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ntroduction

Veins represent the locus of fluid circulation. In open-
tem conditions, fluids are generated at distance, outside

 studied geological system, and flow towards the site of
n formation. In closed-system conditions, fluids are
erated locally and allow redistribution of matter to
duce veins. In the former case, heat and matter can be
sported over large distances (the system is ‘‘open’’)

ereas in the latter only small-scale redistribution of
tter is permitted (the system is ‘‘closed’’).
In the North Pyrenees, HT-LP metamorphism affected
east–west-elongated zone, in close association with the
th Pyrenean Fault (FNP; Fig. 1a). This zone is known as

the North Pyrenean Metamorphic Zone (NPMZ). Recently,
Clerc et al. (2015) have associated this thermal anomaly
with extreme thinning of the Pyrenean paleo-margins in
mid-Cretaceous times, prior to the Pyrenean collision
(Upper Cretaceous – Eocene). In a comprehensive petro-
logical and geochemical study of the sediments affected by
the North Pyrenean Metamorphism (NPM), Ravier (1959)
described isochemical recrystallization during metamor-
phism, which could correspond to a ‘‘closed-system’’
evolution. In contrast, Dauteuil and Ricou (1989) proposed
that fluids may have acted to transfer heat regionally,
which corresponds to ‘‘open-system’’ conditions.

In this study, we focus on the Boucheville Basin
(Fig. 1b), filled with Albian quartz (silty)-calcareous black
shales (Albian flysch deposits; e.g., Souquet et al., 1985),
which recorded temperatures up to 580 8C during the NPM
(Chelalou et al., this issue). Numerous veins occur in the
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A B S T R A C T

Metamorphic fluids transport heat and matter. In the Boucheville Basin (North Pyrenean

Zone), the circulation of metamorphic fluids is attested by abundant synmetamorphic

quartz – calcite veins. The Boucheville Basin formed during the Albian extensional regime

and was filled by the so-called ‘‘Albian flysch’’. The basin underwent a thermal overprint

(the North Pyrenean Metamorphism) related to the exhumation of nearby mantle rocks

that advected large amounts of heat to the upper crustal levels. The oxygen and carbon

isotope compositions of quartz – calcite veins and their host rocks show strong buffering of

the composition of the fluids by the Albian metamorphic host rocks. Some host rocks are

depleted in calcite near vein contacts showing that some of the elements implicated in

crystal growth in veins were derived from the local host rock. The Albian rocks display a

range of oxygen and carbon isotope compositions potentially related to closed-system

processes of decarbonation–dehydration. We argue then that the fluids that circulated

throughout the Boucheville Basin were generated within the basin itself. Their upward

migration led to heat advection in the metamorphic pile, a consequence of which was

some homogenization of the recrystallization temperatures in the basin.

� 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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black shales and may thus provide information on the
nature of the fluid-rock interaction system (‘‘closed’’ vs
‘‘open’’) prevailing during metamorphism. We use the
oxygen, carbon and strontium isotope signatures of both
veins and host black shales to show that veins formed
without the involvement of externally derived fluids. We
thus describe a ‘‘closed-system’’ evolution in which a
significant proportion of the elements forming mineral in
veins come from the local host rocks.

2. Geological context

The North Pyrenean Metamorphic Zone (NPMZ) is a
narrow zone located immediately north of the North
Pyrenean Fault (NPF; Fig. 1a). This fault limits the axial zone
from the NPMZ. The exact nature of this structure remains
unclear in the context of the extreme thinning of the
Pyrenean paleo-margin during the eastward movement of
Iberia relative to Europe during Albian times (Choukroune,
1992; Choukroune et al., 1973; Olivet, 1996). Close to the
NPF, on its northern side over a length of about 150 km,
forty lherzolitic bodies of variable size are reported (Fabriès
et al., 1998; Monchoux, 1970). A mid-Cretaceous crustal
emplacement age of these bodies has been proposed (105–
110 Ma; Henry et al., 1998). Serpentinization of peridotites
and development of ophicalcites are abundant (Clerc et al.,
2014). Locally, discrete eruptive and plutonic bodies of
alkaline affinity were emplaced in the area, especially in the
central and western Pyrenees (Montigny et al., 1986).
During the Albian period again, intense hydrothermal
activity is evidenced throughout the area by 1) numerous
talc/chlorite ore deposits (Boulvais et al., 2006; Moine et al.,
1989) with a mineralization age of 112–97 Ma (Schärer
et al., 1999) and 2) albitization and sodic-calcic metasoma-
tism of rocks of variable nature with ages ranging from
117 to 92 Ma (Boulvais et al., 2007; Fallourd et al., 2014;
Poujol et al., 2010).

Particularly well exposed in the NPMZ are quartz –
calcareous black shales of Albian age, deposited in basins
north of the NPF including the Boucheville Basin (Fig. 1b).
The initial geometry of the basins in the Albian is described
in detail by Clerc and Lagabrielle (2014) and Chelalou et al.
(this issue). Inversion of the basins caused by northward
motion of Iberia began during the Upper Cretaceous
(Choukroune, 1976). The Albian black shales have been
variably metamorphosed up to HT-LP metamorphic
conditions (3 kbar–4 kbar; 500 8C–600 8C; Golberg and
Leyreloup, 1990). Ages ranging from 98 Ma to 87 Ma
(Cenomanian – Turonian) have been obtained by Ar–Ar
dating on minerals separates from Mesozoic metasedi-
ments (Albarède and Michard-Vitrac, 1978; Golberg and
Maluski, 1988). The recent synthesis of Clerc et al. (2015)
highlights the east-west thermal zonation within the
NPMZ, the maximum thermal conditions being encoun-
tered in the east part. In the Boucheville Basin, Chelalou
et al. (this issue) report temperatures between 530 8C and
580 8C, with a homogeneous distribution throughout the
basin. Unmetamorphosed equivalents of the Albian
metamorphic rocks from the Boucheville Basin occur a
few kilometres further north, in the Saint-Paul-de-
Fenouillet and Bas-Agly Basins.

3. Petrography of the Albian rocks

Samples from the Boucheville Basin have been collected
in transects along road outcrops named CARY, DSX, SOU,
VIR and BOUZ (Fig. 1b). For comparison, samples of both
Albian metamorphic rocks (TAU) and unmetamorphosed
Albian shales (AXAT and CDF) have been collected to the
west and to the north of the Boucheville Basin (Fig. 1),
respectively. Numerous calcite veins with large euhedral
crystals formed in association with Late Cretaceous–
Eocene reverse faulting are not considered in this study.

The unmetamorphosed Albian sediments are quartz
(silty) – calcareous black shales. They are comprised, in
variable amounts, of calcite, quartz, clays (chlorite and
sericite have been identified by X-Ray diffraction; Ravier,
1959) and organic matter. In Fig. 2, their heterogeneity is
highlighted by the large range in CaO and CO2 contents,
which can be interpreted by mixing between calcite and a
silicate detrital phase. The mineralogical and geochemical
heterogeneity of the Albian sediments is also observed in
their metamorphic counterparts (Fig. 2); the metamorphic
rocks have lower CO2 contents for a given CaO content. This
is likely related to the release of CO2 through decarbon-
ation reactions during metamorphism. The Albian meta-
morphic rocks comprise variable amounts of Cal, Qtz (from
10% to 50%), An-rich plagioclase (Pl) (from 0% to 45%),
biotite (Bt) (from 0% to 15%), graphite (Gr), minor amounts
of tourmaline, sulphides and titanite. Scapolite is present
in calcite-rich marble layers.

The veins are composed of calcite and quartz, in
variable amounts (Table 1). The length of veins ranges from
1 m to 10 m and their width from 0.5 cm to 10 cm. They are
generally deformed, folded (Fig. 3a) and/or transposed
parallel to the foliation; none cross-cuts foliation at high
angle. Foliation is sometimes visible in veins (Fig. 3b).
Taken together, all this information shows that veins
formed early during the deformation history of the basin,
this deformation being associated with lithospheric
stretching during mid-Cretaceous times (Clerc et al.,
2015). The calcite content of veins seems related to the
calcite content of the local host rocks: for example, the
veins with the lowest calcite content (samples SOU 01-
160a and SOU 01-163a) are hosted in rocks with a very low
content of Cal, lower than 20 wt% (Table 1). In host rocks, a
selvage is commonly observed at the contact with veins
(Fig. 3c), which corresponds to a decrease in the calcite
content. Biotite and sulphides sometimes develop in veins
(Fig. 3c), in which case these minerals are also present in
significant amounts in the host rock. From their structure
and mineralogy, we can infer that the veins developed
early in the regional deformation event and at elevated
temperatures, sufficient to crystallize biotite, in relation to
the NPM. This conclusion was also reached by Ravier
(1959) and Choukroune (1976).

4. Analytical techniques

The O and C isotope compositions were measured using
a VG SIRA 10 triple collector mass spectrometer at the
University of Rennes-1, on the CO2 released during the
reaction of calcite with anhydrous H3PO4 at 25 8C (McCrea,
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0). The calcite content was calculated by measuring
h an Hg manometer the amount of CO2 released. The
olute precision of calcite content estimate is � 5%.
en sulphides are present in samples, the H2S liberated
ing reaction was removed by reaction with Ag3PO4 at
und 50 8C for 5 min by forming silver sulphate. For the
gen isotope analysis of the silicate fraction of veins and

ck shales, the carbonate fraction was removed through
hing with 0.15 N HCl for 3 h. Oxygen was then extracted

 the residual silicate fraction following the method of
yton and Mayeda (1963). BrF5 was used as an oxidising
nt. NBS 19 (limestone), NBS 28 (Qtz) and internal-lab

standard references materials were continuously measured
during the course of this work. NBS 19 measured values
(n = 12) were d18O = 28.70 � 0.11% (vs SMOW) and
d13C = 1.91 � 0.06% (vs PDB). No correction was added to
carbonate results. NBS 28 value was d18O = 9.21 � 0.09%
(n = 4). A correction was therefore made accordingly on the
oxygen composition of silicates. Replicate analyses of
materials gave a reproducibility better than 0.1% for both
oxygen and carbon isotope composition of carbonates and of
about 0.2% for oxygen of silicates. Strontium analyses were
performed on the soluble fraction of rocks, which is
presumed to represent carbonate, in 0.15 N HCl for 1 h. Sr

1. (Colour online.) (a) Schematic map of the Pyrenees. The North Pyrenean Metamorphic Zone (NPMZ) is indicated by the vertical hatched zone

ediately north of the North Pyrenean Fault (NPF). The location of the ECORS seismic profile is shown (Roure et al., 1989). TAU refers to the area of three

amorphic samples of Albian age used for comparison. (b) Geological map of the Boucheville Basin, showing the repartition of Albian rocks affected by

rent degrees of metamorphic recrystallization (after Ravier, 1959). Sampling traverses are labelled as the dashed lines. The location of three samples

ing from the unmetamorphic zone (samples AXAT and CDF) is also indicated.
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isotope ratios were measured on a Finnigan MAT 262 mass
spectrometer at the University of Rennes-1. 87Sr/86Sr ratios
were normalised to 86Sr/88Sr = 0.1194. NBS 987 is used as a
routine standard and give a long-term value of
87Sr/86Sr = 0.710250. The Sr blank was 30 pg and was
considered negligible.

5. Results

The O, C and Sr isotope compositions of Albian black
shales and veins are reported in Table 1. The Albian
metamorphic rocks of the Boucheville Basin show a limited
range of d18OCal values from 25 to 21% and a more wide
range of d13C from +3% to –6% (Fig. 4a), whereas
unmetamorphosed Albian rocks have d18OCal values
between 23.6% and 25.9% and d13C values between
0.6% and 1.5%, values equal to or higher than their
metamorphic equivalents (Fig. 4a). Samples TAU are
undistinguishable from the samples from the Boucheville
Basin. Both d18OCal and d13C of metamorphic rocks show a
good correlation with the weight amount of calcite
(Fig. 4b). In the Albian metamorphic rocks, the calcite
fraction has a higher d18O value than the silicate fraction by
about 1% to 1.5%. Using the descriptions of Ravier (1959)
we have estimated a mean modal composition for this
silicate fraction in the Albian metamorphic rocks: 50% Qtz,
10% Bt and 40% Pl (bytownite). The theoretical equilibrium
curves between calcite and such a silicate component are
given in Fig. 5, using the fractionation factors of Zheng
(1993a,b). We see that the calcite and the silicate phase of
the Albian metamorphic rocks are in isotopic equilibrium
at temperatures about 200 8C–300 8C. The Albian unme-
tamorphosed black shales consistently plot well below the
curves.

The veins display a covariation of d18O and d13C that
mimics the Albian metamorphic host rocks (Fig. 4a), veins
having lower d18OCal (D18Ovein–HR(mean) = –0.3%; Fig. 6a)
and higher d13C (D13Cvein–HR(mean) = +1.5%; Fig. 6b) than
their host rock. In veins, calcite has lower d18O values than
quartz by about 1.5%. This fractionation is consistent with
isotopic equilibrium between calcite and quartz at
temperatures of about 200 8C–300 8C (Fig. 5).

At a small-scale contact where the calcite content
decreases toward the vein, d18OCal and d13C values vary
significantly towards the vein (Fig. 7b,c). Interestingly,
d18OCal values increase in that direction, whereas the vein
has a lower value than the host rock and d13C values
decrease, whereas the vein has a higher value than the host
rock. None of these variations can result therefore from a
simple diffusional exchange between the vein and the host
rock.

The Sr isotope compositions of calcite from four veins-
host rock pairs are reported in Table 1 and in Fig. 8 together
with the weight amount of calcite. Two of the host rocks
are biotite-rich whereas the two are biotite-poor. The
Albian metamorphic rocks have (87Sr/86Sr)Cal ratios be-
tween 0.7074 in biotite-poor and calcite-rich samples and
0.7094 in biotite-rich and calcite-poor ones. The lowest
value is identical to that of mid-Cretaceous seawater
(87Sr/86Sr = 0,7074; Veizer, 1989). As a rule, veins have
lower (87Sr/86Sr)Cal ratios than their host rock, the
difference being more important in biotite-rich and
calcite-poor host rocks. Along the SOU 01-160 profile
(Fig. 7d), the (87Sr/86Sr)Cal ratio increases slightly in the
host rock towards the vein, from 0.70944 to 0.70985.

6. Discussion

6.1. Open vs closed-system

The stable isotopic tool can allow us to characterize
fluid regimes in terms of ‘‘open’’ vs ‘‘closed’’ system
evolution. In an ‘‘open-system regime’’, the circulation of
large amounts of externally-derived fluids allows them to
preserve their original signature during interaction with
rocks. Veins formed under such regime acquire homoge-
neous isotopic compositions, which differ to those of the
fluid only because of the fluid-vein isotopic fractionation.
In a ‘‘closed-system’’ regime, the isotopic compositions of
the fluids are buffered by those of the rocks with which
they interacted. Veins formed that way thus acquire
heterogeneous isotopic compositions which mimic the
heterogeneity of their host rock.

The Albian sedimentary protolith of the metamorphic
rocks of the Boucheville Basin are mineralogically and
geochemically heterogeneous (Fig. 2). The isotopic simi-
larity between the studied Albian unmetamorphosed rocks
and other comparable Albian sediments in western Europe
(d18O = 25% to 29%, d13C = 0.5% to 3%; Grötsch et al.,
1998; Nederbragta et al., 1998; Weissert and Bréhéret,
1991) argues for a limited role of diagenesis in the studied
area. Variable calcite/quartz/clays ratios induced variable
behaviour during metamorphic recrystallization. Meta-
morphic reaction progress is limited by the abundance of

Fig. 2. CO2 vs CaO variation diagram of Albian sediments and their

metamorphosed equivalents (data from Ravier, 1959). The effect of

decarbonation, i.e. CO2 release and subsequent CaO enrichment by

passive concentration is indicated by the arrow in the upper left corner.

See text for details.



Table 1

Mineralogical and isotopic compositions of Albian rocks and veins.

Mineralogy Calcite Silicate

Sample Location Type Biotite Opaques wt% d18O% d13C% 87Sr/86Sr d18O%

CDF 00-80 1 Unmetamorphic Albian 24 24.0 0.59 21.8

CDF 00-81 2 Unmetamorphic Albian 98 25.9 1.45

AXAT 00-85 3 Unmetamorphic Albian 24 23.6 1.43 21.8

CARY 00-72 1 Metamorphic Albian (II) + + 62 24.1 1.58

CARY 00-73 2 Metamorphic Albian (II) – tr 97 24.8 1.23

CARY 00-78 3 Metamorphic Albian (II) ++ + 51 22.1 2.53

CARY 00-79 4 Metamorphic Albian (II) + + 23 21.4 1.05

DSX 00-44 4 Metamorphic Albian (II) + ++ 34 22.5 0.92

DSX 00-47 3 Metamorphic Albian (II) + + 54 22.9 0.84

DSX 00-51a* 2 Vein, 1 to 3 cm wide 100 21.9 0.79

DSX 00-51b* 2 Metamorphic Albian (I),

10 cm from 00-51a

55 22.4 0.46

DSX 00-53 2 Metamorphic Albian (I) tr + 52 23.5 1.34

DSX 00-57 1 Metamorphic Albian (I) ++ ++ 51 22.3 2.27

DSX 00-58 1 Metamorphic Albian (I) tr ++ 45 22.1 1.40

DSX 00-63 5 Metamorphic Albian (II),

20 cm from 00-62

22 22.9 �1.08

DSX 00-64 5 Metamorphic Albian (II) 42 21.6 �1.50

DSX 00-65 5 Metamorphic Albian (II) 40 21.4 �0.81

DSX 00-66 6 Metamorphic Albian (II), 2 m

from 00-67b’s

34 22.2 0.79

DSX 00-67b5 6 Metamorphic Albian element

in breccia

37 21.6 �5.43

DSX 00-68 7 Metamorphic Albian (II) 51 22.6 0.49

SOU 01-145 1 Metamorphic Albian (II) +++ + 51 21.8 1.96

SOU 01-149a* 3 Vein, 2 cm wide + tr 91 21.5 2.96 23.2

SOU 01-149b* 3 Metamorphic Albian (II),

2 � 0.5 cm from 149a

+++ ++ 39 21.7 1.57 20.6

SOU 01-151a1* 4 Vein, > 8 cm wide, 4 m long – tr 88 21.4 3.39 23.5

SOU 01-151a2* 4 Vein, > 8 cm wide, 4 m long,

100% calcite zone

– – 100 21.7 3.67

SOU 01-150* 4 Metamorphic Albian (II) +++ ++ 39 21.5 1.53 20.2

SOU 01-155* 5 Vein, > 7 cm wide, 1 m long,

folded

– tr 99 21.9 2.71

SOU 01-154* 5 Metamorphic Albian (II) +++ + 43 22.5 1.68

SOU 01-156a* 6 Vein, 2 cm wide, 2 m long, – + 93 21.9 2.64 23.1

SOU 01-156b* 6 Metamorphic Albian (II),

1.5 � 0.5 cm from 156a

++ ++ 42 22.2 1.19 21.1

SOU 01-160a3* 7 Vein, 1–3 cm wide, 1 m long,

1.2 cm from contact

tr tr 53 20.6 �3.86 21.8

SOU 01-160a2* 7 Vein, 1–3 cm wide, 1 m long,

0.8 cm from contact

tr tr 35 20.7 �2.99 0.70830 22.8

SOU 01-160a1* 7 Vein, 1–3 cm wide, 1 m long,

0.3 cm from contact

tr tr 36 20.8 �2.87 23.0

SOU 01-160b1* 7 Metamorphic Albian (II),

0.35 � 0.15 cm from contact

+++ ++ 2.8 21.6 �5.93 19.8

SOU 01-160b2* 7 Metamorphic Albian (II),

0.75 � 0.15 cm from contact

+++ ++ 5.0 21.5 �5.85 0.70985

SOU 01-160b3* 7 Metamorphic Albian (II),

1.15 � 0.15 cm from contact

+++ ++ 8.8 21.4 �5.66 0.70958 20.3

SOU 01-160b4* 7 Metamorphic Albian (II),

1.65 � 0.3 cm from contact

+++ ++ 11.6 21.2 �5.64 19.9

SOU 01-160b5* 7 Metamorphic Albian (II),

2.15 � 0.15 cm from contact

+++ ++ 12.1 21.3 �5.61

SOU 01-160b6* 7 Metamorphic Albian (II),

2.65 � 0.3 cm from contact

+++ ++ 12.9 21.2 �5.63

SOU 01-160b7* 7 Metamorphic Albian (II),

3.15 � 0.15 cm from contact

+++ ++ 13.0 21.2 �5.67

SOU 01-160b8* 7 Metamorphic Albian (II),

3.65 � 0.3 cm from contact

+++ ++ 13.1 21.3 �5.61 0.70944 20.2

SOU 01-160b9* 7 Metamorphic Albian (II),

4.1 � 0.1 cm from contact

+++ ++ 12.5 21.4 �5.58

SOU 01-163a* 7 Vein, 2 cm wide – tr 33 20.7 �2.72 22.8

SOU 01-163b* 7 Metamorphic Albian (II),

1.2 � 0.3 cm from 163a

++ +++ 14 21.2 �5.65 20.0

SOU 01-164 8 Metamorphic Albian (II) +++ +++ 34 22.4 �0.99

VIR 01-129 1 Metamorphic Albian (II) – +++ 38 21.7 �1.74

VIR 01-133b 2 Metamorphic Albian (II) 10 21.2 �4.58

VIR 01-137a* 6 Vein, 2 cm wide, 2 m long, + tr 77 21.3 �4.09 0.70854 23.3

P. Boulvais / C. R. Geoscience 348 (2016) 301–311 305
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the reactants: if the protolith contains very little calcite,
the decarbonation reaction cannot proceed far because of
the rapid disappearance of calcite; if the protolith contains
very large amounts of calcite, decarbonation is also limited

(for example, marbles are the isochemical recrystallization
product of limestones). In Fig. 2, we can infer that the
calcite/silicate ratio is quite variable, which is the cause of
variable decarbonation reaction progress. Goujou et al.

Table 1 (Continued )

Mineralogy Calcite Silicate

Sample Location Type Biotite Opaques wt% d18O% d13C% 87Sr/86Sr d18O%

VIR 01-137b* 6 Metamorphic Albian (II),

1.5 � 0.5 cm from 137a

+++ +++ 6.4 23.0 �4.92 0.70977 21.4

VIR 01-139a* 7 Vein, 3 cm wide 94 21.6 �0.16 22.8

VIR 01-139b* 7 Metamorphic Albian (II),

1 � 0.5 cm from 139a

35 22.0 �4.18 20.9

BOUZ 00-82 1 Metamorphic Albian (III) + +++ 12 22.4 �3.13

BOUZ 00-83 1 Metamorphic Albian (III) +++ +++ 11 21.5 �5.63

BOUZ 01-141a* 2 Vein, 0.5 cm wide – – 82 23.7 2.85 0.70735

BOUZ 01-141b* 2 Metamorphic Albian (II),

1.5 cm from 141a

– + 47 24.0 1.74 0.70739

BOUZ 01-144a* 3 Vein, 1.5 cm wide 89 21.0 2.58

BOUZ 01-144b* 3 Metamorphic Albian (III),

1.5 cm from 144a

31 21.3 0.51

TAU 01-79a* 6 Vein, 1 cm wide, 1 m long – – 88 24.6 1.79

TAU 01-79b* 6 Metamorphic Albian (II) – + 81 24.6 1.80

TAU 01-80a* 7 Vein, 1 cm wide – tr 83 24.7 3.29

TAU 01-80b* 7 Metamorphic Albian (II) – + 72 25.0 2.93

TAU 01-81a* 8 Vein, 2 cm wide – – 90 24.2 3.88 0.70734

TAU 01-81b* 8 Metamorphic Albian (II) tr ++ 71 24.1 2.35 0.70741

Samples quoted with an asterisk are associated as vein – host rock pairs. Roman numbers in the Type column relate to the metamorphic grade as labelled in

Fig. 1b. Symbols for abundance of Bt and opaque minerals are:–: 0%; tr: 0–1%; +: 1–5%; ++: 5–10%; ++ + : 10–15%. d18O values are presented relative to

SMOW, d13C relative to PDB standards, respectively.

Fig. 3. (a) Folded vein crosscutting an Albian calcite-rich black shale where foliation is poorly defined (sample DSX 00-51). (b) (c) Microscopic views of vein

– host rock contacts. In (b), foliation S1 is oblique to the contact but define a single orientation on each side. In (c), a narrow calcite depletion zone is visible in
the host rock close to the vein.
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88) proposed a reaction of dehydration–decarbonation
calcareous siltstones in the area, which leads to biotite

 anorthite formation, at about 350 8C:

s þ 2 Chl þ 12 Cal þ 14 Qtz ¼ 3 Bt þ 12 PlðAnÞ
 12 CO2þ 16 H2O

The liberated CO2 is enriched in both 18O and 13C

these isotopes and acquires lower and lower d18O and d13C
values as decarbonation proceeds. Minimum values are
obtained in rocks, which have undergone the most
decarbonation, i.e. the rocks with low contents of calcite.
This theoretical evolution is described by the curves in
Figs. 4a and b. These calculations include the isotopic
effects of O equilibration between calcite and a silicate
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phase. The d18O value of the clastic material is set between
22% and 16% to take account of heterogeneity in clastics
between a high-d18O clay-rich end-member and a low-
d18O Qtz-rich one. This range encompasses the value of
21.8%, actually measured for two Albian unmetamorphic
rocks (Table 1). The curves were calculated considering an
escaping fluid with H2O–CO2 in equal proportions and
using the carbon Cal–CO2 and oxygen Cal–CO2 and Cal–
H2O fractionations factors of Chacko et al. (1991) and
Zheng (1999), respectively, at a temperature of 350 8C. In
the calculation of this equilibration–decarbonation–dehy-
dration process, a mole of calcite reacts with a mole of
silicate. The results have been transformed into weight %
for clarity. In Fig. 4, one can observe that a process of
equilibration–decarbonation reproduces rather well the
isotopic characteristics of the Albian metamorphic rocks.

Now, considering the quartz – calcite veins, these also
display large variations in both d18O and d13C, defining an
envelope that is close to that defined by Albian metamor-
phic rocks, slightly displaced toward higher d13C and lower
d18O values (Fig. 4a). In Fig. 6, in which vein – host rock
pairs are considered, we can observe a good correlation
between the O and C isotope compositions of the veins and
those of the local host rocks. We infer that the isotopic

heterogeneities of the Albian metamorphic rocks are
transmitted to the veins, which is a strong argument in
favour of a closed system evolution. The studied veins do
not require any contribution of externally-derived fluids in
the Boucheville Basin. The Sr isotope composition of the
Albian metamorphic rocks are consistent with such a
model as they can be simply explained by resulting from
the mixing of two components (marine carbonate and a
detrital clay-rich component) with distinct Sr content and
Sr isotope compositions (Fig. 8).

6.2. Mode of vein formation

Veins are composed of calcite and quartz, the abun-
dance of calcite being related to the abundance of calcite in
the host rock. In veins, calcite and quartz are in mutual
isotopic equilibrium at apparent temperatures (200 8C–
300 8C; Fig. 5) lower than those estimated using Raman
spectroscopy (530 8C–580 8C; Clerc et al., 2015; Chelalou
et al., this issue). This observation may indicate either that
veins formed early in the metamorphic history of the
Boucheville Basin (recording prograde equilibrium) or that
the isotopic equilibration is retrograde; in this latter case
the estimated temperature is consistently lower than the

0

10

20

30

40

50

60

-2 -1 0 1 2 3 4 5

20.0

20.5

21.0

21.5

22.0

-2 -1 0 1 2 3 4 5

-7

-6

-5

-4

-3

-2

-2 -1 0 1 2 3 4 5

0.7080

0.7085

0.7090

0.7095

0.7100

-2 -1 0 1 2 3 4 5

Distance to contact (cm)

Vein Host Rock

δ
18

O
C

al
 (

‰
)

δ
13

C
 (

‰
)

w
t%

 c
al

ci
te

a)

b)

c)

d)

87
Sr

/86
Sr

(C
al

ci
te

)

Fig. 7. Evolution of the (a) calcite content and (b) oxygen, (c) carbon and (d) strontium isotope compositions along a profile perpendicular to the contact

between a vein and its host rock (samples SOU 01-160). Horizontal error bars correspond to the actual width of samples (got by sawing); vertical error bars

correspond to the analytical precision. This precision is comprised inside the markers in (a), (c), and (d).



act
Reg
tem
vei

roc
Inte
nea
me
wa
exa
The
Con
esti
den
res
aro
roc
sam
calc
cru
ma
par
bei
pho
imp
con

also
hos
(sam
nea
No 

sinc
calc
01-
the
sam
inco

Fig. 

com

dots

qua

calc

Albi

from

0.70

P. Boulvais / C. R. Geoscience 348 (2016) 301–311 309
ual measurements near (Chelalou et al., this issue).
ardless of the exact cause of the rather low apparent
perature of equilibrium, the isotopic characteristics of

ns argue for their formation at metamorphic conditions.
Veins contain higher amounts of calcite than their host
ks as shown for example by sample SOU 01-160 (Fig. 7a).
restingly, the amount of calcite in the host decreases
r the contact. This can be interpreted as a depletion
tasomatic halo around the vein, in which host rock calcite
s dissolved, then reprecipitated in the vein. In this
mple, both the depletion halo and the vein are 2 cm wide.

 host rock has lost about half of its initial 13 wt% Cal.
sidering a vein 1 m long, 1 m high and 2 cm wide, we can
mate that it contains about 21 kg of calcite using
sities of calcite and quartz of 2.71 and 2.66 gm�cm�3,

pectively. If we assume that the depletion halo is uniform
und the vein and if the initial content of calcite in the host
k does not vary (which is clearly not the case as many
ples contain usually 50% of calcite), the total amount of
ite provided by the host rock would be about 7 kg. This

de estimate is a minimum and we thus conclude that the
terial used in crystal growth in veins originates at least in
t from the local host rock, the complementary material
ng likely derived from underlying volumes of metamor-
sed rocks. This is consistent with the isotopic data that
ly a fluid regime evolution under closed-system
ditions.
The Sr isotope compositions of the Albian rocks and veins

 argue for a derivation of the vein material from the local
t rock. For two of the four vein–host rock pairs analysed

ples BOUZ 01-141 and TAU 01-81), the 87Sr/86Sr ratio is
rly identical (87Sr/86Sr = 0.70737 � 0.0004; Table 1, Fig. 8).
radiogenic Sr has been incorporated in the calcite phase
e crystallization and no input of radiogenic Sr accompanied
ite precipitation. For the two other pairs (VIR 01-137, SOU
160), the Sr isotope ratio of the vein is lower than the one of

 host rock (Table 1, Fig. 8). In Fig. 7d, the 87Sr/86Sr ratio of
ples SOU 01-160b increases towards the vein. This is
mpatible with an isotopic exchange between Sr of the

Albian rock and Sr from the vein material as the latter has lower
87Sr/86Sr. We argue that the difference between veins and
hosts are related to mode effects. The two samples SOU 01-
160b and VIR 01-137b are biotite-rich (Table 1). This mineral
formed by recrystallization of clays including sericite during
metamorphism – see the equation of Goujou et al. (1988)
recalled above. K-rich sericite has a high Rb/Sr ratio and
consequently is characterized by an increase of its 87Sr/86Sr
with time. During metamorphic recrystallization, isotopic
equilibrium between unradiogenic Sr from calcite and
radiogenic Sr from sericite and biotite is facilitated by 87Sr
diffusion through the fluid phase and recrystallization. At the
time of vein formation, Cal veins freeze their 87Sr/86Sr ratio
whereas calcite in the host rock maintains its isotopic
equilibrium with the whole rock through 87Sr exchange with
Bt. The rate of 87Sr/86Sr increase in Cal host rock is even faster
after vein formation because the amount of Cal is decreased in
the host. This model of closed-system Sr isotope evolution,
consistent with the information obtained from stable isotopes,
is summarized in Fig. 9.

6.3. Consequences for heat transfer in the Boucheville Basin

The peculiar geometry of the NPMZ along the NPF
(Fig. 1) and the observation of some hydraulic fracturing
have led Dauteuil and Ricou (1989) to propose that the
circulation of hot fluids might have transported the heat
necessary to induce metamorphic recrystallization. If heat
was advected by fluids locally, the results presented here
rule out a regional role of fluids in transporting heat,
especially in the Boucheville Basin, and most probably in
other neighbouring Albian basins. It is irrefutable that
fluids circulated throughout these basins, as recorded by
the presence of the quartz – calcite veins described here.
These fluids have been generated during metamorphism of
Albian rocks through dehydration–decarbonation reac-
tions, and must have escaped from the basins. Given the
heterogeneity of the sedimentary assemblage (Fig. 2) and
without a precise estimate of the lithological assemblage
(what could be done from the work of Chelalou et al., this
issue), it would be hazardous to quantify the amount of
fluids liberated. It remains that the clay-rich sediments of
the Boucheville Basin must have liberated large amounts
of H2O–CO2 fluids during prograde metamorphism in the

8. Relationship between the calcite content and the Sr isotope

position of veins (empty squares) and their local host rocks (HR, black

). The dashed straight lines link veins-HR pairs. The curvature of the

litative mixing curves was obtained considering a higher Sr content in

ite than in the clastic material in the original sediment. The field of

an black shales is from Rousset et al. (2005), the field of carbonate is

 Veizer et al. (1999) and encompasses the reference value of

Fig. 9. Model of strontium isotope evolution of the calcitic part of Albian

rocks (HR) and veins during sedimentation and metamorphism. An age
74 from Veizer (1989). compilation of the events is available in the Fig. 3 of Clerc et al. (2015).
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order of, at strict minimum, 2 kg to 3 kg of fluids per
100 kg of rocks. We can thus propose a hypothesis about
the thermal impact of the fluid circulation proposed here.
The Albian rocks have been heated from below because of
mantle exhumation beneath the Boucheville Basin (Clerc
et al., 2015). The first Albian rocks to dehydrate–
decarbonate are those at the base of the basin. These
reactions led to the origin of fluids that have migrated
upwards throughout the basin, advecting heat to higher
levels. So, whereas decarbonation–dehydration reaction at
the base of the basin may have buffered heat propagation,
the flux of fluids upwards might have transported heat.
The expected consequence is a relatively homogeneous
temperature distribution within the basins, whereas
isotherms would have been compressed towards the base
of the basin. The Raman spectroscopic data of Chelalou
et al. (this issue) consistently emphasize a homogeneous
distribution of temperature within the basin, between
530 8C and 580 8C. Thus, if fluid circulation was not the
cause of heat transport at the origin of the North Pyrenean
Metamorphism, fluid circulation throughout the Albian
Basins may have played a significant role in homogenising
the temperature field at the scale of the basins.

7. Conclusion

The isotopic analysis of the quartz-calcareous Albian
black shales, metamorphosed during the North Pyrenean
Metamorphism, in the French Pyrenees, and the associated
syn-tectonic veins network suggest the following conclu-
sions.

1/Veins composed of calcite and quartz were formed
during the NPM. Host rocks exert a control on the
mineralogy of the veins. A significant portion of the
elements contributing to calcite growth in veins came from
the local host rocks.

2/Veins do not record any infiltration of externally
derived fluids as their oxygen and carbon isotope
compositions are controlled by those of the local host
rocks, in a rock-dominated fluid-rock interaction system.

3/Veins represent the escape pathway of fluids gener-
ated during metamorphism through dehydration–decar-
bonation reaction of the Albian rocks. Metamorphism is a
cause, not a consequence, of fluid circulation.

4/Fluids generated within the Boucheville Basin may
have acted to homogenize the temperature field in the basin.
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pyrénéenne. Analyse de la déformation dans une portion de chaı̂ne à
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