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Highlights 

We elucidate how aperture field statistics affects fluid trapping in a fracture 

We examine the role of in-plane curvature on fluid displacement and trapping 

We present a quantitative analysis of the size distribution of trapped fluid clusters 
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Abstract.  The spatial distribution of fluid phases and the geometry of fluid-fluid 

interfaces resulting from immiscible displacement in fractures cast decisive influence on 

a range of macroscopic flow parameters. Most importantly, these are the relative 

permeabilities of the fluids as well as the macroscopic irreducible saturations. They also 

influence parameters for component (solute) transport, as it usually occurs through one of 

the fluid phase only. Here, we present a numerical investigation on the critical role of 

aperture variation and spatial correlation on fluid trapping and the morphology of fluid 

phase distributions in a geological fracture. We consider drainage in the capillary 

dominated regime. The correlation scale, that is, the scale over which the two facing 

fracture walls are matched, varies among the investigated geometries between L/256 and 

L (self-affine fields), L being the domain/fracture length. The aperture variability is 

quantified by the coefficient of variation (δ), ranging among the various geometries from 

0.05 to 0.25. We use an invasion percolation based model which has been shown to 

properly reproduce displacement patterns observed in previous experiments. We present 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3 

 

a quantitative analysis of the size distribution of trapped fluid clusters. We show that 

when the in-plane curvature is considered, the amount of trapped fluid mass first 

increases with increasing correlation scale Lc and then decreases as Lc further increases 

from some intermediate scale towards the domain length scale L. The in-plane curvature 

contributes to smoothening the invasion front and to dampening the entrapment of fluid 

clusters of a certain size range that depends on the combination of random aperture 

standard deviation and spatial correlation.  

Keywords: fracture, two-phase flow, drainage, curvature, invasion percolation, fluid 

trapping 

1. Introduction 

Many important subsurface engineering applications, such as the geological storage of 

CO2, nuclear waste disposal, and geothermal exploitation, involve fractured media and 

give rise to two-phase flow phenomena in fractures. While understanding the two-phase 

flow behavior at the scale of fracture networks is important for practical applications, 

modeling at such a scale requires fundamental knowledge of the behavior at the single-

fracture scale. Of particular importance is the fluid trapping process during immiscible 

displacement in the open fracture. The present study focuses on characterizing fluid 

trapping and examining its controlling parameters. 

The general problem of fluid trapping in geological media is central for engineering 

situations such as petroleum recovery and CO2 sequestration. In the former situation, the 

trapping of oil or gas in the pore space should be minimized to achieve the recovery 

efficiency of the reservoir. In the latter, on the contrary, trapping of supercritical CO2 in 

the pore space by various mechanisms is desired as it improves storage capacity and 
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safety. Recently there has been extensive investigation of fluid displacement and trapping 

in porous material, including both pore-scale numerical modeling [7,18,23,36] and 

experimental studies (e.g., [3,4,12,22,28,40]) thanks to the advances in high-resolution 

imaging techniques (e.g., X-ray computed tomography). But, fluid trapping in fractures 

has received relatively little attention in the recent literature, although many of the above 

modeling and experimental methodologies can be applied to the fractured setting.  

Natural rock fractures have rough surfaces and variable apertures. The aperture 

distribution is one of the primary parameters that influence the hydraulic properties of a 

fracture, both for single and multiphase flow processes. Considerable effort has been 

devoted to the characterization and measurement of fracture wall topographies and of the 

resulting fracture aperture fields. Different approaches for aperture measurement have 

been developed, including surface profilometry (e.g., [1,11,38]), X-ray computed 

tomography (e.g., [27]) and nuclear magnetic resonance imaging (e.g., [15]). The high 

resolution measurement of aperture fields together with modern visualization techniques 

has allowed for fundamental investigations of fluid displacement in single fractures. 

Those measurements and the subsequent analyses of surface topographies of natural 

fractures have established that these topographies are self-affine (e.g., [8,10]. Besides, the 

two walls of a fracture have topographies that are essentially identical at length scales 

larger than a typical mismatch (or correlation) length Lc, and uncorrelated with each other 

at scales smaller than Lc [10]. Consequently, the resulting aperture field is self-affine at 

scales smaller than Lc, and exhibit hardly no fluctuations at scales larger than Lc [10,34]. 

Such a representation of fracture apertures, based on geostatistical parameters (e.g., 

mean aperture, standard deviation, and correlation length) quantifying the aperture 
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distribution, has been used in several studies involving fluid flow in fractures [5,9,32-

34,47]. It has also proven useful to understand the effect of variable apertures on single-

phase flow and transport [26,29]. 

Configurations of immiscible two-phase flow in individual variable aperture fractures 

have also been addressed [6,16,21]. Such flows are controlled by the interplay between 

capillary, gravitational, viscous and inertia forces [14]. Understanding that interplay and 

its impact on the flow regimes and the resulting fluid phase configurations is a 

prerequisite to studying fluid trapping. Loggia et al. [30] showed that under the influence 

of buoyancy two-phase flow regimes range from tortuous fingers and random clusters to 

piston-like displacement with trapping, depending on different combinations of the 

dimensionless Bond numbers and capillary numbers, which compare buoyancy to 

capillary forces and viscous to capillary forces, respectively. However, the fracture 

geometries, flow conditions and regimes explored in these experiments are still limited in 

comparison to the wide spectrum of behaviors that can occur. On the other hand, insights 

from investigating fluid trapping as a function of the medium geometry and flow 

conditions for a given system could allow for an a posteriori characterization of the flow 

regimes, from the mere knowledge of the trapped cluster geometry. Trapping of the 

defending fluid during immiscible displacement affects the flow structure of the invading 

phase behind the front. The amount of trapped phase fluid and its spatial distribution 

within the fracture affects the relative permeability of the other fluid phase and the fluid-

fluid interfacial area. In order to estimate the interfacial area, the characteristics of the 

trapped phase, i.e., the morphology and topology of the trapped phase clusters, need to be 
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known [19]. Interfacial area is an important parameter for the interphase mass transfer 

processes that are critical, e.g., to contaminant remediation problems [13,43,45]. 

Quasi-static displacement in horizontal fractures is dominated by capillary forces, so 

that in models viscous forces and gravity can be ignored. The capillary number, which 

compares viscous to capillary forces, has to be much smaller than 1 in this case. Invasion 

percolation (IP) models have been widely recognized as a physically-sound approach for 

modeling such slow displacements in rough-walled fractures (see experimental and 

theoretical studies, e.g., [2,17,20,24,31,35,44]). In these models, a proper calculation of 

the capillary pressure between the wetting and non-wetting fluids is crucial when 

simulating fluid invasion, especially if one focuses on characterizing phase distribution 

and structures. According to the Young-Laplace equation, capillary pressure depends on 

the interfacial tension and the mean curvature of the fluid-fluid interface. For the fracture 

geometry, the mean curvature can be calculated using its two principal components, one 

of them being defined in a vertical plane, the other, which we shall denote in-plane 

curvature, being defined in the fracture plane. Displacement in the capillary regime is 

controlled by the competition between the effects of (i) the aperture variability along the 

fracture plane, which tends to roughen the interface, and (ii) the in-plane curvature, which 

tends to smoothen it [21]. To calculate the local in-plane curvatures, Glass et al. [20] 

proposed to use an empirical length scale (which the authors set to half of the correlation 

length, defined in terms of the autocorrelation or variogram of the aperture field) and an 

average angle extracted from the local fluid-fluid interface. Similar approaches have been 

used by Neuweiler et al. [35] and Ferer et al. [17] who treated the empirical length scale 

as a fitting parameter to be determined by trial and error based on a comparison with 
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physical experiments, which is difficult to be generalized. To overcome those limitations 

of the above mentioned approaches, Yang et al. [42] developed a generalized method 

based on a purely geometric definition of the curvature radius, in consistency with the 

Laplace equation. They estimated the local in-plane curvature radius through a procedure 

that adaptively fits a circle to the fluid-fluid interface. The in-plane curvature is estimated 

as the inverse of the radius of the best fitted circle. This approach was validated against 

experimental data and shown to be advantageous over previous approaches (see 42). 

Another recent study [46] investigated the effect of aperture field geometry on relative 

permeabilities; however, the IP model used by Ye et al. [46] took neither in-plane 

curvature, nor the trapping of the defending fluid, into account. 

To our knowledge, the effect of the aperture field geometrical (geostatistical) 

parameters on fluid displacement and trapping is still not fully understood. The purpose 

of this study is thus to quantitatively characterize the trapping of the defending wetting 

fluid during drainage, under various aperture field geometries. We focus on trapped 

wetting phase saturation and on the distributions of sizes for trapped fluid clusters. The 

aperture fields investigated span a range of geometries, from uncorrelated fields to fully 

self-affine fields. 

2. Method 

In this section, we will first present the method to generate realistic aperture fields, 

followed by the description of the model which is based on invasion percolation 

including the effect of in-plane curvature. Then, we describe the simulation scenario of 

nonwetting phase invasion and the parametric study design.   
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2.1. Fracture aperture fields  

To describe the topography fracture wall surfaces, we follow Brown [10] to define a 

power spectrum for surface roughness of the form 

    H

yxyx aG



2122

),(                                             (1) 

where ξx and ξy are the wave numbers in the x and y dimensions, H is the Hurst exponent, 

in the range of 0.5 < H <1 with a typical value of H = 0.8 [8], and a  the anisotropy factor. 

In this study, we assume isotropy in fracture surface roughness by assigning a = 1. We 

use an inverse fast Fourier transform (iFFT) method to generate fracture wall surfaces. 

Fracture apertures correspond to the gap between the two facing rough surfaces, 

whose average planes are parallel to each other. Experimental work by Brown et al. [11] 

has shown that at large wave numbers (short wave lengths) the power spectrum of 

fracture aperture fields has the power law behavior  typical of self-affinity and described 

in Eq. (1), and therefore characterized by the corresponding Hurst exponent, but that at 

small wave numbers (long wave lengths) the spectrum density approaches a constant 

value.  We define a mismatch (or cutoff) wave number (spatial frequency), ξc 

(respectively, a mismatch length scale, Lc), below (respectively, above) which the 

spectrum density flattens out. To ensure the two surfaces to be matched at small wave 

numbers (i.e., long wave lengths), we generate the two surfaces with phase spectra that 

are identical below the cutoff wave number ξc. The resulting random aperture fields are 

self-affine at scales smaller than Lc, and exhibit hardly any heterogeneities at scales larger 

than Lc. A more detailed description of the procedure for generating the fracture surfaces 

and aperture fields can be found in Brown [10]. 
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2.2. Invasion percolation model with in-plane curvature 

We model the capillary displacement of a wetting fluid by a non-wetting fluid 

(drainage) inside a geological rough fracture. This means that we consider slow 

displacement in which viscous forces are too small to have any role in defining the 

geometry of the fluid-fluid interface as it travels along the fracture plane. Practically this 

implies that the capillary number μinv v /γ is sufficiently small, in any case much smaller 

than 1. We also consider a fracture whose mean plane is horizontal, as a first step into the 

study of drainage in networks of fractures with various orientations. 

Even in a fracture of horizontal mean plane, buoyancy forces could still play a role 

since the fracture walls are rough and their vertical position varies along the topography. 

In this case, whether buoyancy forces would impact the geometry of the interface or not 

can be assessed by comparing the fluctuations of hydrostatic pressure due to topographic 

fluctuations with fluctuations of capillary pressure that result from aperture variations. 

The ratio of those forces defines a non-standard dimensionless Bond number N*Bo, as 

follows:   









cos2
*

hbg

Pc

hg
N Bo





                                                                      (2) 

where Δρ is the fluid density difference, Δh is the maximum elevation difference of the 

fracture surface fluctuation, δ is the coefficient of variation of the aperture field, γ is the 

interfacial tension, θ is the contact angle and Pc  is the capillary pressure corresponding 

to the mean aperture b , Pc  being the typical fluctuation of Pc around its mean 

value. For geological fractures, Δh is typically on the order of a few millimeters (see, e.g., 

Brown et al., 1986). For example, if Δh = 5 mm, Δρ = 200 kg/m
3
, δ = 0.25 and γ = 35 
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mN/m, the Bond number N*Bo is found to be around N*Bo ≈ 0.05 ≪ 1, which indicates 

that the impact of buoyancy forces on the interface geometry can be neglected for this 

parameter set. Note also that another buoyancy-driven process could occur: that the 

lighter displacing fluid (e.g., air) flow on top of the denser displaced fluid (e.g., water). It 

would be the case if the typical buoyancy pressure drop over the mean fracture aperture 

were much larger than Pc ; the ratio of those forces yields the standard Bond number, 

defined at the scale of b : hbNPcbgN BoBo   *  , which is much smaller 

than BoN * . Thus, the condition N*Bo ≪ 1 is the only one required to ensure that 

buoyancy forces do not impact the interface geometry. This condition is obviously 

fulfilled for a variety of subsurface configurations, as shown above. However, if the fluid 

density difference is much higher or the aperture coefficient of variation much smaller, so 

that N*Bo becomes closer to 1, buoyancy forces can have a significant impact. In this 

regard, we recognize the need for a full parametric study concerning the buoyancy effect 

in the future.  

Our motivation is thus to understand the effects of the interplay of capillary forces and 

aperture structure on fluid phase configurations during two-phase flow along a fracture 

geometry such as presented in Section 2.1. In order to do this we use an Invasion 

Percolation (IP) model: the single fracture void space is conceptualized as a 2D domain 

representing the fracture plane, which is discretized into a 2D lattice with aperture values 

on all sites, assigned from the generated  aperture spatial distribution. The discretization 

scale of the model is the size of the individual site, which in a 2D porous medium would 

typically be a pore of the medium. Therefore no corner flow or film flow can be 

described with an IP model. Nevertherless they have proved very useful at predicting the 
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interface geometry in 2D porous media [17,20,24,35,42]. The fluid displacement process 

is modeled as a sequence of discrete invasion steps. Each of the invasion steps are 

determined by ranking of invasion pressures at all sites of the (invading-defending) phase 

interface; the site with the smallest invasion pressure is selected at each step. The 

invasion pressure Pinv for a given site is calculated according to the Young-Laplace 

equation as [42]: 




















221

21

1cos211
)(2

rbrr
kkHPinv




                                     

  (3) 

where γ is the interfacial tension, H is the mean curvature, k1 and k2 are the two principal 

curvatures, calculated respectively as the inverse of the two principal radii of curvature r1 

and r2 (k1 = 1/r1 and k2 = 1/r2). Fig. 1 shows a schematic of the interface curvatures. The 

plane for the principal curvature k2, P2, is the plane of the fracture, while the plane for k1, 

P1, is perpendicular to P2. The cut of the fluid-fluid interface by P1 produces a curve 

(shown in Figure 1(a)) that spans the fracture aperture, while the cut of the interface by 

P2 produces a curve (shown in Figure 1(b)) that is within the fracture plane. Following 

earlier works [20,35,42], we refer to k1 as out-of-plane (aperture spanning) curvature and 

to k2 as in-plane curvature.  

If we assume that the fracture walls are symmetric about a mean plane, r1 can be 

calculated as b/2cosθ, where b is the local aperture, and θ the contact angle. Note that 

here we ignore the local convergence/divergence angle of the fracture walls [35].  The 

out-of-plane curvature 1/r1 can be pre-assigned for all sites before starting the IP invasion 

process. However, the in-plane curvature is dependent on the interface configuration 

along the fracture plane (P2) and needs to be calculated at each invasion step for all sites 

belonging to the interface at that time. In this the modeling of capillary displacement in a 
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fracture is drastically different from the standard IP modeling of capillary displacement in 

2D porous media, which have been the subject of a vast amount of literature; indeed, in 

standard IP the displacement is completely controlled by the quenched-disorder in the 

pore throat sizes, as the invasion pressure is reduced to a single term analog to the out-of-

plane curvature term in Eq. (3). 

To calculate the in-plane curvature, we use the approach of Yang et al. [42] which is 

based on purely geometric arguments and implements a procedure called adaptive circle 

fitting to determine the varying in-plane curvature during fluid displacement. The in-

plane curvature is calculated as the inverse of the radius of the best fit circle to the local 

interface. This is done by nonlinearly fitting the coordinates of the appropriately chosen 

interface sites to the circle equation [42]: 

0)()(),( 222  zyyxxyxf cc                                                             (4) 

where xc, yc and z are fitting parameters, xc and yc denoting the coordinates of the center 

of the fitted circle, and z denoting the radius of the fitted circle. We adaptively determine 

the number of interface sites to be used for fitting the circle equation, by keeping track of 

the normalized fitting residuals. A full description of the approach can be found in Yang 

et al. [42]. 

The trapping of the defending-phase is implemented assuming that the defending phase is 

incompressible; that is, the defending phase occupied sites that become surrounded by the 

invading phase, i.e., the sites that have lost connection to the outlet boundaries through 

the defending phase, can no longer be invaded. This is implemented through an efficient 

bidirectional search algorithm to determine whether a site or region is connected to the 

outlet boundary. 
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2.3. Simulation scenario and parameters 

We consider horizontal fractures, and assume that the effect of gravity can be 

neglected. We simulate drainage, that is, we model the capillary dominated displacement 

of a wetting phase by a nonwetting phase. We use a 2D rectangular domain of 2048 × 

1024 sites with the left short edge assigned to be the nonwetting source boundary and the 

other three edges assigned to be open boundaries where the wetting phase is allowed to 

leave the domain (Fig. 2). The wetting phase fluid may be trapped if surrounded by the 

invading nonwetting phase fluid. We consider a perfect wetting condition for the fracture 

surfaces. The contact angle is set to zero; for a contact angle that is uniform over the 

medium,  this can be done without loss of generality). The interfacial tension is chosen 

equal to 34.5 mN/m. We note that increasing the contact angle will have the same effect 

on the displacement as decreasing aperture field standard deviation, , since r1=b/2cosθ 

and r2 is independent of θ. The spatial discretization is d = 0.1 mm. The Gaussian random 

aperture fields are generated with the method described in Section 2.1. The Hurst 

exponent is set to H = 0.8 and the mean aperture b to 0.1 mm. We vary the coefficient 

of variation of the aperture field, δ = σb / b , where σb is the aperture standard deviation, 

from 0.05 to 0.25. We also vary the mismatch wave number ξc, from 1 to 256, with ξc = 1 

representing a limiting case where the aperture field is self-affine on the entire available 

scale range. We define the aperture correlation scale as Lc = L/ξc, L being the domain 

length 2048d. Fig. 3 shows six example realizations of generated aperture fields. One 

could argue that the horizontal discretization length, d, introduces an additional length 

scale in the system. One could consider it as a lower limit cutoff scale for pattern sizes. 

However, as d is equal to the mean aperture, b , patterns on sizes smaller than that size 
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are expected to be smoothed out by in-plane curvature, as long as the coefficient of 

variation is not very large, i.e., δ ≤ 0.25. For each parameter set, ten realizations are 

generated and resulting fluid configurations are simulated. We add a case with spatially 

uncorrelated random aperture fields which can be thought of as ξc = 2048. Another 

limiting case in which the in-plane curvature is not taken into account in the calculation 

of the capillary pressures (in effect this model is essentially the standard IP model with 

trapping) is also considered. The model is run until all sites are either invaded or trapped. 

The total number of simulations is 480. 

3. Results and analysis 

Residual saturation is an important macroscopic property for describing two-phase 

flow in porous and fractured media. Our simulations exhibit trapping of the wetting phase, 

which results in an irreducible wetting phase saturation in the fracture. In this section, we 

first present qualitative examination of the trapped phase morphology, then we proceed to 

quantify the macroscopic trapped phase saturation and analyze the size distributions of 

the trapped fluid clusters in detail. 

3.1. Trapped phase patterns 

Fig. 4 shows six example spatial distributions of the trapped wetting phase within the 

fracture for three different aperture correlation scales Lc and two different aperture 

coefficients of variation δ. (More trapped phase patterns can be found in the Supporting 

information, Fig. S1 and Fig. S2.) Through the comparison between Fig. 4(a-c) and Fig. 

4(d-f), it can be seen that both the number of trapped clusters and the total trapped mass 

tend to be smaller as δ is smaller. It can also be observed that the difference in trapped 
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phase distribution between the two δ cases becomes more drastic as L/Lc becomes larger 

(correlation scale smaller). Simulation results with parameters δ = 0.25 and L/Lc = 256 

(see Fig. 4c) show a significant mass of trapped wetting fluid (corresponding to a trapped 

saturation St = 0.42) as well as a wide range of trapped cluster sizes, spanning five orders 

of magnitudes from a few site sizes to ~10
5
 site sizes. When δ = 0.00833 and L/Lc = 256 

(Fig. 4f), the amount of trapped mass is almost negligible (St = 0.01). It should be noted 

that this is an effect of the in-plane curvature. An IP algorithm without in-plane curvature 

would yield exactly the same invasion patterns for two geometries generated with the 

same correlation length and numerical seed, but different coefficients of variation. 

The above qualitative observations suggest that variability and spatial correlation of 

fracture apertures play a critical role in the fluid-fluid displacement and fluid trapping 

process. Greater variability (larger δ) consistently produces a larger total mass trapped 

fluid for all investigated ratios of the system length to the correlation length. This is due 

to the effect of the in-plane curvature which smoothens the invading front. Indeed, 

trapping occurs when two portions of the interface positioned ahead of the rest of the 

interface meet and merge, leaving a closed interface loop behind; hence, a rougher 

interface results in more trapping of the defending phase. The smoothing effect of the in-

plane curvature being weaker when the aperture variability is larger [21], larger values of 

δ exhibit a rougher interface and therefore a larger total mass of trapped defending fluid. 

However, the influence of the correlation length on fluid trapping remains unclear in Fig. 

4 and needs a more detailed examination (which is addressed in the following sections). 
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3.2. Trapped phase saturation 

Fig. 5 presents the trapped (irreducible) saturation averaged over results from 

realizations of statistically-equivalent aperture fields. The curves of trapped phase 

saturation plotted against b /Lc for different δ may be regarded as type curves when an 

estimation of trapped phase saturation, given aperture variability and correlation scale, is 

needed. Fig. 5 shows that the trapped phase saturation is at its maximum when the effect 

of in-plane curvature is not taken into account in the model (the IP limit). Also evident is 

the increasing trend of trapped phase saturation with decreasing aperture correlation scale 

(increasing b /Lc) in the IP limit (blue circle plot), from  tS  = 0.32 for the self-affine 

case ( b /Lc =1/2048) to  tS  = 0.69 for the case with no spatial correlation (Lc = b = 

d). This increasing trend of the irreducible saturation as a function of b /Lc for standard 

IP agrees with Knackstedt et al. [25] who simulated invasion with an IP model on 

correlated 3D lattice. Naturally, the trivial lower bound for trapped phase saturation is 

zero, which can be achieved when δ → 0 (ideal parallel-plate fracture). 

It is clear from Fig. 5 that the trapped saturation decreases with decreasing δ. On the 

other hand, the dependence of the trapped phase saturation on b /Lc for a given δ is not 

as straightforward. The maximum of  tS  for a given δ is at some intermediate value of 

b /Lc. It can be said that the value of b /Lc at which  tS  is maximum for a given δ is 

smaller when δ is smaller. More discussion will follow on this in Section 4. 

To investigate the general behavior described above in more detail, we study the size 

distribution of the trapped fluid clusters and the contribution of each class of cluster sizes 

to the trapped phase saturation.  
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3.3. Trapped fluid cluster size distributions  

For each simulation, we consider the final configuration of fluid phase distribution and 

extract all the clusters of trapped fluid from it. We then compute a histogram of the 

cluster sizes, that is, we divide the overall cluster size range in 40 classes of identical 

width and count the number of clusters n(s) for each class (centered on cluster size s). By 

size we mean the number of lattice sites occupied by the cluster. We finally put together 

the cluster size statistics from all the realizations corresponding to a given aperture field 

parameter set, in order to investigate the influence of aperture variation and correlation 

scale on trapped cluster size distribution. 

3.3.1. IP model not taking in-plane curvature into account 

For a square lattice, percolation theory [37,39] has established that at the critical point, 

the cluster size distribution for a percolation system without trapping effect follows a 

power law, n(s) ~ s
-τ
, with a theoretical value of 187/91 for the Fisher exponent τ. 

However, when trapping is considered in the system, the cluster size distribution behavior 

will be different. The pioneering work of Wilkinson and Willemsen [41] has estimated 

the power law exponent for trapped cluster size distribution resulting from IP with 

trapping effect for different lattices using simulations. 

Fig. 6a shows that in the case of an uncorrelated random aperture field the trapped 

cluster size distribution follows a power law behavior. We perform linear fitting (See 

Supporting Information Fig. S3) to the cluster size data of the uncorrelated cases and find 

the exponent τ of this power law to be 1.85 ± 0.02 (95% confidence interval), which is in 

agreement with the result (1.84) obtained by Wilkinson and Willemsen [41]. When there 

is spatial correlation in the aperture field, the cluster size distribution follows the same 
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power law  n(s) ~ s
-1.85

 at sizes larger than a crossover size sc (which scales with the 

correlation length as sc ~ Lc
2
), but deviates negatively from it at sizes smaller than sc, 

which means that we obtain less clusters of sizes smaller than sc. At much smaller cluster 

sizes the cluster size distribution displays a power law again, which results from the 

trapping of defendinging fluid due to aperture variations over horizontal lengths smaller 

than the correlation scale (sub-correlation scale trapping). Note that for geometries 

corresponding to L/Lc < 64, this shifting of the cluster size distribution around sc (~ Lc
2
) 

happens in the tails and is thus not visible in Fig. 6a. But plotting the cumulative size 

distribution N(sʹ>s) against s evidences this transition for all L/Lc values (Fig. 7, left). In 

Fig. 7(right) we also show the collapse of the cumulative cluster size distribution curves 

of Fig. 7(left); the shifting behavior consistently happens at the same scale π
0.5

Lc. A 

single scaling relates N(sʹ>s) to s according to N(sʹ>s) = (L/Lc)
α
 ∙ f((s/π)

0.5
/Lc), the 

exponent α is found empirically to be 1.70, and f  is a master curve function represented 

in Fig. 7(right). 

Because of the above-mentioned transition at sc, we expect the total amount of trapped 

mass  

 



1s

ssnM                                                                             (5) 

to be smaller when Lc is larger. This explains the increasing trend for the IP limit (blue 

circle plot) in Fig. 5. 

3.3.2. IP including in-plane curvature 

Inclusion of the effect of in-plane curvature in the model significantly changes the 

cluster size distribution (Fig. 6b-f). When δ ≥ 0.125, it seems that for uncorrelated fields 

IP considering in-plane curvature produces trapped cluster size distributions that follow a 
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power law, but with different exponents (< 1.85) than in the case without in-plane 

curvature. When δ < 0.125, IP with in-plane curvature for uncorrelated fields produces no 

or very few small trapped clusters, meaning that the irreducible saturation is essentially 

zero.  

For the correlated fields with a high coefficient of variation (δ ≥ 0.125), the cluster 

size distribution starts above the curve corresponding to uncorrelated aperture field at 

some cluster size and then goes below the curve corresponding to uncorrelated aperture 

field at a smaller cluster size. This means that there are more large clusters but less small 

clusters than for the uncorrelated case. In contrast to the cases of IP not considering in-

plane curvature, sub-correlation scale trapping is dampened due to the smoothing effect 

of the in-plane curvature, and the dampening effect is stronger when Lc is larger.  

For the correlated fields with a low coefficient of variation (δ ≤ 0.0833), as shown in 

Fig. 6d-f, the smoothing effect of the in-plane curvature is relatively strong and results in 

significantly less trapped clusters. This dampening effect is observed both at small cluster 

sizes and at large cluster sizes, which results from the suppressed trapping of small 

clusters. The dampening increases with decreasing coefficient of variation, until basically 

no trapping occurs any more. 

It is of interest to apply the same scaling relation as used in Fig. 7 to the cases where 

in-plane curvature is considered. Fig. 8 presents the cumulative cluster size distribution 

for δ = 0.25 before and after using the scaling relation with Lc. There is obviously a cutoff 

to the power law behavior around the correlation scale. For cases with smaller δ, the 

simple scaling relation does not collapse the curves (figures not shown). This is due to the 
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much stronger dampening effect of the in-plane curvature for both clusters below and 

beyond the correlation scale. This cutoff is discussed in more detail in Section 4. 

3.4. Cluster size composition of the trapped phase fluid 

In order to look at the contribution of trapped clusters of different sizes to the total 

trapped mass, we plot normalized trapped saturation from clusters with sizes larger than 

or equal to a certain size s (Fig. 9). This conditional normalized trapped saturation is 

calculated as ∑sʹn(sʹ≥s) / ∑sn(s). It can be observed that when the in-plane curvature is 

considered, the curves for the long-correlated (self-affine) field and the short- or 

uncorrelated field create an envelope. When the correlation scale is larger, the irreducible 

saturation is more dominated by the few large clusters. This is expected as spatial 

correlations exist in the aperture field up to the fracture scale, and allow for the existence 

of correlated regions of close-to-uniform aperture and of lateral extension of the same 

order as the system size. In those regions the trapping of wetting fluid clusters of size 

similar to the region size is possible. 

We can also define a cutoff cluster size such that the majority (say, 90%) of the 

irreducible saturation is distributed in trapped clusters with sizes larger than this cutoff 

size. Fig. 10 presents the 90% cutoff cluster size for all cases. Generally, when the in-

plane curvature is considered, the cutoff size increases with increasing correlation scale. 

This is because longer correlation length leads to more dampening of trapping of small 

clusters under the influence of in-plane curvature (see Fig. 6b-f). But when the in-plane 

curvature is neglected (i.e., in the IP limit), the cutoff size is largest at an intermediate 

correlation scale (L/Lc = 64). This can be explained by (i) the decreasing trend of the total 

trapped mass with increasing correlation length and (ii) the contribution of the sub-
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structure trapping below the correlation scale to the total trapped mass in the fracture. 

When L/Lc decreases from 2048 to 64, the total trapped mass decreases because there are 

fewer trapped clusters of sizes below the correlation scale. But when L/Lc further 

decreases, the contribution of sub-correlation scale trapped mass becomes larger than 

10%, causing the 90% cutoff size to be smaller than that for L/Lc = 64. If the threshold 

value would have been chosen differently from 90%, the correlation length scale having 

the largest cutoff cluster size would be different. 

4. Discussion  

We have investigated the effect of the aperture field’s geometry on capillary 

dominated displacement and trapping in fractures. The problem setup is similar to that of 

Glass et al. [21]. The simulation results show that the amount of trapped fluid depends on 

whether the in-plane curvature, that is, the minor principle component of the interface 

curvature, parallel to the fracture plane, is taken into account in the numerical model. The 

in-plane curvature acts to smooth the interface and decrease trapping. Generally, the 

smaller the coefficient of variation, the less the defending phase fluid can be trapped. 

This part of the results is in agreement with Glass et al. [21]. 

However, when it comes to the effect of aperture correlation scale, we have observed a 

different trend in trapped phase saturation than the one suggested in Glass et al. [21]. It is 

implied in Fig. 4 of Glass et al. [21] that trapped phase saturation increases monotonically 

with increasing correlation length. However, our results suggest that, when the in-plane 

curvature is considered in the model, the amount of trapped fluid mass first increases 

with increasing correlation scale Lc and then decreases as Lc further increases from some 

intermediate scale towards the domain size (Fig. 5). That is to say, when the in-plane 
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curvature is considered and the coefficient of variation is fixed, the trapped phase 

saturation is highest at some intermediate correlation scale, given a finite domain size.  

The discrepancy between our results and those of Glass et al. [21] stems from the 

different approaches used for calculating the in-plane curvature. Our model calculates the 

in-plane curvature as a purely geometrical parameter, by local fitting of osculating circles 

to the interface; in this, it closely follows the definition of curvature. The model used in 

Glass et al. [20,21] involves pre-defining a length scale (half of the correlation length) for 

the calculation of the in-plane curvature. In fact, according to Glass et al. [21], when the 

correlation length is much larger than the mean aperture (Lc ≫ b ), the invasion 

conforms to the IP limit. However, the IP limit would imply an invading front that is non-

smooth at any length scale, which then would be inconsistent with their model 

assumption that the in-plane radius is of the order of half the correlation length.  

The dependence of the global trapped saturation St on the coefficient of variation δ of 

the apertures can in general be explained. The trapping effect is a competition between 

the pinning of the interface at a location of small apertures and the pinning induced in-

plane curvature. By pinning we mean here that the interface/front tends to be slowed 

down or even arrested for a while at locations of small aperture, by the part of the 

capillary force that stems from the out-of-plane curvature. This impeding action by the 

small aperture leads to roughening of the interface, while the in-plane curvature 

counteracts to smoothen. One could imagine a threshold aperture, smaller than the mean 

aperture b , above which the local front is smoothed out by the in-plane curvature and 

below which it is not. It is clear that an aperture field with a smaller coefficient of 

variation has less such apertures than a field with higher coefficient of variation (See Fig. 
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11). This explains that there is in general less trapping in fields with smaller coefficients 

of variation (Fig. 5).  

The dependence of St on the aperture correlation scale is more subtle. Fig. 5 shows 

that St increases with decreasing Lc for large correlation lengths (note that we plot St 

against b /Lc; when L = Lc, as in the case of self-affine aperture field, b /Lc is at its 

minimum 1/2048). This behavior can be explained with the following reasoning. For a 

given δ, the area occupied by small apertures (below a threshold aperture) is the same for 

different correlation scales, and one may regard the small-aperture regions as a source 

leading to trapping. For large correlation lengths (low b /Lc, left side of Fig. 5), the 

dominant features of the fluid-fluid interface roughness have a length scale corresponding 

to the correlation length. As the correlation length decreases from Lc=L, two observations 

can be made (compare Fig. 11b and Fig. 11c): (i) the smaller the correlation length, the 

larger the number of clusters of small apertures that form loops with large-aperture 

clusters inside; these large-aperture clusters will be consequently inaccessible to the 

invading front and (ii) more channels of large apertures are available for a given spatial 

scale, meaning that more invasion pathways are possible. These two concomitant effects 

of decreasing Lc lead to increased probability of by-pass trapping with trapped clusters of 

size beyond the correlation scale (which means that the probability of trapping large-

aperture sites is higher). This explains that the total trapping increases with decreasing Lc, 

for large Lc values.  

However, as the correlation length is decreased further and approaches the 

uncorrelated case (right side of Fig. 5), the size range of the loops (of small apertures) 

widens and the small loops below a certain size will be smoothed out by the in-plane 
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curvature. Thus, at some intermediate Lc value (depending also on δ), the total area of 

trapped clusters starts to decrease with further decrease in correlation length. 

For a field with a low variance only few apertures with a value below a threshold 

exist. When the correlation length also becomes small, these apertures only generate 

isolated small spots (see Fig. 11d). However, these small spots, giving rise to small in-

plane radii at the interface, will not lead to trapping of the defending fluid, because the 

interface roughness at these spots will be smoothed out by the in-plane curvature. For this 

reason, the trapping is strongly suppressed in fields with both a small δ and a small Lc 

(Fig. 4f and Fig. 5). 

We can also make a note about the aperture variability (coefficient of variation). As 

the correlation scale increases towards the domain length scale, the large aperture regions 

and small aperture regions are more and more segregated into large patches. As a result, 

when the defending fluid is displaced, the apertures ‘sampled’ by the invading front will 

have a significantly narrower distribution (smaller coefficient of variation locally) than 

the global aperture field. This also supports to explain why the trapped phase saturation 

drops when the aperture correlation shifts from an intermediate scale towards the self-

affine fields. Therefore, it may be useful to define an effective coefficient of variation δf 

(as opposed to the global apparent coefficient of variation δ) calculated using the aperture 

values of the sites at the invading front. This motivates further studies. 

5. Conclusions 

Geostatistical characteristics of the aperture field in a rough-walled fracture have a strong 

impact on the two-phase fluid displacement and the resulting fluid entrapment. Our work 

has elucidated how the aperture correlation length and the coefficient of variation affect 
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the fluid displacement and trapping processes in the capillary dominated regime. We 

have shown that when the in-plane curvature is not considered, and for the fully 

uncorrelated case, the trapped cluster distribution scales as a power law. When the in-

plane curvature is not considered and spatial correlation exists in the aperture field, the 

cluster size distribution follows the same power law as in the uncorrelated field case only 

for clusters of linear size larger than the correlation length Lc. When the in-plane 

curvature is taken into account and the aperture field is uncorrelated, the cluster size 

distribution also follows a power law, but with a different exponent. In addition, 

accounting for the in-plane curvature suppresses the formation of trapped clusters of size 

below the correlation scale. This dampening effect is strongly affected by the coefficient 

of variation δ; the smaller the δ, the smaller the number of trapped clusters and the total 

mass (or saturation) of trapped fluid. The dampening is also affected by the correlation 

length scale. Interestingly, when the in-plane curvature is considered, the trapped phase 

saturation is highest at some intermediate correlation scale, for a given aperture 

coefficient of variation. 

The current work has also studied the composition of trapped mass in terms of the 

contribution from different cluster sizes. It has shown that, when the correlation scale is 

larger, the irreducible saturation is more dominated by a few large clusters, i.e., removal 

of the few large clusters will reduce most of the trapped mass. This has implications in 

situations where it is of interest to consider the subsequent interphase mass transfer 

process (e.g., evaporation of water, dissolution of supercritical CO2 or non-aqueous phase 

liquids) following fluid trapping. Generally smaller clusters have larger specific 

interfacial area, which means that the mass partitioning process is faster for smaller 
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clusters. A typical scenario would be: the small clusters disappear at a relatively early 

stage and the large clusters undergo a slow partitioning process and create long-term 

tailing of smaller mass transfer fluxes.  

In summary, we have presented a numerical investigation on the impact of aperture 

field geometry on capillary dominated displacement and fluid trapping. Despite the fact 

that only capillary forces are considered (no interplay between capillary, viscous and 

gravitational forces), a wide spectrum of entrapment morphologies can occur, spanning 

morphologies consisting of trapped clusters with a power law size distribution, to 

morphologies consisting of only a few sparse large clusters, and even to situations 

exhibiting no wetting fluid entrapment. The effect of in-plane curvature is to smoothen 

the invasion front and to dampen the entrapment of fluid clusters of a certain size range. 

This size range depends on the combination of the amplitude of the random aperture 

variability and aperture spatial correlation length. While the modeling results in this study 

are discussed in the context of rock fractures, the understanding of fluid displacement and 

trapping may as well apply to hydraulic properties of other two-dimensional thin-space 

flow devices. By choosing the aperture distribution (or alternatively the wettability of the 

confining walls) and the spatial correlation, one may be able to control how much fluid is 

to be trapped and according to what range of cluster sizes. 
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Fig. 1. Illustration of the two principle radii of curvature for a fluid-fluid interface within 

a rough-walled fracture: (a) cross section view showing the out-of-plane radius of 

curvature r1 related to the local aperture b and contact angle θ; (b) fracture plane view 

showing the in-plane radius of curvature r2 at points C1, C2 and C3 on the interface curve 

C.  C1, C2 and C3 can be determined using osculation circles. In-plane curvature is 

negative at C1 and C2, whereas it is positive at C3. (Modified after Yang et al. [42] with 

permission from American Geophysical Union) 

r
1
 

θ 

b 
Non-Wetting 
 Phase 

Wetting 
Phase 

Invading 
phase 

Defending 
phase 

r
2
 

r
2
 

C
2
 

C
1
 

C
3
 

Interface C 

(a) 

(b) 

Trapped  
defending 
fluid 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

35 

 

 

 

 

Fig. 2. Schematic of the modeling scenario. The variable aperture fracture is initially 

fully saturated with the wetting phase. The nonwetting fluid is invading from the left 

edge, and the wetting fluid is displaced and allowed to leave the fracture through the top, 

bottom and right edge.  
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Fig. 3. Example realizations of the generated aperture field (color bar unit: mm). All 

realizations have different random seeds. The domain length L is 20.48 cm. (a) 

Coefficient of variation δ = 0.25, mismatch wave number L/Lc = 1; (b) δ = 0.25, L/Lc = 16; 

(c) δ = 0.25, L/Lc = 256; (d) δ = 0.0833, L/Lc = 1; (e) δ = 0.0833, L/Lc = 16; (f) δ = 0.0833, 

L/Lc = 256. 
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Fig. 4. Spatial distribution of the trapped wetting fluid (shown in black) for the aperture 

fields shown in Fig. 3. The domain length L is 20.48 cm. (a) Coefficient of variation δ = 

0.25, mismatch wave number L/Lc = 1; (b) δ = 0.25, L/Lc = 16; (c) δ = 0.25, L/Lc = 256; 

(d) δ = 0.0833, L/Lc = 1; (e) δ = 0.0833, L/Lc = 16; (f) δ = 0.0833, L/Lc = 256. 
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Fig. 5. Average trapped phase saturation  tS as a function of the aperture correlation 

scale Lc and for different coefficients of variation δ. The IP limit corresponds to the a 

simulation for which the in-plane curvature has not been accounted for when computing 

capillary pressures.  
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Fig. 6. Trapped fluid cluster size distributions. (a) IP model without the effect of in-plane 

curvature; (b~f) IP modified to include effect of in-plane curvature, coefficient of 

variation δ = 0.25, 0.125, 0.0833, 0.0625 and 0.005, respectively. 
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Fig. 7. IP disregarding the effect of in-plane curvature. Left: cumulative cluster size 

distribution; Right: collapse to a master curve. 
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Fig. 8. IP accounting for the effect of in-plane curvature, δ = 0.25. Left: cumulative 

cluster size distribution; Right: collapse of the curves. 
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Fig. 9. Normalized trapped saturation from clusters of sizes larger than or equal to a 

certain size s. (a) IP model without the effect of in-plane curvature; (b~d) IP modified to 

include the effect of in-plane curvature, coefficient of variation δ = 0.25, 0.125 and 

0.0833, respectively. 
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Fig. 10. Cutoff cluster size at 90% of total trapped mass (from large cluster end).  
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Fig. 11. Segmented aperture fields with a threshold aperture value of bth = 0.9 b , where 

b  is the mean aperture. Black are apertures with values below the threshold. (a) 

Coefficient of variation δ = 0.25, mismatch wave number L/Lc = 256; (b) δ = 0.25, L/Lc = 

16; (c) δ = 0.25, L/Lc = 2; (d) δ = 0.0833, L/Lc = 256; (e) δ = 0.0833, L/Lc = 16; (f) δ = 

0.0833, L/Lc = 2. Note that these fields are generated with a smaller domain length L than 

that of the aperture field used for simulating fluid displacement. Thus, one should not 

compare these L/Lc values with those in the previous figures. The number of apertures 

below the threshold is larger in plots (a, b, and c) than in plots (d, e, and f). In plot (a) the 

configuration of the small apertures is in clusters of different sizes, while in plot (d) the 

low apertures form isolated small clusters. In the fields (c and f) this effect does not come 

to play, as structure is determined by the correlation length. 


