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Abstract 

The dynamics of magma flow is highly affected by the presence of a crystalline load. During 

magma ascent, it has been demonstrated that crystal-melt segregation constitutes a viable 

mechanism for magmatic differentiation. Moreover, crystal-melt segregation during magma 

transport has important implications in term of magma rheology, but also in term of differentiation 

of the continental crust. However, the influences of the crystal volume percentage (φ), of their 

geometry, their size and their density on crystal-melt segregation are still not well constrained. To 

address these issues, we performed a parametric study using 2D direct numerical simulations, which 

model the ascension of a crystal-bearing magma in a vertical dyke. Using these models, we have 

characterised the amount of segregation as a function of different physical properties including φ, 

the density contrast between crystals and the melt phase (Δρ), the size of the crystals (Ac) and their 

aspect ratio (R). Results show that small values of R do not affect the segregation. In this case, the 

amount of segregation depends upon four parameters. Segregation is highest when Δρ and Ac are 

large, and lowest for large pressure gradient (Pd) and/or large values of dyke width (Wd). These four 

parameters can be combined into a single one, the Snumber, which can be used to quantify the amount 

of segregation occurring during magma ascent. Based on systematic numerical modelling and 

dimensional analysis, we provide a first order scaling law which allows quantification of the 

segregation for an arbitrary Snumber and φ, encompassing a wide range of typical parameters 

encountered in terrestrial magmatic systems. Although developed in a simplified system, this study 

has strong implications regarding our understanding of crystal segregation processes during magma 

transport. Our first order scaling law allows to immediately determine the amount of crystal-melt 

segregation occurring in any given magmatic dyke system. 

 

Keywords: Segregation; Differentiation; Dykes; Magma dynamics; Numerical modelling 
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1. Introduction 

 

1.1. Background 

 

Magmatic differentiation constitutes one of the major mechanisms that shapes internal structures 

and governs the chemical composition of various reservoirs in planetary bodies. The terrestrial 

continental crust, for instance, grew and differentiated through magmatism. Its present-day structure 

implies a two-stage process including extraction of basaltic magmas sensu lato from the mantle 

followed by their differentiation and new partial melting events within the crust, leading to the 

formation of a more evolved, granitic sensu lato, upper crust (e.g., Taylor and McLennan, 1995; 

Hawkesworth and Kemp, 2006). Amongst the processes governing the upward travel of magma 

through the mid- to upper continental crust, dyking constitutes a key mechanism (e.g. Nicolas, 

1986; Clemens and Mawer, 1992; Petford et al., 2000; Vigneresse and Clemens, 2000). Therefore, 

it appears that upward magma transport in dykes through the crust inherently promotes magmatic 

differentiation. Unfortunately, it is not possible to directly observe such processes occurring at 

depth. Instead, mineralogical and geochemical observations are used to identify suites of cogenetic 

rocks, somehow related to each other, and which provide snapshots of different stages of magmatic 

differentiation. These observations of mineralogical and geochemical differentiation trends in rock 

suites ranging from basaltic to granitic compositions have often been explained by fractionation of 

crystals, at depth, in ascending magmas (e.g. Philpotts et al, 1998; Tartèse and Boulvais, 2010; 

Fourmentraux et al., 2012; Morfin et al., 2014; Ballouard et al., 2015). 

 

Nevertheless, the underlying physical mechanisms inducing magmatic differentiation during 

magma ascent remains unclear (e.g. Marsh, 2013). Thorough experimental studies have investigated 

the effects of the different physical processes involved during flowing of magmatic mushes, such as 

diapiric percolation or sedimentation of heavy particles, buoyancy-driven compaction, melt filtering 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 4 

in response to differential stresses (e.g., Bagdassarov et al., 1996a; 1996b; Bagdassarov and 

Dorfman, 1998) or gas-driven filter pressing (Sisson and Bacon, 1999). To date, quantitative studies 

of processes, such as crystal-melt segregation during magma ascent in dykes, have not been carried 

out. In a previous numerical study, Yamato et al. (2012) argued that crystal-melt segregation in 

dykes seems to be viable for viscous granitic systems under specific conditions, but further 

investigations are required to precisely quantify the effects of the different physical parameters at 

play. Whilst the impact of the abundance or the shape of crystals on the effective viscosity of the 

magmatic mushes have been intensively addressed (e.g., Costa et al., 2009, and references therein), 

their impact on the amount of crystal-melt segregation itself, especially in the case of magma 

flowing within a dyke, has not yet been comprehensively investigated. This study therefore aims to 

fill this gap and proposes to characterise the amount of segregation through a series of two-

dimensional numerical experiments.  

 

1.2. Crystal-melt segregation processes 

 

Mechanical segregation refers to the process by which melt can separate from the surrounding 

crystals in a magma. Processes inducing segregation in emplaced magmatic intrusions and 

deforming partially molten aggregates have been extensively studied (e.g. McKenzie, 1984; 

Fountain et al., 1989; Brown et al. 1995; Vigneresse et al., 1996; Rabinowicz and Vigneresse, 2004; 

Katz et al., 2006; Suckale et al., 2012a, 2012b). In dykes, segregation may also occur when the 

rising magma carries a negatively buoyant crystalline load (Yamato et al., 2012), or when obstacles 

affect the flow (e.g. wall roughness). The amount of segregation is considered equal to zero if the 

crystal volume percentage φ does not change during magma ascent (i.e. the composition of the 

magma is not modified during its ascent). Conversely 100% of segregation corresponds to the cases 

where the melt phase only is extracted from the mush upward leading to a complete separation 

between the entire crystalline load and the melt (constituting, by the way, the essential idea of 

fractional crystallisation; Bowen, 1928). The primary aim of this study is to constrain the physical 
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conditions allowing for crystal-melt segregation during magma ascent in a dyke. The mechanism by 

which segregation occurs in dyke will be discussed in detail within Section 4. Various mechanisms 

have been invoked to explain crystal-melt segregation in magmas, such as compaction and filter-

pressing (e.g., see Bagdassarov et al., 1996a, Bagdassarov and Dorfman, 1998). These studies have 

investigated the physical conditions promoting either compaction or filter-pressing. Irrespective of 

the type of segregation mechanism, the aim of this study is to be able to (i) predict whether 

segregation will occur for a given system and (ii) quantify the amount of crystal-melt segregation.  

 

1.3. Two-phase flow regimes 

 

Magmas are multiphase systems, containing crystals, gas bubbles and silicic melt in different 

volumetric proportions. However, we do not considered here the possible effects of gas bubbles, 

since during magma transport at depth in the continental crust, magmatic volatiles are dissolved in 

the melt phase (e.g., Zhang et al., 2007). We thus consider magmas as two-phase systems composed 

of solid crystals suspended in a melt phase below the maximum packing fraction (Saar and Manga, 

2002). The dynamics of such systems is highly dependent on the volume fraction occupied by each 

phase (e.g., Costa et al., 2009) and on the viscosity of the carrier fluid. In the context of Stokes 

fluids, which we consider here (i.e. rigid crystal suspended in magmatic melt), we summarise three 

different two-phase flow regimes. A dilute flow is one in which the volume percentage of the solid 

phase (φ) is small (i.e., crystallinity lower than ~ 1%) and the particle motion is purely determined 

by the fluid motion, which give rise to surface and body forces acting on each particle (one-way 

coupled). With increasing volume fraction of the solid phase (i.e., crystallinity from ~1% to ~30%), 

feedbacks between the motion of the solids and the fluid occur due to hydrodynamical interactions 

(two-way coupled). When φ is higher than ~ 30%, dense flow ensues in which particle interactions 

(e.g. collisions) provide the dominant mechanism in defining the particle motion (four-way coupled 

- i.e. implying solid-solid, fluid-solid, solid-fluid, fluid-fluid interactions). 
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We note that a diverse range of numerical methods have been developed to study the dynamics of 

dispersed two-phase systems – however the “method of choice” is strongly related to the flow 

regime of interest (see Prosperetti and Tryggvason (2007) for an overview of the modelling 

approaches). To understand segregation processes within dykes, we are primarily concerned by the 

systems undergoing a transition from being two-way coupled to being four-way coupled. In this 

context, the four-way coupled end-member would represent the deformation of a partially molten 

rock possessing a small fraction of melt. In such a situation, the deformation of the solid phase 

dominates the deformation of the melt. This end member can be efficiently modelled using a "two-

fluid” or “two-phase” model where volume averaged properties of the solid and melt phase are 

represented and evolved through time (McKenzie, 1985; Scott and Stevenson, 1986; Dufek and 

Bergantz, 2005; Keller et al., 2013). Two-phase models do not explicitly represent the finite size 

and geometry of individual solids. Consequently, such methods cannot be used to accurately model 

the dynamics of two-way coupled systems which require resolving the hydrodynamical interactions 

and coupling between the fluid motion and particle motion. 

 

1.4. Motivation of this study 

 

In this paper, we present two-dimensional (2D) numerical models of crystal-bearing magmas 

ascending in a vertical conduit simulating a dyke. We quantify the amount of crystal-melt 

segregation and its dependency on magma properties (i.e., its crystal volume percentage, the density 

contrast between crystals and melt, the size of the crystals and their aspect ratio) through a 

parametric study. Based on the results obtained from this systematic study, we develop a scaling 

law that allows predicting the amount of segregation as a function of (i) the physical characteristics 

of the magmatic system and of (ii) parameters governing its ascent in a vertical dyke. This study is 

focused on the segregation of crystals presenting the same size, typical for monodisperse 

suspensions, within a dyke subject to a pressure gradient across a vertical column. The models have 

been designed to simulate ascending magma involving crystals initially present in the melt and 
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directly apply to granitic dykes systems developing at depth in the crust as it has been proposed that 

magmatic differentiation during magma transport could occur in such systems, based on 

petrological and geochemical considerations (e.g., Tartèse and Boulvais, 2010; Morfin et al., 2014; 

Ballouard et al., 2015). Nevertheless, the results can be generalised to more mafic systems where 

physical parameters (i.e., density contrast between crystals and melt, crystal abundance, pressure 

gradient, etc.) remain similar (assuming that other processes such as thermal dependency or volatile 

exsolution of a gas phase does not come into play). Since such a study on magma ascending in a 

dyke has never been carried out before, it provides important results for our understanding of 

crystal-melt segregation processes. In addition, we also provide in the discussion a comparison with 

previous studies that have addressed questions related to segregation processes in different contexts 

and discuss the limitations of our model. 

 

2. Methods 

 

2.1. Numerical Model 

 

To study segregation processes within ascending crystal-bearing magma columns, we use in this 

work a 2D direct numerical simulation (DNS) methodology. We consider the dynamics of the 

multi-phase flow to be governed via incompressible Stokes flow (Yamato et al., 2012). In our DNS 

formulation, we explicitly represent finite sized, arbitrary shape crystals as prismatic inclusions 

with viscosity ηc and density ρc. The melt phase is described as a low viscosity fluid, ηm << ηc, with 

density ρm < ρc. We consider non-deforming crystals – i.e. the activation energies between the 

suspending melt and the crystals are not comparable, thus implying that the deformation is totally 

accounted for by the melt phase (e.g. Caricchi et al., 2008). For this, we enforce that the strain-rate 

tensor within each crystal domain vanishes by defining a crystalline viscosity of ηc = 10
6
 ηm, thereby 

effectively ensuring each crystal behaves as a rigid body (see Fig. A3 in Appendix). Hence, in a 
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frame of reference moving with the fluid velocity, ηm , ηc, ρm and ρc remain constant (i.e., 



Di
Dt

 0 ; 



Di
Dt

 0 , with i = m or c for the melt or the crystal, respectively).  

 

Our numerical code solves, in two dimensions, the Stokes equations (Eqs. 1 and 2), subject to the 

incompressibility constraint (Eq. 3): 




P

x

 xx
x


 xz
z

 0,   (1) 




P

z

 zz
z


 zx
x

 g,   (2) 



Ux

x

Uz

z
 0,    (3) 

where P, σij, ρ, and g are the pressure, the deviatoric stress tensor, the density, and the gravitational 

acceleration, respectively. Ux and Uz are the two components of the velocity vector in 2D (x, z) 

Cartesian coordinate system. These equations are discretised over a rectangular model domain using 

a finite difference staggered grid. The spatial discretisation of the material properties (viscosity and 

density) are provided via Lagrangian markers (Gerya and Yuen, 2003). No distinction is made 

between the markers used to define the crystals and the melt, other than in the definition of their 

material properties (i.e., viscosity and density). At each time step, material properties defined on the 

markers are interpolated to the nodes in the finite difference mesh using a distance-dependent 

interpolation (1-Cell) to solve the Stokes problem (Eqs. 1, 2 and 3). All markers are then evolved 

forward in time using a 4
th

 order (in space) Runge-Kutta scheme. In our formulation, no special 

treatment is required to deal with crystal collisions. Since we model the fluid flow outside and 

inside crystals, and both fluid regions are incompressible, inter-penetration of crystals cannot occur. 

However, due to temporal errors associated with the time integrator, particles may become close 

(i.e., separated by less than the size of one control volume length). In this case, the projection 

method used to map marker viscosities to cell viscosities may result in the apparent connection of 

two crystals.  
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Further details concerning the accuracy of this method for fluid-solid interactions are available in 

Duretz et al. (2011) and Yamato et al. (2012). Particularly, readers can refer to Yamato et al. (2012, 

section 3) for the convergence tests showing the evolution of the discretisation errors for both the 

velocity and the pressure. Moreover, the only differences between the numerical code used in this 

study and the one used in Yamato et al. (2012) are (i) the implementation of inertia and (ii) the 

usage of an OpenMP parallel sparse direct solver, PARDISO (Schenk and Gärtner, 2004), 

employing LU factorisation. Verification test concerning the implementation of inertia is presented 

in Appendix A1. Simulations of the reference experiment performed using 1, 2, 4, 8 and 16 threads 

yielded similar results. 

 

2.2. Model description  

 

The model domain is defined as a 1 m wide (W) and 7.75 m high (L) box (Fig. 1a). The bottom of 

the domain consists of a 2.5 m high magma reservoir constituted by both crystal and melt. A 

vertical conduit with a width of 0.5 m (Wd) and a height of 5 m (Ld) representing the dyke is directly 

located above the reservoir. Rigid blocks are located on both sides of the conduit and an additional 

crystal-free reservoir is located above the dyke. The positions of the crystals within the reservoir are 

randomly generated. Such approach allows producing initial crystal configurations for different 

initial crystal volume percentage (φ, up to 45%), size (Ac), or aspect ratio (R). The melt viscosity 

(ηm) is set to 10
4
 Pa.s, which is a typical value for a granitic melt around 800 °C containing 4-5 

wt.% H2O (Scaillet et al., 1996; Clemens and Petford, 1999), whereas the crystals are considered as 

rigid (ηc =10
10

 Pa.s). The density of the melt (ρm) is set to 2400 kg.m
-3

, which is also typical of 

melts with granitic compositions (e.g., Knoche et al., 1995), whereas the density of the crystals (ρc) 

constitutes one of the parameter investigated in this study. Both the negative buoyancy of crystals 

and the applied pressure gradient are responsible for driving the flow within the model domain. The 

negative buoyancy force is generated by the density difference between the solid and melt phases 

(Δρ). The pressure gradient (Pd) results from the motion of the rigid blocks (ηb =10
11

 Pa.s) located 
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on each lateral side of the dyke and indenting the magmatic mush with a constant velocity Uz 

defined as: 

 



Uz  
PdWd

2

24m
.      (4) 

 

The value of the imposed pressure gradient therefore corresponds to the pressure gradient obtained 

in the crystal-free case (see Appendix A in Yamato et al., 2012). In our simulations, a pressure 

gradient of 24 Pa.m
-1

 is used. This value ensures the onset of segregation for the considered 

experimental conditions (Yamato et al., 2012). A grid resolution of 401 by 1551 nodes (i.e. 

producing a spatial resolution of Δx = 2.5 mm and Δz = 5 mm) was used for the numerical 

calculations (resolution tests performed in Yamato et al. (2012) have shown that this resolution is 

sufficient to resolve the essential features of the crystalline flow), and ~5 000 to 20 000 time steps 

were usually performed during each simulation. Boundary conditions are set to free slip on all sides 

except along the rigid blocks where Ux = 0 and Uz is imposed following the Eq. 4. The numerical 

simulations were carried out under the acceleration of gravity (g =10 m.s
-2

). In the following, we 

will investigate the effect of the crystal volume percentage, density, size, and aspect ratio on the 

process of mechanical segregation of crystals from the melt during magma ascent in dyke.  

 

Contrary to natural systems, the scenario modelled in this study uses an idealised geometry. It does 

not take into account any complexity of the dyke structure (e.g., rough edges, obstacles affecting 

segregation processes). Moreover, the applied pressure gradient is controlled (and constant), which 

is ensured by the rectangular transition geometry between the reservoir and the dyke. This also 

implies that fracturing processes leading to dyke formation are not investigated here. For this study, 

we, therefore, consider such approach as valid, limiting the number of parameters investigated to 

those related to the magmatic mush itself (i.e., crystal volume percentage φ, crystal-melt density 

contrast Δρ, crystal size Ac and their aspect ratio R). Our model also ignores some additional 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 11 

parameters, such as temperature or the effect of chemical processes (e.g., melt crystallisation, gas 

exsolution, etc.). These parameters are obviously important in terms of volcanic processes and 

magma dynamics (e.g., Dingwell, 1998; Manga et al., 1998; Turcotte and Schubert, 2002), and 

could promote the formation of some of the textures that have been described in dykes, such as 

chilled margins (Huppert and Sparks, 1989) or local concentrations of crystals toward the centre of 

dykes (e.g., Bagnold, 1954; Barrière, 1976). However, we consider them as negligible in this study 

focusing on the ascent of granitic-like magma at depth in the crust, where gas phase has not yet 

been exsolved from the melt since volatiles are dissolved in it (e.g., Zhang et al., 2007) and where 

mechanical advection of particles is orders of magnitude faster (~10
-5

 m.s
-1

 here) compared to the 

rate over which chemical diffusion, and hence crystal growth, would operate (chemical diffusion of 

alkalis, for example, such as Li, Na or K typically occurs at rates of ~10
-10

 to 10
-12

 m
2
.s

-1
 at 700-800 

°C in rhyolitic melts; Zhang et al., 2010). 

  

3. Results 

 

3.1. Reference model 

 

In the reference model, the magma reservoir initially contains a crystal volume percentage φ of 15% 

(200 crystals) randomly distributed in space. The density difference between the crystals and the 

melt Δρ is set to 300 kg.m
-3

 (i.e. ρc = 2700 kg.m
-3

). Each crystal has an area (Ac) of 0.025  0.075 

m
2
 and an aspect ratio R of 3, corresponding to the ratio between its long and short axis. 

Compression of the reservoir due to the downward motion of the rigid blocks induces flow within 

the dyke conduit (Fig. 1b). However, as the crystals are denser than the melt (Δρ > 0), convection 

may occur during the magma ascent leading to the extraction of the liquid phase above the crystals. 

This type of mechanical segregation results from the competition between the pressure driving the 

flow through the conduit and the negative buoyancy of the crystalline load, which acts in the 

opposite direction. Again, these parameters have been selected for the reference model in order to 
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simulate ascent in a dyke of a typical granitic magma, constituted by a melt with a viscosity of ~10
4
 

Pa.s (e.g., Clemens, 1998; Scaillet et al., 1996; Clemens and Petford, 1999) and a density of ~ 2400 

kg.m
-3

 (Knoche et al., 1995), and crystals (such as plagioclase and K-feldspars, with densities of ~ 

2600-2800 kg.m
-3

) therefore characterised by a density difference Δρ relative to the melt in the 

range of 200-400 kg.m
-3

. The crystal dimensions used in the reference model may appear large. 

However, such crystal sizes are commonly observed in granites in nature (e.g., Vernon, 1986; 

Solgadi and Sawyer, 2008; Vernon and Paterson, 2008, Barboni and Schoene, 2014). The 

advantage of using large crystals in the reference model is to ensure that they are sufficiently 

resolved by our computational grid. Moreover, results from this reference setup can be easily 

rescaled. Hence, for example, the results obtained, in terms of physical process, will be similar 

considering a crystal twice smaller in length (i.e., four times smaller in terms of surface area Ac) 

evolving in a dyke twice thinner if time and pressure gradient are also scaled accordingly (see 

Yamato et al., 2012). Finally, since the size of the crystals, their density, and their aspect ratio 

constitute parameters tested through our parametric study, the choice of arbitrary lengths, density 

and aspect ratios for the reference experiment is not crucial, their respective influences being 

discussed in detail in Section 3.3. 

 

3.2. Segregation definition 

 

In this study, we define the amount of crystal-melt segregation from the magma as follows: 

 



Seg 
Vm Vt

V Vt
,      (5) 

 

where V and Vm correspond to the total volume of material (crystal and melt) and to the volume of 

melt only located within the dyke (i.e. material above the base of the rigid blocks, see Fig. 2 for 

illustration), respectively (and V=Vm+Vc, see Fig. 2). Vt corresponds to the theoretical volume of 
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melt that would be obtained considering no segregation and can be calculated for any crystal 

fraction (φ) as: 

 



Vt V 1 .       (6) 

 

V can be also obtained through time t, analytically, by considering a crystal-free case (Fig. 2a) and 

using the following equation (See Appendix in Yamato et al., 2012 for further details): 

 

   



V 
2PdW d

3t

24m
.       (7) 

 

Segregation (Seg) in the model can therefore be computed from the volume of melt measured 

within the dyke. Fig. 2c shows the evolution of V, Vm, and Vt for the reference model through time. 

The corresponding segregation values are plotted in Fig. 2d. This figure shows that crystal-melt 

segregation stabilises after an initial transient stage. Values of segregation for each time-step 

between 20 000 s and 40 000 s were integrated over time to ensure that they are representative of 

steady-state segregation for each model. This also permits to avoid any possible perturbation, 

caused, for example, by injection of a large volume of material, originally resting at the bottom of 

the reservoir, which then locally contains a higher crystal fraction. Segregation thus refers to a 

segregation amount, in contrast with the segregation rate (volume of extracted melt with time), 

which in our case (between 20 000 s and 40 000 s) is almost constant in time.  

 

3.3. Parametric study 

 

 3.3.1. Initial crystal arrangement 
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To study the impact of the initial crystal arrangement in our simulations, we ran two end-member 

series of simulations with crystals initially oriented either horizontally or vertically (Fig. 3a). 

Results after 40 000 s of the numerical simulation are presented in Fig. 3b for a volume percentage 

φ of crystal of 15%. Altogether, these results show that the initial arrangement of the crystals in the 

magma has a limited impact on the flow dynamics inside the conduit. Fig. 3c illustrates the 

dependency of the amount of segregation in the dyke to the initial crystal fraction for vertically-, 

horizontally- and randomly- distributed crystals where only small fluctuations were obtained over 

the crystallinity range. This shows that small variations in the segregation values are observed 

between φ = 15% and φ = 30%, but they never exceeded 10%. The initial crystal arrangement, 

therefore, does not influence whether segregation will occur or not.  

 

 3.3.2. Crystal aspect ratio 

 

Previous studies focused on magma rheology have shown that crystal aspect ratio plays an 

important role on the effective magma viscosity (e.g. Mueller et al., 2010; 2011; Cimarelli et al., 

2011; Picard et al., 2013). In order to study the impact of crystal aspect ratio R on the segregation, 

we designed several numerical experiments in which R varies while keeping the crystal areas Ac 

fixed (which ensure a constant mass for the crystals). Results for φ = 15% are presented in Fig. 4 

for R = 1, 2, 3, 4, 5 and 10. R can affect the behaviour of the magma within the dyke (hence the 

segregation) when the long axis (Lc) of the crystals is larger than ~1/6 of the dyke width. In the 

other numerical simulations (Lc < 1/6 Wd), the effect of R on the amount of segregation process 

appears insignificant (Fig. 4). Thereafter, we will consider this last case, which appears to be the 

most frequent in nature, even though we are well aware that in extreme case (Lc > 1/6 Wd), R will 

play a primary role. Indeed, if crystals are of similar size as the conduit, it will impede flow 

significantly. 

 

3.3.3. Crystal volume percentage 
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Crystal fraction constitutes one of the most influential parameters on the behaviour of magmas (e.g. 

Vigneresse et al., 1996; Caricchi et al., 2007). Numerical experiments have been carried out for φ 

varying from 5% (67 crystals) to φ = 45% (600 crystals). The results obtained after 40 000 s of the 

simulation are presented in Fig. 5. They show that increasing the crystal fraction dramatically 

influences the magma behaviour in the dyke. When the crystal fraction increases, magma flow 

evolves from a typical Poiseuille-type, to an apparent Bingham-like flow (i.e., exhibiting a plug-

flow velocity profile), in agreement with previous studies (e.g. Petford and Koenders, 1998; 

Petford, 2003; Yamato et al., 2012). This transition takes place for φ > 15-35% and corresponds to 

the transition between ~90% and ~10% of segregation (Fig. 3c). Segregation amount decreases with 

increasing φ and follows a cumulative normal distribution law (Fig. 3c). At high crystal volume 

percentage (Fig. 5 at φ = 35% and 45%), in dense flows, melt extraction occurs differently. When 

the average crystal spacing is small, melt extraction (and hence segregation) is hindered. The liquid 

phase is collected in “melt pockets” located between crystal aggregates. The growth of melt pockets 

causes melt depletion and thus crystal aggregation in adjacent regions. The extraction of melt 

pockets may occur once their buoyancy overcomes the resistance of the surrounding crystalline 

mush. As a result, extraction of pockets occurs in pulses causing transient variations of the 

segregation. 

 

 3.3.4. Crystal-melt density difference 

 

As segregation results from the competing effects of negative crystal buoyancy and upward 

pressure gradient, the effect of the crystal-melt density difference (Δρ) naturally controls the amount 

of segregation. Fig. 6a shows how small variations of Δρ dramatically influence the segregation 

amount: the higher the density contrast, the larger the segregation. Fig. 6b illustrates how the 

cumulative normal distribution of segregation (which is a function of φ, see Section 3.3.3. above) 

changes with the crystal-melt density difference. When Δρ increases, the mean of the cumulative 
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normal distribution (i.e. the volume percentage of crystals φ needed to obtain 50% of segregation) 

increases and the standard deviation of this curve decreases (i.e. the slope of the curve increase). 

This means that the transition from 100% to 0% of segregation occurs for a smaller range of φ with 

increasing Δρ. 

 

3.3.5. Crystal size 

 

The crystalline load affects the segregation process; however the numerical experiments described 

above only consider a fixed total volume of crystals (at a given φ) and do not investigate the impact 

of the mass of each crystal (for a fixed Δρ). We performed several experiments considering the 

same crystal fraction but changing the size of each crystal (i.e., the surface area Ac, in 2D) while 

ensuring a fixed total crystalline mass. The results show that larger crystals result in a higher 

amount of segregation for a fixed φ (Fig. 7). The impact on the crystal-melt segregation process is 

drastic. For a crystal volume percentage φ of 15% for example, reducing the crystal size by a factor 

of 4 resulted in a decrease of the percentage of segregation from 85.6% to 17.3%. In contrast, 

increasing the crystal size by a factor of 4 resulted in their complete segregation from the melt 

(100%). The crystal size thus constitutes an important parameter controlling the amount of 

segregation. 

 

3.4. First order scaling for predicting the amount of segregation 

 

As presented above, the dominant parameters which control magma segregation during magma 

ascent are (1) the crystal-melt density difference, (2) the crystal size, (3) the initial fraction of 

crystal in the reservoir, and (4) the applied pressure gradient (Yamato et al, 2012). In order to 

combine these parameters, we propose a non-dimensional number, the Snumber, expressed as: 
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

Snumber 
gAc
PdWd

2 ,      (8) 

 

This number does not directly correspond to the segregation amount because the crystal fraction is 

not included; however the Snumber is suitable to describe the flow behaviour observed in the different 

numerical simulations. Indeed, for a given crystal fraction, the Snumber clearly encompasses the fact 

that segregation is facilitated when Δρ and Ac are high and that segregation is limited for high 

pressure gradient Pd and/or large dyke width Wd (Yamato et al., 2012).  

The value of Pd cannot be directly estimated from field observations and/or petrological studies. 

However, upper/lower bounds on the ascending magma maximum velocity (Uam) can sometimes be 

estimated. Hence, it is convenient to express Eq. 8 in terms of Uam using the pressure gradient 

formula (see Appendix A in Yamato et al., 2012), which yields: 

 



Snumber 
gAc

8amUam
,      (9) 

 

where ηam corresponds to the effective viscosity (i.e., the shear viscosity of a representative volume 

of an aggregate comprising both solid crystals and liquid melt) of the ascending magma. Expressed 

this way, the Snumber corresponds to the inverse of the prediction of Koyaguchi and Blake (1989) for 

mixing during the rise of a magma batch. As an example, a typical Snumber value for an ascending 

granitic magma considering Ac = 0.010.01 m
2
, Δρ = 250 kg.m

-3
, Uam = 10

-2
 m.s

-1
 and ηam=10

5
 Pa.s 

yields Snumber ~ 10
-5

. A similar calculation for basaltic material, with Ac = 0.010.01 m
2
, Δρ = 500 

kg.m
-3

, Uam = 10
-2

 m.s
-1

 and ηam = 10
2
 Pa.s, yields Snumber ~ 10

-2
. If ascent rates are 100 times lower 

(i.e. Uam = 10
-4

 m.s
-1

), the Snumber becomes on the order of 10
-3

 and 1 for the granitic and basaltic 

magmas, respectively. However, while such a formulation (Eq. 9) has the advantage not to 

explicitly depend on Pd, it appears not entirely satisfactory because this notation requires the 

knowledge of the effective viscosity of the ascending magma, which actually corresponds to the 
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least constrained parameter. For this reason, and because Pd is known in our experiments, we here 

after compute the Snumber according to the Eq. 8.  

 

The Snumber defined here corresponds to a non-dimensional number (or ratio) characterising the 

balance between gravitational and viscosity forces at the scale of the crystal. It does not correspond 

neither to the Smoluchowski number (Sm) nor to the Stokes number (St), and this difference needs to 

be clarified, especially because the Sm number has often been used to distinguish two types of 

segregation processes (e.g., Bagdassarov et al., 1996a; Bagdassarov and Dorfman, 1998), which 

could therefore lead to some misunderstanding (see also our discussion in Section 4.2.1.). The 

Smoluchowski number (Sm) corresponds to the ratio of the gravitational force over the pressure 

gradient force (e.g., Ramberg 1981, Weijermars and Schmeling, 1986) and is defined as: 

 Sm =
glr0

Dp
       (10)

 

where l, ρ0, Δp and g are the characteristic length, the density, the pressure difference and the 

gravitational acceleration, respectively. The Stokes number (St) is defined as the ratio between the 

pressure gradient force and the viscous force (e.g., Ramberg 1981, Weijermars and Schmeling, 

1986) such as: 

          (11)
 

where ηc and v correspond to the characteristic viscosity and velocity. St and Sm are useful when 

studying rocks flowing as a viscous continuum (e.g. Rayleigh-Taylor instabilities; Ramberg, 1981) 

but they do not correspond to the Snumber, which is actually equal up to a factor to the Ramberg 

number (Rm) introduced by Weijermars and Schmeling (1986) such as, for instance, Snumber =
1

8
Rm  

if Dr = r0  (see Eq. 9-11). Rm, St, Sm and the Snumber are thus related by 

  

Rm = St × Sm µ Snumber. Since 

the Snumber allows, for a given crystal fraction, to estimate the amount of segregation, we prefer to 

discuss our results in terms of the “Snumber” instead of “Rm” as it is explicitly tailored to the context 

of our study (we note that in Ramberg (1981), the ratio between the gravity force and the viscous 
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force was a nameless ratio).   

 

We conducted numerical simulations using different input parameters but with the same Snumber 

(Fig. 8). At a given crystal volume percentage φ, the results exhibit similar general behaviour. From 

this we conclude that the parameters related to the ascending flow (i.e. pressure gradient Pd and 

dyke width Wd) and the competing effect induced by the buoyancy of the crystal mass (combination 

of Δρ and Ac) can be included in such a single expression. 

 

In the case where the ratio of a characteristic crystal length compared to the dyke width is small 

enough (i.e., Lc < 1/6 Wd), the dominant parameters controlling the amount of segregation during 

magma ascent are the crystal fraction φ and the Snumber. This is clearly illustrated in Fig. 6b, which 

shows (i) that the amount of segregation highly depends on φ (“S” shape presented in Section 3.3. 

following a cumulative normal distribution) and (ii) that this dependency varies with different 

values of Δρ (i.e. different Snumber). Moreover, Fig. 6b shows that with increasing Snumber, the mean 

value of the cumulative distribution increases and the standard deviation decreases.  

 

The amount of segregation occurring during magma ascent in the dyke (Seg*) can be approximated 

by a cumulative normal distribution law (Fig. 3c and Fig. 6b), which can be expressed as follow: 

 



Seg  Seg* 1
1

2
1 erf

  

2 2



















,    (12) 

 

where μ and σ are the mean and the standard deviation of the cumulative normal distribution, 

respectively. The amount of segregation (Seg*) depends on the Snumber and the crystal fraction (φ). 

For a given Snumber, it is thus possible to fit the segregation values obtained from our numerical 

experiments and to obtain the corresponding values of μ and σ (Fig. 9a). A statistical fit was 

obtained using experiments described by different Snumber presented in Fig. 6b and additional 
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simulations for a Snumber = 5 (Δρ = 1600 kg.m
-3

). The obtained results are plotted in Fig. 9b for μ and 

in Fig. 9c for σ as a function of the Snumber. The dependency of μ to the Snumber follows a linear 

function in the semi-log space and can thus be described by the following equation: 

 



  A log10 Snumber B,     (13) 

 

which depends on the two constants Aμ and Bμ. The best fit of the data provided by our numerical 

experiments gives Aμ = 22.8 and Bμ = 21.3 (R-square = 0.9791). The dependency of σ to the Snumber 

was obtained using a similar approach (Fig. 9c). The data from our simulations were fitted using an 

exponential function: 

 



  A exp B  Snumber ,     (14) 

 

which also depends on two constants Aσ and Bσ. The best fit of our numerical results yields Aσ = 

9.799 and Bσ = -0.3339 (R-square = 0.9723).  

 

To summarise, based on our detailed parametric study we propose the following law for predicting 

the amount of segregation occurring in a magma ascending in a dyke for a given crystal fraction and 

a given Snumber: 

 



Seg* 1
1

2
1 erf

  A log10 Snumber  B 
2A exp BSnumber 




























,  (15) 

 

Fig. 9d displays the segregation as a function of φ and Snumber, with an extended part shown in Fig. 

9e focusing on values of Snumber between 0 and 3. For Snumber = 0 (e.g. Pd  , Wd  , Δρ = 0, or 

Ac = 0), no segregation takes place. At a low Snumber (0-5), the transition between 100% and 0% of 
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segregation occurs over a wide range of crystal volume percentage (up to 45%). The range of 

crystallinity over which this transition takes place decreases with increasing Snumber. Finally, for 

large Snumber (e.g. Pd  0, high Δρ or Ac), segregation occurs mainly by sedimentation (or mush 

compaction) in the reservoir that could represent a deep-seated magma chamber alimenting a dyke, 

and may occur at larger crystallinity. This prediction is however derived for low values of Snumber, 

which we regard as representative for dykes (see above).  

 

4. Discussion 

 

4.1. Limitations of our model 

 

Concerning the numerical method we used, we note that the velocity field obtained from solving the 

Stokes flow problem is continuous and defined over the whole model domain (i.e. inside both the 

melt and the crystal domains), which consistently couples both the melt and crystal phases. An 

immediate benefit of such an approach is that it avoids the requirement to impose special rules (i) to 

describe the updated position and orientation of the crystal at each time step (e.g. by imposing 

Newton’s law of rigid-body motion), and (ii) to avoid crystal interpenetration (e.g. Suckale et al, 

2012a). As a result, in our model, all inter-particle interactions (collisions, viscous drag coupling) 

are intrinsically taken into account. Nevertheless, our numerical methodology suffers from two 

limitations. Firstly, the pressure field around each crystal is not accurately resolved due to the fact 

that we do not explicitly mesh material interfaces. Nevertheless, the overall pressure distribution 

around inclusions is consistent with those obtained using body fitted finite element methods only if 

a sufficiently high spatial resolution is used (see Yamato et al., 2012 and comparison with Schmid 

and Podladchikov, 2003). Since our models do not employ pressure dependent rheologies, this 

attribute will not impact our results, which principally focuses on the amount of segregation. 

Secondly, the discrete system of equations is solved using sparse direct LU factorisation. Whilst 

suitable for 2D simulations, such solvers are not appropriate for 3D discretisations due to their 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 22 

increased algorithmic complexity, which causes a large increase in both the required CPU time and 

memory. The developments of robust iterative methods to circumvent this limitation are currently 

underway. Consequently, at the present time, we are unable to perform three-dimensional 

segregation studies with a numerical resolution equivalent to the 2D models presented in this study. 

 

Concerning the prediction law, it is difficult, at large Snumber (> 5), to accurately predict the amount 

of segregation (Fig. 9d). For such parameters (large Δρ or Ac), the transition between 0 and 100% 

segregation becomes very sharp and small deviations between the amount of segregation obtained 

in the numerical models and the scaling prediction are observed. These deviations can reach up to 

10% and may be explained by the “chaotic nature” of our numerical experiments. The amount of 

segregation in the numerical models is calculated at a quasi-transient stage (Fig. 2d). The 

aggregation and disaggregation of crystals, however, causes transient fluctuations during the 

segregation process (e.g. melt pockets formation at high crystal fraction), which probably affects 

our estimation of the amount of segregation. 

 

Our prediction does not take into account the aspect ratio of the crystals.  However, the segregation 

amount can vary when the long axis of crystals is larger than ~1/6 of the dyke width (Fig. 4). Under 

this condition, initially randomly oriented crystals may obstruct the conduit, which reduces the final 

amount of segregation. This could be taken into account in our prediction law by adding the ratio 

between the characteristic crystal length and the dyke width (additional non-dimensional number). 

But, as in most natural cases this ratio is small, we considered it as negligible to keep our prediction 

law in its simplest form. Moreover, crystal sizes and shapes may change (dissolution or crystal 

growth) during magma ascent (Nicholis and Rutherford, 2004), hence dynamically modifying both 

the crystal aspect ratios and the effective crystal fraction. Such effects cannot be taken into account 

in our mechanical models and in the resulting predictions we propose here. Our models also ignore 

additional parameters such as the possible presence of a gas phase. Although the occurrence of gas 

bubbles in a flowing magma is critical when studying volcanic processes such as lava magma 
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fragmentation and eruption (e.g., Dingwell, 1998; Manga et al., 1998), this parameter is not relevant 

for our study that focuses on ascent of granitic magmas deeper in the crust, where volatiles are 

dissolved in the melt phase rather than present as an individual gas phase (e.g., Zhang et al., 2007). 

  

The maximum packing fraction (i.e. the maximum fraction of crystals contained in the magmatic 

mush) is generally found to be different in 2D and in 3D. For example, in our 2D calculations the 

segregation mechanism is viable up to crystal volume percentages φ of about 40-45%, while the 

maximum packing fraction is reached for crystal volume percentages φ in the range ~50-70 % when 

considering 3D prismatic crystals (e.g., Marsh, 1981; Vigneresse et al., 1996; Saar et al., 2001). 

This constitutes another limitation of our study, as it is not straightforward to apply our scaling law 

to 3D systems. Indeed, in nature, crystals are not infinite in the third direction and the resulting 

absolute value of the amount of segregation will be different. However, this study provides 

constraints on the relative influence of the key physical parameters involved in systems 

corresponding to ascent of magmas in dykes and paves the way for future models, which will 

consider the three-dimensionality of this problem. 

 

Finally, although the Reynolds number corresponding to our reference experiment is low (Re = 10
-6

 

i.e. viscous forces dominate the inertial forces), thereby justifying the use of Stokes equations, we 

tested the impact of inertial effects on our results in Appendix A1. The results suggest that effects 

of inertia are negligible with respect to crystal-melt segregation during magma ascent, as recently 

argued by Glazner (2014).  

 

4.2. Comparison with previous studies 

 

4.2.1. Segregation amount vs. segregation processes 
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The prediction law provided here (Eq. 15) allows predicting the amount of segregation for any 

given dyke, knowing the Snumber and the crystal fraction φ. However as it differs from the 

Smoluchowski number Sm (see Section 3.4.), the Snumber cannot be used to characterise the processes 

by which segregation occurs (controlled by compaction or by differential stress), which requires the 

knowledge of the shear stress or differential stress (Bagdassarov et al., 1996a; Bagdassarov and 

Dorfman, 1998). The average of the second invariant of the stress tensor (σΙΙ) can be, however, 

computed through time in our numerical experiments, which allows us to compute the Sm number, 

as defined by Bagdassarov et al. (1996a). For the five simulations illustrated in Fig. 5 (segregation 

as a function of the crystal fraction) for example, the Snumber does not change since it is independent 

of the crystal volume percentage φ. In contrast, the average of σΙΙ (at t = 40 000s) values are 

drastically different (σΙΙ ~ 7.4, 16.7, 41.8, 699.9 and 4.7e4 Pa for φ = 5%, 15%, 25%, 35% and 45%, 

respectively), which yields very different Sm number (Sm ~ 407, 179, 72, 4 and 0.06, respectively). 

This shows that processes resulting in the limited amounts of crystal-melt segregation observed for 

high crystal contents are linked to differential stress, while segregation is mainly driven by 

compaction at low crystal fractions. The Sm number provides important insights regarding the 

process governing crystal-melt segregation but its computation requires the measurement of the 

shear stress. The advantage of the Snumber is that it can be directly computed for any given dyke and 

it thus allows us to quantify the crystal-melt segregation when combined with estimates of the 

crystal fraction φ. 

 

4.2.2. Segregation prediction 

 

Our results indicate that when the viscous force is larger than the gravitational force (i.e. Snumber <1), 

crystal-melt segregation will be limited and will only take place at low crystal content (Fig. 9d). For 

Snumber values higher than 1, however, crystal-melt segregation is likely to occur for crystallinities 

up to φ values of 40 to 45% during magma ascent in dyke. At low crystal content, the melt phase 

remains connected and the drag exerted by the crystals on the melt is limited. This condition 
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enhances density-driven crystal melt separation. At higher crystal fractions, the close crystal 

packing leads to crystal aggregation. As a consequence the melt is trapped in pockets located 

between the crystal aggregates. In this setting, the fluid and solid phases are transported coherently 

through the conduit. The amount of segregation is hence considerably lowered for high crystal 

contents. This result contrasts with that of Dufek and Bachman (2010), which predicted an optimal 

segregation window at high crystal volume percentage (50-70%). Their results were related to the 

cooling of a crystallising crystal mush. In a convection setting and at low crystal content, crystals 

are entrained with the melt flow thus minimising crystal-melt separation and segregation. Crystal-

melt separation is facilitated at higher crystal fractions where the spatial crystal distribution may 

allow the development of melt channels allowing its extraction. In this setting, segregation is 

enhanced until the crystal fraction reaches an upper bound and the melt phase remains trapped in 

isolated pockets (crystal lock-up). The experimental conditions for which the results of Dufek and 

Bachman (2010) were obtained (i.e., crystallising sill) and those of our study (i.e., magma flowing 

in a vertical conduit) differ significantly and are most probably the cause of this apparent 

discrepancy.  

 

4.2.3. Magma rheology 

 

Understanding the rheology of crystal bearing magmas has first order implication for volcanism and 

lithosphere dynamics, and it has thus been the topic of numerous studies (e.g. Bottinga and Weill, 

1972; Shaw, 1972; Murase and McBirney, 1973; Marsh, 1981; Spera et al., 1988; Bagdassarov et 

al., 1994; Lejeune and Richet, 1995; Vigneresse et al., 1996; Bagdassarov and Dorfman, 1998; 

Manga et al., 1998; Petford and Koenders, 1998; Saar et al., 2001; Petford, 2003; Rabinowicz and 

Vigneresse, 2004; Rosenberg and Handy, 2005; Cordonnier et al., 2012; Pistone et al., 2013). 

Experimental studies have reported that magmas may deform in a non-linear manner (e.g. Lejeune 

and Richet, 1995) but the mechanisms that cause this behaviour are still a matter of debate 

(Deubelbeiss et al., 2011, Cordonnier et al., 2012). In our crystal-bearing magma ascent numerical 
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experiments, the flow profiles exhibit Bingham-like shape (see Yamato et al., 2012). The employed 

fluid and solid phase rheologies are both linear viscous and neither plasticity nor shear heating are 

considered. This Bingham-like behaviour is hence only related to the internal disposition of the 

crystals within the magma, which act as rigid obstacles disturbing the flow of the fluid phase. The 

Bingham-like rheology is thus only apparent and is strongly time-dependent as the spatial crystal 

distribution is constantly rearranging during the ascent of the magma in the dyke. 

 

4.3. Geological implications 

 

Our study allows to test whether crystals would tend to remain in a magma ascending in the crust 

via dyking or whether they would be more likely to segregate and remain trapped at depth. We 

provide here three scenarios illustrating how these results could be used for given magmatic 

systems. The parameters that need to be known to estimate the Snumber are the density contrast Δρ 

between crystals and the melt phase, the crystal size Ac, the magma ascent velocity Uam and its 

effective viscosity ηm (see Eq. 9). To a first order, the effective viscosity of a magma ηam depends 

on the viscosity of the melt phase and on the volume percentage φ of crystals. In the following 

examples we consider φ values in the range 25-30%, which results in an increase of ηam by ~0.5 log 

units compared to the viscosity of the melt phase (e.g., Caricchi et al., 2007). A summary of the 

parameters used for the different examples and the corresponding Snumber estimates is reported in 

Table 1. 

 

The first example investigates the feasibility for olivine phenocrysts to segregate from an ascending 

kimberlitic magma. We selected a typical viscosity of ~10
 
Pa.s for the kimberlitic magma, densities 

of 2900 kg.m
-3

 for the melt phase and 3300 kg.m
-3

 for the 0.005 m × 0.005 m olivine (Fo90) 

crystals, and an ascending velocity of 5 m.s
-1

 (e.g. Sparks et al., 2006; Kopylova et al., 2007; 

Russell et al., 2012), resulting in a Snumber around 10
-4

. Using Eq. 15 yields Seg
*
 ~ 0 for any value of 

φ, indicating that segregation of small olivine phenocrysts during ascent of a typical kimberlitic 
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magma will be negligible whatever the magma crystallinity is, since the very fast ascending 

velocities of kimberlitic magmas likely hampers effective crystal-melt segregation.  

 

The second example investigates the feasibility of crystal-melt segregation for basaltic systems, 

such as the Henties Bay-Outjo dyke swarm that fed the Etendeka large igneous province in Namibia 

(Keiding et al., 2013). Considering a density of 2700 kg.m
-3

 (Keiding et al., 2013) and a viscosity of 

~10
2
 Pa.s for high temperature basaltic magmas (e.g. Giordano et al., 2008; Laumonier et al., 2014) 

ascending at ~1.5×10
-3

 m.s
-1

, which is lower than typical ascent rates determined for ascent at 

shallow depth but more consistent with ascent rates at depth (Armienti et al., 2013), this gives a 

Snumber of ~10
-3

 for ~0.0005 m × 0.0005 m augitic clinopyroxene crystals (density of ~3400 kg.m
-3

; 

Keiding et al., 2013), and a Snumber of ~5×10
-2

 for ~0.003 m × 0.003 m forsteritic olivine crystals 

(density of ~3300 kg m
-3

; Keiding et al., 2013). The low Snumber calculated for the small 

clinopyroxene crystals suggests that they were unlikely to be segregated from the ascending 

magma; on the other hand, segregation of small amounts of the larger olivine phenocrysts could 

have occurred (Seg
*
 ~ 3% for φ = 10%) during magma ascent in dykes, providing that φ values 

remained lower than ~10-15% (Fig. 9d).  

 

Finally, we can investigate crystal segregation from highly viscous leucogranitic magmas during 

their ascent in dykes. Taking a density of 2400 kg.m
-3

 (Knoche et al., 1995) and a viscosity of ~10
5
 

Pa.s for a leucogranite magma with a φ value of 25-30% (Scaillet et al., 1996; Petford, 2003), and 

an ascent velocity of ~1.0×10
-6

 m.s
-1

, much slower than for basaltic magma ascent rates at depth 

(since leucogranite magmas are ~1000 times more viscous), yields Snumber of ~10
-1

 for ~0.01 m × 

0.01 m crystals of albitic plagioclase and K-feldspars (density of ~2600 kg.m
-3

), which is a typical 

size observed in granitic dykes in deep melt transfer zones (e.g., Morfin et al., 2014). This suggests 

that feldspar crystals of moderate size can effectively be segregated from ascending viscous 

leucogranite magmas for moderate φ values below 15-20% (Fig. 9d). For example, Seg
*
 ~ 11% for 

φ = 10%. Also, a small increase of the size of the feldspar phenocrysts would tend toward Snumber 
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values around 1, which would allow very efficient crystal-melt segregation for a large range of φ 

values (Fig. 9d). 

 

Uncertainties in such calculations are large and relate to the range of possible input values, 

especially for the magma ascent velocity, which is the least constrained parameter. However these 

first order calculations immediately illustrate why, for similar crystal contents, segregation of 

feldspars during ascent of granitic magmas through the crust could be a common phenomenon (e.g., 

Tartèse and Boulvais, 2015; Morfin et al., 2014; Ballouard et al., 2015), while large amounts of 

olivine phenocrysts and of clastic xenoltihs are commonly observed in kimberlitic magmas (e.g., 

Mitchell, 1995; Kopylova et al., 2007) due to a very limited amount of segregation. 

 

5 - Conclusions 

 

This study presents a wealth of 2D numerical models simulating crystal-melt segregation during 

ascent of magma in a vertical dyke. The extensive parametric study we have carried out shows that 

only a limited number of parameters control the amount of segregation: 

 

 (1) Numerical experiments showed that the initial crystal distribution in the reservoir, as 

well as the crystal aspect ratio, does not noticeably affect the behaviour of magma flow, and thus 

does not influence the amount of segregation. The aspect ratio might become important if the long 

axis is larger than 1/6 of the dyke width. We conclude that this parameter only weakly influences 

the amount of segregation.  

(2) The amount of segregation is dominated by the crystal fraction (φ) and the segregation 

number (Snumber). The amount of segregation decreases when the crystal fraction increases following 

a cumulative normal distribution law. The segregation number Snumber depends on the density 

contrast between the crystals and the carrying melt, the crystal size, the dyke width and the applied 

pressure gradient. 
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(3) Inertial forces (up to Re ~ 10) do not significantly influence the segregation process. 

Only small deviations due to inertia can occur at low melt viscosity (~10 Pa.s). 

 

The first order scaling law derived from our parametric study allows to directly predict the extent of 

crystal-melt segregation occurring during upward transport of a magmatic mush in a vertical dyke, 

and is accurate ( 10%) for Snumber < 10, which encompasses the common physical parameters 

related to ascent of basaltic to granitic magmas in dykes through the Earth’s continental crust. This 

work, allowing prediction of the amount of segregation, is complementary to studies that have 

focused on the processes active during crystal-melt segregation or on effective viscosity of 

magmatic mushes. Future models in 3D and integrating the interplay between temperature and 

chemical processes are necessary to further our understanding of crystal-melt segregation processes, 

and especially to quantify its relationship with the magma viscosity, which impacts upon the 

dynamics of all magma types. 
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Figure A3 
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Figure A3. Fluid vs. solid deformation after 40 000 s of experiment. (a-c) Accumulated von Mises 

equivalent strain (computed as in Frehner and Schmalholz, 2006) for the reference experiment 

(crystal volume percentage φ=15%), φ=30% and φ=40%, respectively. In all cases, deformation 

occurs within the melt and crystals remain undeformed. (d-f) log10 of Accumulated equivalent 

strain, for the same experiments, allowing to better visualise how “rigid” are the crystals in our 

experiments. This shows that strain magnitude in crystal is the same as for the rigid blocks of the 

piston and in the order of 10
3
 to 10

6
 times lower than within adjacent melt. (g-h) Accumulated von 

Mises equivalent strain for different crystal aspect ratios R, all the other parameters are as for the 

reference experiment. (i-j) Accumulated von Mises equivalent strain for different density 

differences (Δρ) between the crystals and the melt, all the other parameters are as for the reference 

experiment. This figure A3 shows that only a few runs, corresponding to extreme cases (e.g. >45% 

of crystal volume percentage), show slight distortion of the crystals. However, this occurs when 

segregation is already impeded, and consequently, this should not strongly bias our results 

concerning the segregation process. 
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Appendix 

 

A1 - Influence of inertia on crystal bearing magma flow 

 

In the numerical simulations, the Reynolds number Re can be computed using the relationship: 

 



Re 
mUamWd

m
,     (A1) 

 

Considering a constant melt density ρm (2400 kg.m
-3

), a melt viscosity ηm of 10
4
 Pa.s and a driving 

pressure of 24 Pa.m
-1

 yields a Reynolds number on the order of 10
-6

. In order to evaluate the impact 

of inertia on our results, we have extended our viscous Stokes solver to account for fluid and solid 

acceleration. The Navier-Stokes equations are solved implicitly (backward Euler) and the non-

linear convective acceleration term is treated by Picard iterations. The implementation was verified 

by running a vortex shedding experiment (e.g. Suckale et al., 2012a) with a Reynolds number of 

100 (Fig. A1a). Our calculation delivers a vortex frequency of 1.6 Hz (Strouhal number of 0.16, 

Fig. A1b), which is in good agreement with other studies (Suckale et al., 2012a, and references 

therein). Subsequently, we have run our reference model (see Section 3.1.) while taking inertia into 

account (Fig. A2). The obtained results indicate that inertial effects may affect the final position of 

crystals travelling in the conduit. However, under such experimental conditions, inertial effects do 

not produce notable variations on the amount of segregation, nor on the structures that develop 

during magma ascent. 
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Table 1 

System m (kg m
-3

) c (kg m
-3

) (kg m
-3

) Ac (m
2
) ηam (Pa s

-1
) Uam (m s

-1
) Snumber 

Ol-Kimberlite 2900 3300 400 2.5×10
-5

 10
1
 5 ~10

-4
 

Cpx-Basalt 2700 3400 700 2.5×10
-7

 10
2
 1.5×10

-3
 ~10

-3
 

Ol-Basalt 2700 3300 600 9.0×10
-6

 10
2
 1.5×10

-3
 ~5×10

-2
 

Fsp-Granite 2400 2600 200 1.0×10
-4

 10
5
 1.0×10

-6
 ~10

-1
 

 

Table 1. First order estimates of Snumber values for different natural examples. Ol-Kimberlite, Cpx-

Basalt, Ol-Basalt and Fsp-Granite correspond to the segregation of olivine in a kimberlitic magma, 

clinopyroxene in a basaltic magma, olivine in basaltic magma and plagioclase feldspar or K-

feldspar in a leucogranitic magma, respectively (see text for details). 
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Highlights 

 

- We present 2D numerical models simulating the ascent of crystal-bearing magma in dyke 

- We evaluate the role of magma parameters on crystal-melt segregation 

- The crystal fraction and the segregation number control the amount of segregation 

- Crystal aspect ratio does not noticeably affect magma flow, hence segregation 

- We provide a first order scaling law to predict crystal-melt segregation in dykes 


