J. Anderson, A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations, Journal of Climate, vol.9, issue.7, pp.1518-1530, 1996.
DOI : 10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2

B. Barnier, G. Madec, T. Penduff, J. Molines, A. Treguier et al., Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution, Ocean Dynam, pp.543-567, 2006.

H. C. Bishop, B. J. Etherton, and S. J. Majumdar, Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Monthly Weather Review, vol.129, issue.3, pp.420-436, 2001.
DOI : 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2

P. Bouttier, E. Blayo, J. Brankart, P. Brasseur, E. Cosme et al., Toward a data assimilation system for NEMO, Merc. Quart. Newsl, vol.46, pp.24-30, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00945600

J. Brankart, Impact of uncertainties in the horizontal density gradient upon low resolution global ocean model, Ocean Model, pp.64-76, 2013.

J. Brankart, E. Cosme, C. Testut, P. Brasseur, and J. Verron, Efficient Local Error Parameterizations for Square Root or Ensemble Kalman Filters: Application to a Basin-Scale Ocean Turbulent Flow, Monthly Weather Review, vol.139, issue.2, pp.474-493, 2011.
DOI : 10.1175/2010MWR3310.1

J. Brankart, C. Testut, D. Béal, M. Doron, C. Fontana et al., Towards an improved description of ocean uncertainties: effect of local anamorphic transformations on spatial correlations, Ocean Sci, vol.85194, pp.121-14210, 2012.

P. Brasseur and J. Verron, The SEEK filter method for data assimilation in oceanography: a synthesis, Ocean Dynam, pp.650-661, 2006.

K. Brusdal, J. Brankart, G. Halberstadt, G. Evensen, P. Brasseur et al., A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems, Journal of Marine Systems, vol.40, issue.41, pp.253-289, 2003.
DOI : 10.1016/S0924-7963(03)00021-6

R. Buizza, M. Miller, P. , and T. N. Roy, Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Quarterly Journal of the Royal Meteorological Society, vol.8, issue.560, pp.2887-2908, 1999.
DOI : 10.1002/qj.49712556006

G. Burgers, P. J. Van-leeuwen, and G. Evensen, Analysis Scheme in the Ensemble Kalman Filter, Monthly Weather Review, vol.126, issue.6, pp.1719-1724, 1998.
DOI : 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2

G. Candille and O. Talagrand, Evaluation of probabilistic prediction systems for a scalar variable, Quarterly Journal of the Royal Meteorological Society, vol.125, issue.609, pp.2131-2150, 2005.
DOI : 10.1256/qj.04.71

G. Candille, C. Côté, P. L. Houtekamer, and G. Pellerin, Verification of an Ensemble Prediction System against Observations, Monthly Weather Review, vol.135, issue.7, pp.2688-2699, 2007.
DOI : 10.1175/MWR3414.1

M. Cooper and K. Haines, Altimetric assimilation with water property conservation, Journal of Geophysical Research: Oceans, vol.5, issue.C1, pp.1059-1077, 1996.
DOI : 10.1029/95JC02902

D. P. Dee, On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation, Monthly Weather Review, vol.123, issue.4, pp.1128-1145, 1995.
DOI : 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2

G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, vol.109, issue.Part 4, pp.10143-10162, 1994.
DOI : 10.1029/94JC00572

. Candille, Stochastic assimilation

G. Evensen, The Ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dynam, pp.343-367, 2003.

K. Haines, W. Lahoz, B. Khattatov, M. , and R. , Ocean Data Assimilation, pp.517-548, 2010.
DOI : 10.1007/978-3-540-74703-1_20

T. M. Hamill, J. Juras, and Q. J. Roy, Measuring forecast skill: is it real skill or is it the varying climatology?, Quarterly Journal of the Royal Meteorological Society, vol.83, issue.621C, pp.2905-2923, 2006.
DOI : 10.1256/qj.06.25

H. Hersbach, Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, Weather and Forecasting, vol.15, issue.5, pp.559-570, 2000.
DOI : 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2

B. Ingleby and M. Huddleston, Quality control of ocean temperature and salinity profiles ??? Historical and real-time data, Journal of Marine Systems, vol.65, issue.1-4, pp.158-175, 2007.
DOI : 10.1016/j.jmarsys.2005.11.019

E. Kalnay, W. Lahoz, B. Khattatov, M. , and R. , Ensemble Kalman filter: current status and potential, in: Data assimilation: Making sense of observations, pp.69-92, 2010.

V. Kitsios, J. S. Frederiksen, and M. J. Zidikheri, Scaling laws for parameterisations of subgrid eddy?eddy interactions in simulations of oceanic circulations, Ocean Model, pp.88-105, 2013.

D. Lea, M. Martin, K. Mogensen, A. Vidard, and A. Weaver, Observation and Model Comparison in NEMO Ocean Engine v3.4. Note du Pôle de modélisation de l'Institut Pierre-Simon Laplace, 2012.

N. K. Nichols, W. Lahoz, B. Khattatov, M. , and R. , Mathematical Concepts of Data Assimilation, pp.13-39, 2010.
DOI : 10.1007/978-3-540-74703-1_2

Y. Ourmières, J. Brankart, L. Berline, P. Brasseur, and J. Verron, Incremental Analysis Update Implementation into a Sequential Ocean Data Assimilation System, Journal of Atmospheric and Oceanic Technology, vol.23, issue.12, pp.1729-1744, 2006.
DOI : 10.1175/JTECH1947.1

T. N. Palmer, G. J. Shutts, R. Hagedorn, F. J. Doblas-reyes, T. Jung et al., REPRESENTING MODEL UNCERTAINTY IN WEATHER AND CLIMATE PREDICTION, Annual Review of Earth and Planetary Sciences, vol.33, issue.1, pp.163-193, 2005.
DOI : 10.1146/annurev.earth.33.092203.122552

P. Mana, P. Zanna, and L. , Toward a stochastic parameterization of ocean mesoscale eddies, Ocean Model, pp.1-20, 2014.

M. S. Roulston and L. Smith, Evaluating Probabilistic Forecasts Using Information Theory, Monthly Weather Review, vol.130, issue.6, pp.1653-1660, 2002.
DOI : 10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2

P. Sakov, F. Counillon, L. Bertino, K. A. Lisaeter, P. R. Oke et al., TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic, Ocean Sci, vol.85194, pp.633-65610, 2012.

H. R. Stanski, L. J. Wilson, and W. R. Burrows, Survey of common verification in meteorology, World Weather Watch Report World Meteorological Organization, issue.8 358, p.114, 1989.

O. Talagrand, W. Lahoz, B. Khattatov, M. , and R. , Variational Assimilation, pp.41-67, 2010.
DOI : 10.1007/978-3-540-74703-1_3

URL : https://hal.archives-ouvertes.fr/hal-01136782

C. Testut, P. Brasseur, J. Brankart, and J. Verron, Assimilation of sea-surface temperature and altimetric observations during 1992???1993 into an eddy permitting primitive equation model of the North Atlantic Ocean, Journal of Marine Systems, vol.40, issue.41, pp.40-41, 2003.
DOI : 10.1016/S0924-7963(03)00022-8

URL : https://hal.archives-ouvertes.fr/hal-00212078

Z. Toth, O. Talagrand, G. Candille, and Y. Zhu, Probability and ensemble forecasts, in: Forecast Verification: a Practitioner's Guide in Atmospheric Science, pp.137-163, 2003.

S. M. Uppala, P. W. Kållberg, and A. J. Simmons, The ERA-40 re-analysis, Quarterly Journal of the Royal Meteorological Society, vol.132, issue.612, pp.2961-3012, 2005.
DOI : 10.1256/qj.04.176

J. Verron, L. Gourdeau, D. T. Pham, R. Murtugudde, and A. Busalacchi, An extended Kalman filter to assimilate satellite altimeter data into a nonlinear numerical model of the tropical Pacific Ocean: Method and validation, Journal of Geophysical Research: Oceans, vol.93, issue.3-4, pp.5441-5458, 1999.
DOI : 10.1029/1998JC900079

Y. Yan, A. Barth, J. Beckers, G. Candille, J. Brankart et al., Ensemble assimilation of ARGO temperature profile, sea surface temperature, and altimetric satellite data into an eddy permitting primitive equation model of the North Atlantic Ocean, Journal of Geophysical Research: Oceans, vol.73, issue.2, 2015.
DOI : 10.1029/2007JC004585

URL : https://hal.archives-ouvertes.fr/hal-01174367