy covari-

ance method. The long-wave and short-wave radiation com-

ponents (up and down) were measured with a Kipp & Zo-

nen CNR1 radiation sensor. This instrument combined two

CM3 pyranometers for downward and upward broadband

short-wave radiation flux (spectral range 305–2800 nm) and

two CG3 pyrgeometers for downward and upward broad-

band long-wave radiation flux (spectral range 5–50 µm). Pyr-

geometers and pyranometers were installed 1.5 m above the

snow surface.

2.2 LGGE (Laboratoire de Glaciologie et de

Géophysque de l’Environnement)

Meteorological measurements were made on a 45 m tower

at Dome C since 2008 (Genthon et al., 2010). Wind, tem-

perature and moisture are monitored at six levels from near

the surface (3.5 m) to near the top of the tower (42.1 m).

The instruments occasionally fail due to the extreme weather

conditions at Dome C (extreme low temperatures, frost de-

position); however, the data record is almost continuous

since 2009 and the instruments work generally quite well

in summer (Genthon et al., 2013). Genthon et al. (2011)

have demonstrated that a bias to warmer temperatures af-

fects measurements in Antarctica in cases of weak winds

if conventional passively (wind) ventilated radiation shields

are used to protect solid state thermometers (e.g. the ubiqui-

tously used platinum thermistors) from solar radiation. To

overcome this problem, the temperature measurements on

the tower at Dome C are made in aspirated shields. Further

details of the profiling set-up, instrumentation and results ob-

tained so far can be found in Genthon et al. (2010, 2013).

2.3 BAS (British Antarctic Survey)

Measurements of turbulence are made with a Metek USA-1,

a three-axis sonic thermo-anemometer (sampling frequency

of 25 Hz) mounted on a mast 4 m above the snow sur-

face. The mast was set up in the clean-air sector at about

1.2 km distance from the 45 m meteorology tower (map in

Frey et al., 2013), at the site where the chemical trace gas

species were measured during the OPALE campaign. At-

mospheric boundary layer parameters such as friction ve-

locity u∗ and Monin–Obukhov length were computed from

the three-dimensional wind components (u, v, w) and tem-

perature (Frey et al., 2014, this issue). Processing in 10 min

blocks included temperature cross-wind correction and a

double coordinate rotation to force mean w to zero (Kaimal

and Finnigan, 1994; Van Dijk et al., 2006).

3 Description of MAR

An overview of the MAR regional climate model is given

here, focusing on the description of the turbulence scheme.

A more complete description can be found in Gallée and

Schayes (1994), Gallée (1995) and Gallée et al. (2013).

MAR atmospheric dynamics are based on the hydrostatic

approximation of the primitive equations. This approxima-

tion is correct when the vertical extent of the circulation (here

the drainage flow) remains much smaller than the size of

the grid (here 20 km). Nevertheless, it should be noted that

non-hydrostatic processes may be responsible for a weak de-

celeration of the katabatic flow (Cassano and Parish, 2000).

The vertical coordinate is the normalized pressure, with the

model top situated at the 1 Pa pressure level. Parameteriza-

tion of turbulence in the surface boundary layer is based

on the Monin–Obukhov similarity theory (MOST) and is

completed by taking into account the stabilization effect by

the blowing snow flux, as in Gallée et al. (2001) (see also

Wamser and Lykossov, 1995). Turbulence above the suface

boundary layer is parameterized using the local E−ε model,

consisting of two prognostic equations for turbulent kinetic

energy and its dissipation. The prognostic equation of dissi-

pation allows one to relate the mixing length to local sources

of turbulence and not only to the surface. The E− ε model

used here has been adapted to neutral and stable condi-

tions by Duynkerke (1988) and revised by Bintanja (2000),

who included a parameterization of the turbulent transport

of snow particles that is consistent with classical parame-

terizations of their sedimentation velocity. The influence of

changes in the water phase on the turbulence is included fol-

lowing Duynkerke and Driedonks (1987). The relationship

between the turbulent diffusion coefficient for momentum

and scalars (Prandtl number) is dependent on the Richardson

number, according to Sukoriansky et al. (2005).

Prognostic equations are used to describe five water-

related parameters (Gallée, 1995): specific humidity, cloud

www.atmos-chem-phys.net/15/6225/2015/ Atmos. Chem. Phys., 15, 6225–6236, 2015
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droplets, ice crystals, raindrops and snow particles. A sixth

equation has been added describing the number of ice crys-

tals, and the influence of hydrometeors on air-specific mass

is included in the model (Gallée et al., 2001). This allows us

to account for the influence of the weight of eroded particles

on atmospheric flow dynamics by representing the pressure

gradient force as a function of air density rather than of po-

tential temperature only.

The radiative transfer through the atmosphere is param-

eterized following Morcrette (2002) and is the same as the

one used in ERA-40 re-analyses. As blowing snow particles

are small (Walden at al., 2003), they may have an impact on

the radiative transfer. The influence of snow particles on at-

mospheric optical depth is also included in the MAR model

(Gallée and Gorodetskaya, 2010).

Surface processes are modelled using the “soil-ice-snow-

vegetation-atmosphere transfer” scheme (SISVAT, De Ridder

and Gallée, 1998; Gallée et al., 2001; Lefebre at al., 2005;

Fettweis et al., 2005). The influence of snow erosion / depo-

sition on surface roughness (z0) is taken into account by al-

lowing the aerodynamic roughness length to increase linearly

as a function of the wind speed at 10 m above the ground

level (a.g.l.) (V10), when V10> 6 m s−1. The timescale for

sastrugi formation is assumed to be half a day, as suggested

by Andreas (1995), and the asymptotic value of the surface

roughness length z0 may increase linearly as a function of the

wind speed V (z0,lim = 1.5 mm for V = 10 m s−1; note that

the friction velocity corresponding to V = 10 m s−1 is gener-

ally slightly greater than 0.5 m s−1). z0 is allowed to decrease

when precipitation occurs without wind erosion of the snow.

Indeed, the newly deposited snow progressively buries the

sastrugi. Andreas et al. (2005) found values of z0 ranging

between approximately 10−4 and 100 mm, for friction veloc-

ities no greater than 0.6 m s−1. King and Anderson (1994)

observed at Halley for compacted, sintered firn with some

sastrugi, i.e. for similar snow properties as encountered at

Dome C, a z0 value of (5.6± 0.6)× 10−5 m. The scatter of

z0 is very high and is explained by the high dependency of z0

on sastrugi history. Our parameterization includes that effect

in a simple way, and is calibrated to obtain the best simula-

tion of the wind speed. Note that the snow surface albedo de-

pends on the snow properties (dendricity, sphericity and size

of the snow particles) and solar zenithal distance, but not on

sastrugi or sastrugi orientation.

4 Evaluation of MAR

We here used the 3-D version of MAR in order to take into

account the influence of drainage winds on mass divergence

at Dome C and consequently on subsidence and thinning of

the boundary layer at the dome. In addition, this allows one

also to account for a possible influence of the inversion wind

circulation over the Dome C area, as suggested by Pietroni

et al. (2014). The MAR domain is represented in Fig. 1. The

Figure 1. The MAR integration domain and topography. The solid

line refers to the 3250 m isocontour.

horizontal grid size is 20 km and the vertical discretization

in the lower troposphere is 2 m, with 60 levels. The vertical

resolution decreases with altitude above 32 m a.g.l., reach-

ing 50 m at 300 m a.g.l. and 400 m at 3000 m a.g.l. In paral-

lel, MAR was also run with a vertical grid spacing of 1 m

in the lower levels, without any significant change in the re-

sults. Taking advantage of the higher vertical resolution near

the surface, the output of this latter model run was used

to discuss the behaviour (in particular the diurnal cycles)

of different atmospheric components such as e.g. HONO,

ROH, NOx , and HCHO, measured near the surface during

the OPALE campaign (Legrand et al., 2014; Kukui et al.,

2014; Frey et al., 2014; Preunkert et al., 2014).

The MAR model is nested into European re-analyses

ERA-Interim (Dee et al., 2011). A relaxation zone of five

grid points is prescribed at each lateral boundary (Marbaix et

al., 2003) and model variables are nudged to the re-analysed

variables in the upper six layers, i.e. above 13 km a.g.l. at

Dome C. As the OPALE campaign took place from early De-

cember 2011 until mid-January 2012, MAR was run over 3

months (from 1 November 2011 until 31 January 2012). The

model variables are assumed to adapt to Dome C conditions

during the first simulated month (i.e. November 2011). The

snow pack is initialized with a density of 300 kg m−3 and

the assumption of the presence of small grains, which re-

sults in a slightly decreased initial albedo (close to 0.79 at

noon), compared to the value (0.80–0.81) estimated by Brun

et al. (2011). Note that the albedo would have been more un-

derestimated if sastrugi orientation had been taken into ac-

count (Wendler and Kelley, 1988). However, no observation

of sastrugi has been made during the OPALE campaign. Our

analysis focuses on the period between 12 December 2011

Atmos. Chem. Phys., 15, 6225–6236, 2015 www.atmos-chem-phys.net/15/6225/2015/
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and 14 January 2012, when most of the OPALE observations

were made.

4.1 Cloud cover and surface energy budget

A problem already encountered when running the model

over Adélie Land (East Antarctica) is an underestimation

of the cloud cover (but not always) and the subsequent un-

derestimation (overestimation) of the downward long-wave

(short-wave) radiation. As a consequence, an underestima-

tion (overestimation) of air temperatures near the surface dur-

ing night-time (day-time) results (Gallée et al., 2013).

In the following we will investigate to what extent this

shortcoming also occurs in the MAR simulations at Dome

C. We note first that MAR generally underestimates both the

short-wave and long-wave downward radiations, with a bias

of about 24.3 and 20.8 W m−2 respectively (Table 1). The

influence of the former on the surface energy budget is nev-

ertheless less important than that of the latter, because of the

high value of the snow albedo.

Let us now examine the downward long-wave radiation

and the air temperature near the surface (Fig. 2). Both obser-

vations and simulation exhibit rapid variations in the long-

wave downward radiation (LWD) (Fig. 2a). The correlation

coefficient between the simulated LWD and cloud optical

thickness is 0.79 for a 10 min time interval between each

value of these variables, suggesting that cloud cover changes

are responsible for most of these variations.

Figure 2b compares the daily averaged bias (simulation

minus observation) in the long-wave downward radiations

(LWD) and air temperatures near the surface at Dome C.

The former is generally underestimated, leading to the un-

derestimation of the latter (see also Table 1). A significant

correlation may be seen between both biases, even when the

temperature bias may be positive, while the long-wave down-

ward radiation bias remains negative. But the latter bias is

partially compensated for by a slight positive bias in the ab-

sorbed solar radiation (Table 1), probably because of an un-

derestimation of MAR snow surface albedo.

In contrast, the bias in the absorbed solar radiation may

become negative, for example on 10 and 11 January 2012,

when the bias in the long-wave downward radiation is al-

most zero and significant snowfall is simulated. The positive

temperature bias on 31 December 2011 is probably due to

an overestimation of the long-wave downward radiation by

MAR.

Thus, as already observed along the Adélie Land coast

(see Gallée et al., 2013), MAR underestimates cloud cover

at Dome C, but not always. This underestimation is respon-

sible for an underestimation of the downward long-wave ra-

diation. As long-wave downward radiation plays a key role

in the surface energy budget and the subsequent behaviour

of turbulence near the surface, this point will be considered

in the remainder of the paper. Concerning the application

of MAR for the interpretation of the atmospheric chemistry

Figure 2. Top: long-wave downward radiation (LWD, W m−2):

simulation (dark line) and observation (red line). Data were aver-

aged over an interval of 30 min. Bottom: comparison between the

daily averaged LWD bias (red line) and air temperature bias (blue

line, units: 0.1 ◦C). Observations are those of the ISAC. MAR tem-

peratures are averaged between 2 m and 4 m a.g.l. Gaps correspond

to the absence of observations.

measured during OPALE, the underestimation of the cloud

cover is generally not critical, since situations with an over-

cast sky were not considered in these model applications.

4.2 Wind and temperature near the surface

The performances of the simulated temperature and wind

speed are summarized in Table 1 by the correlation be-

tween simulation and observation, the bias (simulation mi-

nus observation), the root mean square error (RMSE) and

the efficiency statistical test (E) proposed by Nash and Sut-

cliffe (1970):

E = 1−RMSE2/s2, (1)

where s and RMSE are respectively the standard deviation of

the observations and the root mean square error of the sim-

www.atmos-chem-phys.net/15/6225/2015/ Atmos. Chem. Phys., 15, 6225–6236, 2015
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Table 1. Correlation coefficient, bias, RMSE (root mean square error) and efficiency statistical test of the simulated short-wave downward

radiation (SWD), the short-wave absorbed radiation by the surface (SWA), the long-wave downward radiation (LWD), the temperature and

the wind speed when compared to the observations made by ISAC (Istituto di Scienze dell’ Atmosfera e del Clima) (third and fourth column),

by LGGE (Laboratoire de Glaciologie et de Géophysique de l’Environnement) (at the tower, fifth column) and by BAS (British Antarctic

Survey) (sixth column). Data were averaged over an interval of 30 min.

MAR ISAC ISAC 3 m Tower 3 m BAS 4 m

SWD Bias −24.3 W m−2

SWA Bias 3.4 W m−2

LWD Bias −20.8 W m−2

Temperature Corr. coeff. 0.981 0.912 0.973

Bias −0.387 ◦C −0.642 ◦C −0.551 ◦C

RMSE 2.408 ◦C 2.778 ◦C 2.735 ◦C

E 0.958 0.751 0.933

Wind speed Corr. coeff. 0.865 0.872 0.856

Bias −0.227 m s−1
−0.105 m s−1 0.440 m s−1

RMSE 1.057 m s−1 0.949 m s−1 1.089 m s−1

E 0.737 0.752 0.677

ulated variable. Note that RMSE= 0 implies E = 1. An ef-

ficiency index greater than 0 also means that comparing the

simulated variable with the corresponding observation pro-

vides a lower RMSE than that obtained when comparing it

with its time average. A negative efficiency index means that

the RMSE is higher than the standard deviation of the ob-

servations. Finally, this then suggests that a detailed model

would not improve the results when compared to a simpler

model providing an estimation of the variable averaged over

the time period concerned.

It is found that the efficiency statistical test for temperature

and wind speed is not lower than 0.677 for all comparisons

(Table 1), giving us confidence in the respective time aver-

ages as well as in the fluctuations of these simulated vari-

ables.

For a more detailed examination of wind speed and tem-

perature, the comparison between simulated and observed

wind speeds at 3 m above the surface is shown in Fig. 3a.

The agreement is good, as also quantified by the efficiency

(0.737, Table 1). As can be seen in Fig. 3b, the agreement be-

tween the simulated and observed wind directions is also ex-

cellent. This behaviour indicates that the model is able to cap-

ture the atmospheric circulation at Dome C on the synoptic

scale and is able to simulate the local circulation. Both obser-

vation and simulation reveal two preferential wind directions,

one from the plateau (southerly winds) and the other from the

ocean (northerly winds). A well-marked diurnal cycle is gen-

erally found in the wind speed, but does not exist in the wind

direction. Wind speed peaks during the afternoon, when tur-

bulent fluxes in the well-mixed layer are able to transport

momentum downwards more efficiently. Wind speed is also

generally stronger and may be faster than 6 m s−1 in the case

of wind blowing from the north, except on 5–7 January 2012,

when wind was blowing from the south. Note that the sim-

ulation of a blowing snow event on 29 December is respon-

sible for an increase in the simulated roughness length from

an almost constant in time value of 0.05 mm to an almost

constant in time value of 2 mm. No significant change in the

agreement between simulations and observations of the wind

speed or of the friction velocity after this increase may be

deduced from a look at Fig. 3. Consequently, it is difficult

to determine whether the parameterization of the roughness

length at Dome C is important for the simulation.

The simulated air temperature is also in good agreement

with observations (Fig. 3c), although the simulated diurnal

cycle is generally more pronounced than the observed one,

especially for night-time (not shown for tower and BAS ob-

servations). The largest differences are found when simula-

tions are compared with the observations made at the tower.

Note that tower temperature measurements are performed

in aspirated shields which have been demonstrated to avoid

large warm biases with the most often used passively venti-

lated shields in cases of weak winds (Genthon et al., 2011).

Since these are the only temperature measurements carried

out in aspirated shields at Dome C, they are (except for sonic

measurements) the only ones which are unaffected by radia-

tion biases.

Finally, the good behaviour of the simulated friction ve-

locity (Fig. 3d) suggests that MAR simulates surface mete-

orological variables without compensating errors. From the

previous analysis we have some confidence in the behaviour

of the model in the surface boundary layer at Dome C during

the OPALE observation period, but some discrepancies with

the observations are found, even for sunny days.
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Figure 3. Simulation (dark line) of wind speed (top left), wind direction (top right), and air temperature (bottom left) at Dome C, 3 m a.s.l.,

compared with ISAC observations. Bottom right: simulation of friction velocity (dark line) compared with BAS observations (magenta line).

Data were averaged over an interval of 30 min. Shaded area indicates periods with DLW> 130 Wm−2.

4.3 Period between 26 and 28 December 2011

In the following we will focus on the period between 26

and 28 December 2011, which is also included in the stud-

ies of Legrand et al. (2014), Kukui et al. (2014), Preunkert

et al. (2014), and Frey et al. (2014). Moreover, this is the

longest period for which we have estimations of the bound-

ary layer height from sodar measurements. This period is

characterized by winds coming from the high East Antarc-

tic plateau and by an absence of clouds except between

09:00 and 15:00 LT on 26 December and between 04:00

and 11:00 LT on 27 December, when the downward long-

wave flux (LWD) is relatively large in the observations. Un-

fortunately, MAR underestimates LWD at those times (see

Sect. 4.1 and Fig. 2a).

In Fig. 4a we report on the behaviour of the simulated

temperature and wind speed at the tower, between 3.5 and

42.1 m a.g.l. The simulation exhibits a marked diurnal cycle,

with a strong temperature inversion during night-time and a

well-mixed layer during day-time. During night-time a close

link exists between the vertical temperature gradient and the

vertical wind speed gradient. The vertical wind speed gra-

dient is highest where temperature increase with height is

strongest and the associated vertical stability is largest. Such

behaviour is often referred to as a decoupling between the

cold air near the surface and the warmer air above. This de-

coupling is also found in a change of the wind direction just

above the turbulent layer. Convective mixing during day-time

precludes this behaviour, and the vertical gradients of both

temperature and wind speed are much smaller. Night-time

decoupling and day-time mixing are also found in the ob-

servations, but with some differences due to the presence of

clouds that the model was not able to simulate.

It is seen in Fig. 4b that the model simulates a warm

bias on 26 December 2011 until 18:00 LT, except below

10 m a.g.l., until 6:00 LT. Probably the absence of simulated

clouds is responsible for an overestimation of the surface ab-

sorbed solar radiation and the subsequent heating of the sur-
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Figure 4. Temperature (colour) and wind speed (isocontours) at the

Dome C tower, as a function of Local Time LT (Universal Time

UT+ 8 h) and height above the surface. (a) refers to the MAR sim-

ulation, (b) to simulation minus observation.

face. The heat excess is then transferred to the atmosphere

through turbulent mixing. Note that the marked overestima-

tion of the simulated absorbed solar radiation and air temper-

ature is not repeated on 27 and 28 December 2011 in spite of

the presence of clouds on 27 December in the morning. Nev-

ertheless, temperature maxima are overestimated by roughly

1 to 1.5 ◦C, both at the surface (not shown) and above.

Air temperatures on 27 and 28 December in the morning

are significantly underestimated in the MAR simulations, es-

pecially on 28 December. The underestimation starts on the

previous day around 18:00 LT. An underestimation of about

10 W m−2 or more is also found in the downward long-wave

radiation (LWD), even in the absence of clouds (Fig. 2a).

Simulated and observed turbulent fluxes are compared in

Fig. 5. The simulated friction velocity is slightly underes-

timated by the MAR model during night-time, especially on

Figure 5. Surface turbulent fluxes at the Dome C tower, as a func-

tion of Local Time LT (Universal Time UT+ 8 h). Panel (a) refers

to the friction velocity, and panel (b) to the sensible heat flux u*T *.

The dark line is the MAR simulation, the red line the ISAC obser-

vations.

28 December, while the simulated downward turbulent heat

flux is comparable to the observations or is slightly overes-

timated. Possibly the simulated surface turbulent heat flux

would have been larger if the friction velocity had not been

underestimated by the model at that time. Thus, Monin–

Obukhov similarity theory is not a good candidate for ex-

plaining the underestimation of temperature near the surface.

More precisely looking at the experiment with 1 m resolu-

tion, it is found that the weakening of the turbulent fluxes

from 1 to 2 m amounts to slightly more than 20 %, a value

that is larger than the usual departure from constancy gener-

ally accepted (10 %). More generally, temperature and wind

speed at 2 m in the simulations with 1 and 2 m resolution near

the surface have been compared. It has been found that when

clear sky is observed they are not sensitive (differences no

larger than 1.5 to 2 ◦C or 1 m s−1) to the vertical resolution,

even when in the simulation with 1 m resolution the turbu-

lent fluxes between 1 and 2 m depart from the constancy by
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Figure 6. The boundary layer height at Dome C as a function of

Local Time LT (Universal Time UT+ 8 h). Red (blue) stars: sodar

observations during convective (stable) situations (Argentini et al.,

2013). Dark line: MAR mixed layer depth, computed as the level

where the turbulent kinetic energy amounts to 5 % of the turbulent

kinetic energy in the lowest layer of the model.

30 %. In contrast, a slight overestimation of the air temper-

ature above 10–15 m a.g.l. (Fig. 4b) could also result from

an insufficient turbulent mixing by the E− ε model during

night-time, explaining also partly the underestimation of the

air temperature near the surface. Finally, it could be argued

that an initial underestimation of the air temperature near the

surface may be responsible for an increased vertical stability

above the surface boundary layer, reinforcing the decoupling

between the lower troposphere and the atmosphere above,

and being responsible for a possible underestimation of the

boundary layer height. A possible leading role of an under-

estimation of LWD must be firmly established.

From Fig. 5 it is also found that MAR underestimates the

upward turbulent heat flux during day-time, when observed

clouds were not simulated (on 26 December around noon and

on 27 December in the morning), while it overestimates it

when clouds are not present, either in the observation or in

the simulation (on 27 and 28 December during day-time).

No definite explanation was found for the underestimation,

but the overestimation may be related to overly high heating

of the surface and an overestimation of the air temperature by

the model (see Fig. 4b), suggesting that the overestimation of

air temperature at that time is driven by the surface.

Biases in the simulated wind speed could sometimes be

linked to biases in the simulated air temperature, but not al-

ways. An example of such a link in Fig. 4b is a positive wind

speed bias simulated between 15 and 18:00 LT on 26 Decem-

ber 2011. It could be associated with the positive bias in the

downward short-wave radiation. At that time, the overesti-

mated turbulent mixing could lead to an overestimated height

of the turbulent layer and an overestimated downward trans-

fer of momentum. Indeed, simulated wind speeds are larger

than observations at the upper levels of the tower at that time

(Fig. 4a) and the model overestimates the height of the well-

mixed layer (Fig. 6). The bias in the wind speed decreases

after 18:00 LT, especially below 25 m a.g.l. This is due to an

increasing stability near the surface and the subsequent de-

coupling between the layer of air near the surface and the

layer above. Wind speeds are still overestimated above up to

the highest level of the tower, possibly because of an over-

estimated vertical extent of the residual mixed layer at that

time.

Observations suggest the onset of a nocturnal jet after

18:00 LT, with a maximum of 7 m s−1 around 20 m a.g.l.

around 22:00 LT. MAR also simulates a nocturnal jet at that

time, but around 140 m a.g.l., and with a slightly stronger

wind speed (8 m s−1) (not shown). This occurrence is consis-

tent with a higher extent of the residual layer and may be the

consequence of the sudden shutdown of the turbulent mixing

at 18:00 LT at 140 m a.g.l. in the model (not shown), while

the pressure gradient force (PGF) still contributes to an in-

crease in the wind speed after that time. Such an evolution is

typical for a convective mixed layer at the end of day-time,

and is also observed at lower latitudes. The contribution of

PGF to the acceleration of the wind starts to decrease after

20:30 LT. Since nocturnal low level jets arrived frequently

during OPALE, the analysis of this process deserves some

attention. Therefore, this topic will be addressed in a com-

panion note by analysing a case study which is well simu-

lated by the model (Gallée et al., 2015).

A small positive temperature bias seems also to occur

at 06:00 LT on 27 December 2011 above 25 m a.g.l. Its be-

haviour is similar to that of 26 December, and it also occurs

in conjunction with an underestimation of the cloud cover by

the model and an earlier deepening of the well-mixed layer.

Finally, the sodar reveals an earlier peak and fall-off in

boundary layer depth on 26 December than does the model

(Fig. 6). This is due to clouds which are responsible for a

strong decrease in SWD, while clouds are not simulated.

5 Discussion and conclusion

The MAR model has been set up over a domain covering

Dome C during the OPALE campaign. The size of the do-

main is much smaller than the internal radius of deforma-

tion. As a consequence, the model solution is constrained in

the free atmosphere by the one of the European re-analyses

(ERA-Interim), but, as already pointed out by Lefebre et

al. (2005), it is allowed to develop its own solution in the

boundary layer. The simulation is characterized by a positive

efficiency of wind and temperature over Dome C, given us

confidence in its behaviour. In certain situations, MAR un-

derestimates the downward long-wave radiation. When this

problem occurs it is often linked to an underestimation of

the cloud cover, and is one of the reasons which leads to

an overestimation of the simulated amplitude of the diur-
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nal cycle of air temperatures. Another possible cause of this

overestimation is the underestimation of heat transfer in the

snow pack and an amplification of the subsequent decou-

pling between the atmosphere and the surface initiated by

the underestimated LWD and heat conduction. Indeed, sur-

face turbulent fluxes are well simulated, but discrepancies

with the observations are found when the simulated down-

ward long-wave flux is underestimated. Note that, since this

underestimation of the LWD will also induce an error in the

modelled temperatures, measured temperatures, which were

available throughout the OPALE campaign, were used when

interpreting the chemistry data (e.g. Preunkert et al., 2014).

On the other hand, the simulated wind speed in the surface

boundary layer is in good agreement with the observations.

It may consequently be argued that the turbulence schemes

used in MAR (Monin–Obukhov similarity theory and the

E− ε model) are valid for the OPALE period. However, the

question of whether this also remains true under strong radi-

ational cooling, as encountered during winter at Dome C, is

still open.

Consequently, model outputs and especially their turbulent

characteristics are useful when interpreting the observations

made in the case of observed clear sky during OPALE. In-

deed, clear sky conditions, i.e. situations for which the model

simulation is in excellent agreement with available observa-

tions, are more adequate when discussing measurements of

species involved in photochemical processes. In particular,

the good behaviour of the simulated surface turbulent fluxes

allows us to use the associated turbulent eddy diffusivity co-

efficient to evaluate the impact of turbulent transport on NOx ,

HONO and HCHO emitted from snow. In addition, the simu-

lated boundary layer height indicates over which thickness of

the atmosphere these chemical species are diluted. In brief,

the use of such a model will allow us to optimize the exper-

imental set-up for future campaigns aiming to characterize

the low troposphere chemistry at Dome C.
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