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A Cenozoic-style scenario for the end-Ordovician
glaciation
Jean-François Ghienne1, André Desrochers2, Thijs R.A. Vandenbroucke3, Aicha Achab4, Esther Asselin5,

Marie-Pierre Dabard6, Claude Farley2, Alfredo Loi7, Florentin Paris6, Steven Wickson2 & Jan Veizer2

The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive

glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as

large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be

twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as

today. Here we argue that some of these remarkable claims arise from undersampling of

incomplete geological sections that led to apparent temporal correlations within the relatively

coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally

complete sedimentary records from two, low and high, palaeolatitude settings. Their

correlation framework reveals a Cenozoic-style scenario including three main glacial cycles

and higher-order phenomena. This necessitates revision of mechanisms for the end-

Ordovician events, as the first extinction is tied to an early phase of melting, not to initial

cooling, and the largest d13C excursion occurs during final deglaciation, not at the glacial apex.
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S
helf sedimentary architecture is controlled essentially by
relative rates of base-level change and sediment supply1,2.
The base level reflects the interplay between tectonics

(subsidence, volume change at mid-oceanic ridges) and the
orbitally tuned, glacio-eustatically driven, sea-level change. The
rate of the latter, at tens of metres per 104–105 years, is one to
three orders of magnitude greater than the tectonically driven
sea-level change, at tens of metres per million years or less. The
critical issue for analysing the stratigraphic record, therefore, is
the correct assignment of depositional units to their appropriate
temporal hierarchy alongside a given sea-level curve. Another
consideration is the temporal significance of the observed or
suspected hiatuses. Any stratigraphic record of ancient shelf
deposits, and their isotopic or palaeontological proxies, inevitably
samples only the discontinuous segments of a given sea-level
curve3, which often are below the relatively coarse resolution
correlation potential of Palaeozoic biostratigraphy4. Regardless,
shelf deposits are the principal record that we have for pre-
Mesozoic glaciations and they must therefore serve as
stratigraphic archives for glacially driven events, providing:
subsidence was active; water depths at the onset of glaciation
were moderately deep; and sediment supply was adjusted to
subsidence rates. These preconditions are essential for the
maintenance of significant water depths during glaciation, as
any rapid shallowing would pre-empt the registration of
subsequent glacio-eustatic events.

The end-Ordovician witnessed one of the three largest
Phanerozoic glaciations with the development of continental-
scale ice sheets5–7. This climatic event was postulated to have
been initiated by massive weathering of fresh volcanic rocks8,
tectonics and related plate motions9–11, high cosmic ray flux
impacting cloud albedo12 or by a combination of the above13. The
glaciation apparently coincided with highly14 or moderately10,15

elevated CO2 levels, with large isotopic excursions (C, S, O, N,
Nd), and with a major double-phased biological extinction16–22.
Interpretations based on far-field, low palaeolatitude sequences,
resulted in ‘coup-de-théâtre’ scenarios that have tied the two
phases of extinction to the onset and termination of a single
glaciation16,17,21. Yet the high palaeolatitude near-field sequences
contain up to five glacial cycles that can be tentatively correlated
across the Gondwanan glaciated platforms5,23. The low
palaeolatitude archives must therefore represent a more
complex scenario18,22,24–26 than that of a single, major glacial
event. If so, a multiorder climate signal with a hierarchy of cycles,
a Cenozoic-type ‘business as usual’ scenario, is a more likely
alternative than a large singular event. Such linkage of eustatic,
biological and isotopic records to the climatically forced
development of an ice sheet can only be contemplated within a
framework of high-resolution sequence stratigraphy that
integrates allo-, chemo- or biostratigraphic markers.

Here, we present such a framework, based on the recognition
of genetic stratigraphic sequences (GSSs) and intervening erosion
surfaces (see Methods). This framework, driven by glacio-eustatic
cycles tied to the evolution of polar continental-scale ice sheets
over west Gondwana5, enables the correlation of eustatic cycles at
a level that is beyond the resolution capability of most absolute
dating methods and of biozones, the latter typically of Myr
duration4. A Cenozoic-style scenario including three main glacial
cycles and higher-order phenomena necessitates the revision of
the end-Ordovician, glaciation-related sequence of events.

Results
Palaeolatitude sequence stratigraphic frameworks. We intro-
duce sequence stratigraphic correlation frameworks for two
superbly exposed and exceptionally well-developed latest

Ordovician successions (Fig. 1), the Anti-Atlas of
Morocco7,27,28 and Anticosti Island in Canada25,29. Both offer
sections, on a 100-km scale, from the basin edge to the axis of
active sedimentary depocentres (Fig. 2 and Supplementary Figs 1
and 2). Relative to the end-Ordovician ice-sheet centre (present-
day north-central Africa), they provide a near-field (Anti-Atlas,
siliciclastic platform) and a far-field (Anticosti Island, mixed
carbonate and siliciclastic) stratigraphic record. These two
successions, up to 300 and 100m thick, respectively, were
deposited in basins with notable subsidence rates and significant
(ca. 100m) initial Katian water depths, enabling the development
of comprehensive archives of the latest Ordovician glaciation
(Supplementary Fig. 3). On the basis of average shelf-depositional
rates within the overall Late Ordovician context7,27, and on
comparison with analogous late Cenozoic shelf stratigraphies3,30,
such thick successions are considered to be long-term
44100s kyr archives. In both areas, the end-Ordovician
comprises three genetic low-order stratigraphic sequences
(GSSs) of highest significance that, in turn, encompass a
number of higher-order GSSs of intermediate and low
significance (Fig. 2; see the Methods).

The intercontinental correlation of these two successions is
made possible due to the recognition of marker intervals. Earlier
palaeontological studies already bracketed the stratigraphic
interval that contains the well-known end-Ordovician extinction
events (Supplementary Figs 1 and 2). In both sections, the first
extinction event is situated around the conventional Katian–
Hirnantian boundary, which in our record is penecontempora-
neous with the major bounding surface that separates the two
lower low-order GSSs. The related ‘maximum flooding interval’—
rather than the maximum flooding surfaces (MFS) that cannot be
strictly synchronous at the global scale—is our first marker.
It correlates with the brief ‘pre-Hirnantian deepening’ event
identified in western Laurentia22. The second marker based on
allostratigraphy relies on the signature of the end-Ordovician
glacial climax. In the Anti-Atlas, it demonstrably correlates with
the stratigraphic interval bounded by glacial erosion surfaces and
includes widespread glacial (subglacial, glaciomariney) deposits
in the basinal succession (the glacial interval in Fig. 2). Note that
coeval strata are often absent in basin edge successions (Hajguig
Wadi log in Fig. 2). In the Anticosti Island succession, the
signature of the glacial climax (lowest sea levels) is ascribed to the
prominent erosional unconformity at the base of the Laframboise
Mb. The result is a severe erosional truncation of the studied
interval (Fig. 2 and Supplementary Fig. 2). Regional correlation of
low- and high-order GSSs between these two markers is indeed
intriguing (Fig. 2). Moreover, other subordinate erosional
unconformities at the basin edge of the Anti-Atlas succession
have their counterparts in the Anticosti Island succession. For the
highest-order GSSs, at least partially related to local processes,
such correlations are less reliable.

The end-Ordovician glacial tempos. Within the context of
glaciation, where eustasy is expected to control shallow shelf
sequences3, our findings strongly suggest that the two
independent regional scale frameworks and their correlation are
robust and that the correspondence of the low- and high-order
GSS records from dissimilar tectonic and environmental settings
arises from glacio-eustatically fluctuating sea levels, the latter a
consequence of waxing and waning of the western Gondwana ice
sheet. We interpret the three low-order GSSs to be the signature
of the three extensive glacial cycles (Latest Ordovician Glacial
Cycles, LOGCs 1–3; Figs 2 and 3 and Supplementary Note). Note
that our provisional numbering refers to the latest Ordovician,
understood to informally include the highest Katian and the
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Hirnantian. This is in agreement with the views that ice sheets
were extant already before the latest Katian7,22,31,32. Our first
glacial cycle spans the upper Katian (LOGC 1), the second
(LOGC 2) includes the uppermost Katian strata and most of the
lower to middle part of Hirnantian and the third (LOGC 3)
commences in the upper Hirnantian and ends in the lowermost
Silurian. In our view, corroborated recently by Nd isotope
studies22, the end-Ordovician glaciation could not have been
restricted to a single short-lived glacial event, as earlier believed.

The minimum depositional time for the entire LOGC 1–3
succession is in excess of the Hirnantian duration (B1.4±0.2
Myr33), the latter encompassing about 60–90% of the LOGC 2
and some 40–80% of the LOGC 3. Assuming that all LOGCs
are of about equal durations, a single LOGC corresponds to a
0.7–1.6Myr time span. The embedded higher-frequency
multiorder event stratigraphy is typical of orbitally controlled
climatic oscillations that lead to recurring ice-sheet growth
stages34, in agreement with the modelling results of Hermann
et al.35 Note however that in contrast to the well-known, strongly
asymmetric and shorter-term, Pleistocene glacial cycles36, our
LOGCs show no abrupt deglaciations. They have a symmetric
distribution of the high-order GSSs, as evident from the stacking
patterns within the low-order regressive to transgressive system
tracts (TSTs). Long-lasting interglacials are expressed as
condensed, maximum flooding stratigraphic intervals7 that
account for significant portions of the overall duration of the
studied time span (Fig. 3). Despite of some similarities to

Quaternary glaciations5,7,15,31,37, the durations and internal
organization of LOGCs argue for dissimilar glacial tempos and
forcings. These Ordovician features and tempos more closely
resemble the Oligocene climate patterns that were driven by a
high-amplitude obliquity modulation at 1.2Myr frequency34,
resulting in a limited number of short-lived ice-sheet growth
phases, our high-order GSSs, centred around the obliquity
nodes38,39. Such high-frequency signals may hold some
similarities to the metre-scale cycles described from other low-
latitude areas and attributed to E200 (ref. 40) or 40–130 kyr
(ref. 32) frequency oscillations.

Assuming the analogy with the Oligocene climate is valid, we
hypothesize that an orbital forcing responding to the amplitude
modulation of the obliquity typifies glacial climate systems at
relatively high CO2atm levels. In such a scenario, the ice-sheet
inception, driven by ice-albedo feedbacks, may have resulted from
a dearth of exceptionally warm rather than a ubiquity of
exceptionally cool summers38.

Discussion
Our sequence stratigraphic framework allows Hirnantian excur-
sion(s) and extinction(s) to be revisited. The large positive carbon
isotope excursions of the Palaeozoic, such as the Hirnantian
Isotopic Carbon Excursion, HICE in LOGC 3 (refs 17,18,41–43),
are often used as chronostratigraphic markers, albeit with no
consensus model for their existence. Yet, the notion that the
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d13Ccarb signal of shelf carbonates is a direct reflection of the
d13CDIC of the globally uniform open ocean is clearly open to
debate13,26 (Supplementary Discussion). Note that the magnitude
and occurrences of such 13C enrichments depends on localized
settings (for example, epeiric versus open ocean aquafacies22,44)
and is therefore related to depositional facies and not
straightforwardly to a global signal. For example, the d13Ccarb

on the modern Bahamas Bank is considerably more positive than
that of the open ocean45.

In addition, our revised chronology questions the paradigm
of temporal relationships that link the position of the end-
Ordovician glacial cycles, their tempos and biochemical
events13,16–22,26. The first issue that arises is the identification
and temporal range of the HICE itself. If it is understood as
coeval with the large þ 4% isotopic excursion, it has to be
confined to a restricted time interval of a single high-order GSS
within the end-Ordovician glaciation (Fig. 3), as posited by the
Anticosti case study. If, on the other hand, understood as a 13C
signal that commences in the latest Katian and ends in the latest
Hirnantian, our results (Fig. 3 and Supplementary Table 1) show

13C enrichments in at least three stratigraphic positions, suggesting
that HICE combines several excursions, thus challenging its validity
as a high-resolution chronostratigraphic marker.

The Anticosti d13Ccarb curve (Fig. 3) includes two main
isotopic events. First, it is the well-known excursion in the
Laframboise Mb. (þ 4%) that is disconnected from a rising limb
in the underlying strata by a major unconformity that we relate to
the glacial maximum and to subaerial erosion in LOGC 3.
Second, there is an earlier asymmetric excursion (þ 2%) with its
descending limb that is spanning the lower and middle parts of
the Ellis Bay Fm. (LOG 2). There is also a lesser enrichment in the
uppermost Vauréal Fm., associated with LOGC 1, which may
form a third, subordinate excursion. Other putative (o1%)
excursions, while present, are minor and difficult to interpret.
This multi-peak isotope pattern at Anticosti Island questions the
views of strictly synchronous signals, despite observations that a
number of Hirnantian records worldwide—and potentially
similar ‘wiggles’ in the carbon isotope record elsewhere—
contain positive d13C spikes that appear isochronous17,24,46

within the correlation capabilities of the Palaeozoic bio- and/or
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chronostratigraphy26. An apparent single peak may represent
only disjointed parts (Fig. 4) of a hypothetically complete d13Ccarb

curve for just one of several repetitious LOGCs, or a composite
signal from an artificially stacked section.

Whatever the temporal extent of HICE, our sequence
stratigraphic framework warrants reconsideration of the pub-
lished ‘cause-and-effect’ scenarios for its origin. The rising limb of
the 13C excursion at the base of the Ellis Bay Fm. (Fig. 3) is
associated with a highstand that follows the LOGC 1–2 transition,

while its descending limb spans several high-frequency glacio-
eustatic cycles within the late regressive to TSTs of the LOGC 2.
In this case, there is therefore no apparent connection between
eustasy and the d13Ccarb curve. The simplest explanation is to see
the LOGC 2 isotopic signal as that of regional epeiric water
masses with their distinctive variations in d13C (ref. 44). In
contrast, the subsequent, exceptionally high-amplitude excursion
is within the TST of LOGC 3, and is associated with a drastic
basin-scale change of facies caused by transition from glacial to
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(low-order, high-significance Late Ordovician Glacial Cycles represented by both coloured triangles and the thick, pale blue curve) from high-order cycles

(thin, dark blue curve). LOGCs are bounded by major MFS (dotted lines). Blue shading highlights time intervals specifically characterized, or thought to be

characterized by ice-sheet development stages. The ice-sheet development increased from the late Katian to the late Hirnantian, as suggested by

glacioeustatic trends. The dashed blue curve is a representation of the early Silurian eustatic background. Black, dashed lines are the inferred Katian to

Hirnantian and Hirnantian to Llandovery boundaries. (c) Representation of a potential time calibration is based on astronomical forcings dominated by

1.2Myr amplitude modulation of obliquity cycles34 (see text for details). By analogy with the Cenozoic, the composite artificial curve was constructed by

mixing high-frequency orbital cycles (‘ETP’ for eccentricity–tilt–climatic precession33) and here it is shown only to illustrate the distortion in the

stratigraphic record. It results in condensed transgressive and overdeveloped lowstand intervals, relative to a linear timescale. The high- and highest-order

glacial cycles likely correspond to such orbitally forced, high-frequency climatic oscillations. In contrast, during the long interglacials orbital forcing did not

result in ice-sheet development and they have therefore a poorly differentiated record. The end-Ordovician includes short glaciation intervals with

cumulative duration of perhaps a few hundred thousand years. The embedded isotopic and biological signals show up to three discrete isotopic events and

two faunal turnovers (oblique-line shading), from the highest Katian to uppermost Hirnantian. The Hirnantian isotopic carbon excursion (HICE) is not

restricted to the excursion associated with LOGC 3 at the top of the Ellis Bay Fm. The dashed pink curve is a representation of the Katian istopoic

background.
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warmer climates (reefs of the Laframboise Mb.). At a higher
resolution, the excursion appears to be confined to the highstand
of a high-order GSS (Fig. 4), thus peaking at times of rising sea
levels associated with deglaciation. This coincidence is opposite to
the postulated lowstand conditions that are essential in the
‘weathering’ scenario11 and the model can be discounted as a
potential explanation. The ‘productivity’47 and related ’circulation
pattern’ explanations48,49 could perhaps offer plausible alter-
natives, providing it can be demonstrated that the isotopic
excursion is not facies dependent. Our highstand nadir of isotope
excursion can then be consistent with the scenario that invokes
carbon storage in the deeper parts of the shelf39, albeit
constrained—because of it high amplitude—to basinal, not
global, scales (see box model in Supplementary Discussion and
Supplementary Tables 2 and 3). In such a context, the particular
highstand conditions favourable for the development of carbon
excursions may arise at distinct locations during any high-order

GSSs. If so, it is the short duration of contiguous high-order
GSSs that give the impression of a synchronous, worldwide
phenomenon during the LOGC 3 transgressive trends. For minor
excursions, such as those in LOGC 1 or in the uppermost (below
the unconformity) Ellis Bay Fm., we contend that our present-day
knowledge of carbon isotope systematics does not permit unique
diagnostics of causative factors and scenarios. We therefore desist
from their interpretation.

In summary, providing our sections represent sufficiently
comprehensive archives of the latest Ordovician development, we
dispute the apparent association of each LOGC with an individual
isotopic excursion. At higher resolution, the relationship with sea-
level history differs from case to case, indicating that it is not a
unique forcing but likely a combination of processes that is
involved in 13C enrichment21.

Similar reasoning may suggest that ‘pulses’ in patterns of the
end-Ordovician biological extinction result from telescoping of
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Figure 4 | A detailed interpretation of the far-field LOGC 3 stratigraphic and isotopic record. (a) The main lithostratigraphic units on Anticosti Island,

including the Laframboise Member, are shown with their representative depositional facies and related d13C curve. They are separated by shoreline

ravinement unconformities62. The sequence stratigraphic interpretation differentiates low-order/high-significance regressive (orange and yellow triangle)

and transgressive (purple triangle) system tracts. The corresponding first-order unconformity coincides with the base of the Laframboise Member.

High-order cycles represented by white triangles are present in the LOGC 3 TST, which commences with the base of the Laframboise Member.

(b) The same sequence in the ‘linear’ timescale perspective of this succession of depositional events. It includes relatively long depositional hiatuses

(oblique-line shading). At Anticosti, the high-frequency glacio-eustatic sea level changes, similar to those recorded in the near-field glacial record of

Morocco, are represented by unconformities coeval with the glacial maxima. One recorded interglacial event (Laframboise Mb.) is interpreted here as a

single high-order GSS within the larger TSTof LOGC 3. (c) An alternative view of the isotopic excursion, which includes the stratigraphic hiatuses. The d13C
record captures only disjointed segments of the isotope signal. In particular, the d13C curve does not include values from the time interval that corresponds

to the Hirnantian glacial climax. We suspect that the trend from background levels to the maximum in fact combines an initial rise that predates the glacial

climax, the associated hiatus and the subsequent maximum that postdates the glacial climax. This maximum is developed mainly within the reefal

limestones constituting the highstand facies of a particular high-order GSS.
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segments from the stratigraphic record, as must be the case for
hiatus-dominated successions20. The two phases of the Late
Ordovician mass extinction that were documented worldwide in
earlier studies17,21 are however confirmed also by our results on
the Anticosti Island (Fig. 3 and Supplementary Fig. 2). Our
correlation framework moreover indicates that these turnovers
are relatively long-lasting time intervals that encompass several
glacio-eustatic fluctuations of the high or highest GSSs in
the Anti-Atlas record. Whether these turnovers originate from
evolution specifically related to LOGC developments, or whether
they only mirror a succession of stacked, quasi-instantaneous,
pulses is beyond resolution of our data set, regardless of their
potential combination within protracted, global events21,50. The
ensemble of our sections studied represents only a fraction of
affected palaeohabitats and biota, and, as explained, sections that
contain complementary palaeontological data cannot be readily
correlated into our framework; our analyses thus likely
undersamples the full biotic dynamics through this interval.
Yet, our juxtaposition of extinction phases to glacial development
suggests a more nuanced scenario than previously advocated
(Fig. 3).

The older turnover, which has classically been associated
with the onset of the Hirnantian glaciation at the base of the
N. extraordinarius Biozone, spans an interval that includes LOGC
1 deglaciation and the early LOGC 2 highstand. This turnover
corresponds therefore mostly to the first major interglacial period.
The models that are based on processes linked to glacial onset,
such as the shrinkage of biotic ecospace, temperature decline
or development (or the loss) of anoxia during falling sea
level13,15,20,21, are thus not compatible with this revised
scenario. Instead, processes linked to deglaciation dynamics (for
example, amplification of meltwater fluxes that enhance ocean
stratification), or flooding of the shelves by relatively deep anoxic
waters13,21,51, appear to be more likely scenarios for this first
turnover, but they are not applicable, as previously envisioned,
for the second turnover. The second turnover that we recognize
in LOGC 3 is an event traditionally assigned to the lower part of
the N. persculptus Biozone. This extinction/recovery pattern
affects mostly macrofauna in the Anticosti Island succession
(Supplementary Fig. 2). The phytoplankton crisis, on the other
hand, commenced beneath the regional unconformity (Fig. 4),
that is before glacial climax of LOGC 3 (refs 42,52), suggesting
that the second end-Ordovician faunal turnover may have been
initiated already during the late Hirnantian ice-sheet waxing, thus
casting doubt on a unique causative linkage that would have been
confined to final deglaciation. Note nevertheless that the
ubiquitous existence of worldwide hiatuses at that time makes
any interpretation tentative.

While we appreciate the merits of a sophisticated model-driven
approach, and welcome the impetus derived from it, the insights
arising here from the application of basic geological methods
underline the need for detailed understanding of the rock record
as well13. In this contribution, temporal relationships of near-field
and far-field records for the end-Ordovician glaciation are
considered within a high-resolution, multiorder correlation
framework that reflects a Cenozoic-style hierarchy of glacio-
eustatically driven oscillations consisting of three main cycles and
superimposed higher-order subcycles. This interpretation
questions earlier views that were based on lower resolution data
sets for a simple latest Katian decline in sea level followed by its
rise in the upper Hirnantian. An oversimplified sedimentary
succession likely incorporates significant hiatuses and represents
only a partial record of the entire time interval18,53. Frequently,
such stratigraphic sections correspond to vertically juxtaposed,
unrelated parts of glacial cycles, resulting in biased timing of
biochemical signals relative to the glacial tempos. On the basis of

our framework, we anticipate that the most easily captured phases
in the worldwide end-Ordovician development should reflect the
initial waxing stage and potentially the immediately ensuing
flooding event (LOGC 1), followed by later reflooding of the
shelves at the end of LOGC 3. In more comprehensive
successions, the maximum flooding interval at the LOGC 2-3
transition (mid-Hirnantian transgression5) will likely yield a
decipherable signature22.

The orbitally controlled depositional record of a glacial interval
will mostly be underrepresented in proven or suspected hiatuses.
These may originate from nondeposition, subaerial or subglacial
unconformities, transgressive post-glacial ravinement processes,
mass movements or from erosion by bottom currents, the latter
being particularly effective for the deeper parts of shelf basins.
Due to the lack of Palaeozoic deep-sea records, the absolute
timing and calibration of the Ordovician glaciation may remain
enigmatic13. We envision therefore that future progress in
understanding the temporal, spatial and causal evolution of the
Late Ordovician environmental record will have to rely on high-
resolution methods that capture multiorder sequence stratigraphy
and related proxies along depositional profiles on a regional scale.
Our advances using these methods include: rejection of the earlier
cause-and-effect scenarios for HICE(s), as these no longer fit with
the revised context of glacial/ glacio-eustatic development; the
suggestion that low-order LOGCs likely represent the 1.2Myr
long obliquity cycles that modulated ice-sheet dynamics, similar
to scenarios proposed for the Oligocene; and the insight that the
first Hirnantian extinction pulse, contrary to earlier studies, was
linked to an intervening melting phase, not to the initial cooling
phase of the end-Ordovician.

Methods
GSSs. Sequence stratigraphic correlation frameworks are based on visual corre-
lations of marker beds along continuous exposures at the 10–30 km scale (Fig. 2)
and on refined, regional scale, chitinozoan-based biostratigraphies for northern
Gondwana54–58 and eastern Laurentia59,60. This results in correlations that are
noticeably different from lithostratigraphic schemes (Supplementary Figs 1 and 2).
MFS and a variety of erosion surfaces have been delineated in the field. The MFS
coincide with deeper, usually condensed, depositional conditions and serve as
bounding surfaces for GSSs61, ideally including a lower regressive system tract
(RST) and an upper transgressive system tract (TST). Erosional surfaces
correspond to glacial erosion surfaces (Morocco); subaerial unconformities
reworked by transgressive ravinement processes (SR-U sensu Embry, 2009 (ref. 62);
Anticosti); or sharp-based erosional surfaces punctuating regressive facies trends
and ascribed in most cases to regressive surfaces of marine erosion (Anti-Atlas and
Anticosti). We favour GSSs over Trangressive/Regressive62 (T–R), or depositional
sequences2 because their bounding surfaces (MFS) better approximate late
deglaciation conditions and thus appropriately bracket glacial cycles. In this
scheme, a post-glacial highstand of an interglacial is represented by deposits that
constitute the lower part of the subjacent sequence.

Sequence hierarchy. Stratigraphic surfaces have been assigned to a hierarchy of
GSSs. The significance of facies shifts and/or their penetration into the basin are
used as criteria to assess the relative magnitude of base-level falls in successive,
multiorder sequences. It results in a data-driven hierarchy62, different from a
frequency-related scheme based on a priori assumptions about durations of
sequences. The highest-order (low significance) GSSs display limited facies shifts,
both in the basin and at basin edge. More significant are the high-order genetic
sequences, which comprise several highest-order GSSs and/or include abrupt facies
shifts associated with coeval, or at least suspected, erosion surfaces at basin edge.
The low-order sequences (highest significance) are made up of a suite of high-order
sequences, the stacking pattern of which defines long-term RST and TST. They are
bounded by the major MFS associated with severe condensation (for example,
phosphogenesis in the Anti-Atlas). They include in their most regressive part (late
RST or early TST) one or several important erosional surfaces such as shoreline
ravinement unconformities, or glacial erosion surfaces in the upper Hirnantian in
Morocco, which expand toward basinal areas. This approach is often not
appropriate for maximum flooding intervals characterized by relatively deep
depositional conditions, where facies shifts are poorly deciphered. Here, an
alternative, frequency-related, hierarchy is frequently applied7.

Base-level falls associated with glacial erosional surfaces are recognized on the
basis of: their basinward extent at regional scale63 (Supplementary Fig. 1); the
development/absence of well-organized subglacial shear zones that indicate fully
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subglacial/marginal ice fronts64. Maximum erosional depths are not considered to
be a measure of the significance of a glacial surface. We are aware that such
estimates reflect glacial extents rather than true ice-sheet volumes, but they do have
significance when dealing with high- and low-order GSSs.

References
1. Jervey, M. T. in Sea Level Changes—An Integrated Approach Vol. 42 (eds

Wilgus, C. K. et al.) 47–69 (Society of Economic Paleontologists and
Mineralogists, Special Publication, 1988).

2. Catuneanu, O. et al. Towards the standardization of sequence stratigraphy.
Earth-Sci. Rev. 92, 1–33 (2009).

3. Mountain, G. S. et al. in Continental Margin Sedimentation: From Sediment
Transport to Sequence Stratigraph Vol. 37 (eds Nittrouer, C. A. et al.) 381–458
(International Association of Sedimentologists, Special Publication, Blackwells,
2007).

4. Sadler, P. M., Cooper, R. A. & Melchin, M. High-resolution, early Paleozoic
(Ordovician-Silurian) time scales. GSA Bull. 121, 887–906 (2009).

5. Ghienne, J.-F., Le Heron, D., Moreau, J., Denis, M. & Deynoux, M. in Glacial
Sedimentary Processes and Products Vol. 39 (eds Hambrey, M. et al.) 295–319
(International Association of Sedimentologists, Special Publication, Blackwells,
2007).

6. Le Heron, D. P. & Craig, J. First-order reconstructions of a Late Ordovician
Saharan ice sheet. J. Geol. Soc. 165, 19–29 (2008).

7. Loi, A. et al. The Late Ordovician glacio-eustatic record from a high latitude
storm-dominated shelf succession: the Bou Ingarf section (Anti-Atlas, Southern
Morocco). Palaeogeogr. Palaeocl. Palaeoecol. 296, 332–358 (2010).

8. Lefebvre, V., Servais, T., François, L. & Averbuch, O. Did a Katian large igneous
province trigger the Late Ordovician glaciation? A hypothesis tested with a
carbon cycle model. Palaeogeogr. Palaeocl. Palaeoecol. 296, 309–319 (2010).

9. Herrmann, A. D., Patzkowsky, M. E. & Pollard, D. The impact of
paleogeography, pCO2, poleward ocean heat transport, and sea level change on
global cooling during the Late Ordovician. Palaeogeogr. Palaeocl. Palaeoecol.
206, 59–74 (2004).

10. Nardin, E. et al. Modeling the early Paleozoic long-term climatic trend. Geol.
Soc. Am. Bull. 123, 1181–1192 (2011).

11. Kump, L. R. et al. A weathering hypothesis for glaciation at high atmospheric
pCO2 during the Late Ordovician. Palaeogeogr. Palaeocl. Palaeoecol. 152, 173–
187 (1999).

12. Shaviv, N. J. & Veizer, J. Celestial driver of Phanerozoic climate? GSA Today
13/7, 4–10 (2003).

13. Melchin, M. J., Mitchell, C. E., Holmden, C. & Štorch, P. Environmental
changes in the Late Ordovician–early Silurian: Review and new insights from
black shales and nitrogen isotopes. GSA Bull. 125, 1635–1670 (2013).

14. Royer, D. L. CO2-forced climate thresholds during the Phanerozoic. Geochim.
Cosmochim. Acta 70, 5665–5675 (2006).

15. Vandenbroucke, T. R. A. et al. Polar front shift and atmospheric CO2 during
the glacial maximum of the Early Paleozoic Ice-house. Proc. Natl Acad. Sci.
USA 107, 14983–14986 (2010).

16. Sheehan, P. M. The Late Ordovician mass extinction. Annu. Rev. Earth Planet.
Sci. 29, 331–364 (2001).

17. Brenchley, P. J. et al. High-resolution stable isotope stratigraphy of Upper
Ordovician sequences: Constraints on the timing of bioevents and
environmental changes associated with mass extinction and glaciation. Geol.
Soc. Am. Bull. 115, 89–104 (2003).

18. Bergström, S. M., Saltzman, M. R. & Schmitz, B. First record of the Hirnantian
(Upper Ordovician) d13C excursion in the North American Midcontinent and
its regional implications. Geol. Mag. 143, 657–678 (2006).

19. Finnegan, S. et al. The magnitude and duration of Late Ordovician-Early
Silurian glaciation. Science 331, 903–906 (2011).

20. Finnegan, S., Heim, N. A., Peters, S. E. & Fisher, W. W. Climate change and the
selective signature of the Late Ordovician mass extinction. Proc. Natl Acad. Sci.
USA 109, 6829–6834 (2012).

21. Harper, D. A. T., Hammarlund, E. U. & Rasmussen, C. M. Ø. End Ordovician
extinctions: a coincidence of causes. Gondwana Res. 25, 1294–1307 (2013).

22. Holmden, C. et al. Nd isotope records of late Ordovician sea-level change—
Implications for glaciation frequency and global stratigraphic correlation.
Palaeogeogr. Palaeocl. Palaeoecol. 386, 131–144 (2013).

23. Sutcliffe, O. E., Dowdeswell, J. A., Whittington, R. J., Theron, J. N. & Craig, J.
Calibrating the Late Ordovician glaciation and mass extinction by the
eccentricity cycles of the Earth’s orbit. Geology 23, 967–970 (2000).

24. Melchin, M. J. & Holmden, C. Carbon isotope chemostratigraphy in
Arctic Canada: Sea-level forcing of carbonate platform weathering and
implications for Hirnantian global correlation. Palaeogeogr. Palaeocl.
Palaeoecol. 234, 186–200 (2006).

25. Desrochers, A., Farley, C., Achab, A., Asselin, E. & Riva, J. F. A far-field record
of the end Ordovician glaciation: the Ellis Bay Formation, Anticosti Island,
Eastern Canada. Palaeogeogr. Palaeocl. Palaeoecol. 296, 248–263 (2010).

26. Delabroye, A. & Vecoli, M. The end-Ordovician glaciation and the Hirnantian
Stage: a global review and questions about Late Ordovician event stratigraphy.
Earth-Sci. Rev. 98, 269–282 (2010).

27. Destombes, J., Hollard, H. & Willefert, S. in Lower Palaeozoic of
North-western and West Central Africa (ed. Holland, C. H.) 91–336 (John
Wiley, 1985).

28. Le Heron, D. Late Ordovician glacial record of the Anti-Atlas, Morocco.
Sediment. Geol. 201, 93–110 (2007).

29. Long, D. G. F. Tempestite frequency curves: a key to Late Ordovician and
Early Silurian subsidence, sea-level change, and orbital forcing in the
Anticosti foreland basin, Quebec, Canada. Can. J. Earth Sci. 44, 413–431
(2007).

30. Janszen, A., Spaak, M. & Moscariello, A. Effects of the substratum on the
formation of glacial tunnel valleys: an example from the Middle Pleistocene of
the southern North Sea Basin. Boreas 41, 629–643 (2012).

31. Vandenbroucke, T. R. A. et al. Ground-truthing Late Ordovician climate
models using the paleobiogeography of graptolites. Palaeoceanography 24,
PA4202 (2009).

32. Elrick, M. et al. Orbital-scale climate change and glacioeustasy during the early
Late Ordovician (pre-Hirnantian) determined from d18O values in marine
apatite. Geology 41, 775–778 (2013).

33. Gradstein, F. M. et al. The Geologic Time Scale (Elsevier, 2012).
34. Boulila, S. et al. On the origin of Cenozoic and Mesozoic ‘third-order’ eustatic

sequences. Earth-Sci. Rev. 109, 94–112 (2011).
35. Hermann, A. D., Patzkowsky, M. E. & Pollard, D. Obliquity forcing with 8–12

times preindustrial levels of atmospheric pCO2 during the Late Ordovician
glaciation. Geology 31, 485–488 (2003).

36. Waelbroeck, C. et al. Sea-level and deep water temperature changes derived
from benthic foraminifera isotopic records. Quaternary Sci. Rev. 21, 295–305
(2002).

37. Armstrong, H. A. in Deep Time Perspectives on Climate Change (eds
Williams, M., Haywood, A., Gregory, F. J. & Schmidt, D. N.) 101–121 (Special
Publication of the Geological Society of London, The Micropalaeontological
Society and Geological Society of London, London, 2007).

38. Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P.
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