P. D. Asimow, J. E. Dixon, and C. H. Langmuir, A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores, Geochemistry, Geophysics, Geosystems, vol.3, issue.1-2, pp.10-1029, 2004.
DOI : 10.1029/2003GC000568

P. D. Asimow and C. H. Langmuir, The importance of water to oceanic mantle melting regimes, Nature, vol.76, issue.6925, pp.815-820, 2003.
DOI : 10.1016/0012-821X(94)90074-4

D. Barker, Calculated silica activities in carbonatite liquids, Contributions to Mineralogy and Petrology, vol.141, issue.6, pp.704-709, 2001.
DOI : 10.1007/s004100100281

R. G. Berman and T. H. Brown, A thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2, Geochimica et Cosmochimica Acta, vol.48, issue.4, pp.661-678, 1984.
DOI : 10.1016/0016-7037(84)90094-2

G. P. Brey and D. H. Green, Solubility of CO2 in olivine melilitite at high pressures and role of CO2 in the earth's upper mantle, Contributions to Mineralogy and Petrology, vol.257, issue.No. 17, pp.217-230, 1976.
DOI : 10.1007/BF00372228

G. P. Brey, W. R. Brice, D. J. Ellis, D. H. Green, K. L. Harris et al., Pyroxene-carbonate reactions in the upper mantle, Earth and Planetary Science Letters, vol.62, issue.1, pp.63-74, 1983.
DOI : 10.1016/0012-821X(83)90071-7

G. P. Brey, V. K. Bulatov, and A. V. Girnis, Influence of water and fluorine on melting of carbonated peridotite at 6 and 10??GPa, Lithos, vol.112, pp.249-259, 2009.
DOI : 10.1016/j.lithos.2009.04.037

G. P. Brey, V. K. Bulatov, and A. V. Girnis, Melting of K-rich carbonated peridotite at 6???10GPa and the stability of K-phases in the upper mantle, Chemical Geology, vol.281, issue.3-4, pp.333-342, 2011.
DOI : 10.1016/j.chemgeo.2010.12.019

G. P. Brey, V. K. Bulatov, A. V. Girnis, and Y. Lahaye, Experimental Melting of Carbonated Peridotite at 6-10 GPa, Journal of Petrology, vol.49, issue.4, pp.797-821, 2008.
DOI : 10.1093/petrology/egn002

R. A. Brooker, The Effect of CO Saturation on Immiscibility between Silicate and Carbonate Liquids: an Experimental Study, Journal of Petrology, vol.39, issue.11, pp.1905-1915, 1998.
DOI : 10.1093/petrology/39.11.1905

R. A. Brooker and D. L. Hamilton, Three-liquid immiscibility and the origin of carbonatites, Nature, vol.346, issue.6283, pp.459-462, 1990.
DOI : 10.1038/346459a0

R. A. Brooker and B. A. Kjarsgaard, Silicate-Carbonate Liquid Immiscibility and Phase Relations in the System SiO2-Na2O-Al2O3-CaO-CO2 at 0{middle dot}1-2{middle dot}5 GPa with Applications to Carbonatite Genesis, Journal of Petrology, vol.52, issue.7-8, pp.1281-1305, 2011.
DOI : 10.1093/petrology/egq081

I. S. Carmichael, J. Nicholls, and A. L. Smith, Silica activity in igneous rocks, American Mineralogist, vol.55, pp.246-263, 1970.

J. A. Dalton and D. C. Presnall, Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al 2 O 3 -SiO 2 -CO 2 from 3 to 7 GPa, Contributions to Mineralogy and Petrology, vol.131, issue.2-3, pp.123-135, 1998.
DOI : 10.1007/s004100050383

J. A. Dalton and D. C. Presnall, The Continuum of Primary Carbonatitic?Kimberlitic Melt Compositions in Equilibrium with Lherzolite: Data from the System CaO?MgO? Al 2 O 3 ?SiO 2 ?CO 2 at 6 GPa, Journal of Petrology, vol.39, pp.1953-1964, 1998.

J. A. Dalton and B. J. Wood, The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle, Earth and Planetary Science Letters, vol.119, issue.4, pp.511-525, 1993.
DOI : 10.1016/0012-821X(93)90059-I

R. Dasgupta and M. M. Hirschmann, Melting in the Earth's deep upper mantle caused by carbon dioxide, Nature, vol.69, issue.7084, pp.659-662, 2006.
DOI : 10.1038/nature04612

R. Dasgupta and M. M. Hirschmann, A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite, Contributions to Mineralogy and Petrology, vol.39, issue.11 & 12, pp.647-661, 2007.
DOI : 10.1007/s00410-007-0214-8

R. Dasgupta and M. M. Hirschmann, Effect of variable carbonate concentration on the solidus of mantle peridotite, American Mineralogist, vol.92, issue.2-3, pp.370-379, 2007.
DOI : 10.2138/am.2007.2201

R. Dasgupta and M. M. Hirschmann, The deep carbon cycle and melting in Earth's interior, Earth and Planetary Science Letters, vol.298, issue.1-2, pp.1-13, 2010.
DOI : 10.1016/j.epsl.2010.06.039

R. Dasgupta, M. M. Hirschmann, and N. Dellas, The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3??GPa, Contributions to Mineralogy and Petrology, vol.58, issue.3, pp.288-305, 2005.
DOI : 10.1007/s00410-004-0649-0

R. Dasgupta, M. M. Hirschmann, and N. D. Smith, Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts, Journal of Petrology, vol.48, issue.11, pp.2093-2124, 2007.
DOI : 10.1093/petrology/egm053

R. Dasgupta, M. M. Hirschmann, and K. Stalker, Immiscible Transition from Carbonate-rich to Silicate-rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica-undersaturated Ocean Island Lavas, Journal of Petrology, vol.47, issue.4, pp.647-671, 2006.
DOI : 10.1093/petrology/egi088

R. Dasgupta, Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time, Reviews in Mineralogy and Geochemistry, vol.75, issue.1, pp.183-229, 2013.
DOI : 10.2138/rmg.2013.75.7

R. Dasgupta, A. Mallik, K. Tsuno, A. C. Withers, G. Hirth et al., Carbon-dioxide-rich silicate melt in the Earth???s upper mantle, Nature, vol.227, issue.7431, pp.211-215, 2013.
DOI : 10.1038/nature11731

C. Decapitani and M. Kirschen, A generalized multicomponent excess function with application to immiscible liquids in the system CaO-SiO2-TiO2, Geochimica et Cosmochimica Acta, vol.62, issue.23-24, pp.3753-3763, 1998.
DOI : 10.1016/S0016-7037(98)00319-6

S. F. Foley, G. M. Yaxley, A. Rosenthal, S. Buhre, E. S. Kiseeva et al., The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60??kbar, Lithos, vol.112, pp.274-283, 2009.
DOI : 10.1016/j.lithos.2009.03.020

G. A. Gaetani and T. L. Grove, The influence of water on melting of mantle peridotite, Contributions to Mineralogy and Petrology, vol.131, issue.4, pp.323-346, 1998.
DOI : 10.1007/s004100050396

F. Gaillard, M. Malki, G. Iacono-marziano, M. Pichavant, and B. Scaillet, Carbonatite Melts and Electrical Conductivity in the Asthenosphere, Science, vol.322, issue.5906, pp.1363-1365, 2008.
DOI : 10.1126/science.1164446

URL : https://hal.archives-ouvertes.fr/insu-00343685

M. S. Ghiorso and I. S. Carmichael, A regular solution model for met-aluminous silicate liquids: Applications to geothermometry, immiscibility, and the source regions of basic magmas, Contributions to Mineralogy and Petrology, vol.58, issue.4, pp.323-342, 1980.
DOI : 10.1007/BF00374706

M. S. Ghiorso, I. S. Carmichael, M. L. Rivers, and R. O. Sack, The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables, Contributions to Mineralogy and Petrology, vol.72, issue.no. 7, pp.107-145, 1983.
DOI : 10.1007/BF00371280

M. S. Ghiorso, M. M. Hirschmann, P. W. Reiners, and V. C. Kress, The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa, Geochemistry, Geophysics, Geosystems, vol.73, issue.46, p.10, 1029.
DOI : 10.1029/2001GC000217

M. S. Ghiorso and R. O. Sack, Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contributions to Mineralogy and Petrology, vol.55, issue.107, pp.197-212, 1995.
DOI : 10.1007/BF00307281

S. Ghosh, E. Ohtani, K. D. Litasov, and H. Terasaki, Solidus of carbonated peridotite from 10 to 20??GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle, Chemical Geology, vol.262, issue.1-2, pp.17-28, 2009.
DOI : 10.1016/j.chemgeo.2008.12.030

S. Ghosh, K. Litasov, and E. Ohtani, Phase relations and melting of carbonated peridotite between 10 and 20??GPa: a proxy for alkali- and CO2-rich silicate melts in the deep mantle, Contributions to Mineralogy and Petrology, vol.99, issue.7304, p.23, 2014.
DOI : 10.1007/s00410-014-0964-z

A. V. Girnis, V. K. Bulatov, and G. P. Brey, Formation of primary kimberlite melts ??? Constraints from experiments at 6???12GPa and variable CO2/H2O, Lithos, vol.127, issue.3-4, pp.401-413, 2011.
DOI : 10.1016/j.lithos.2011.09.018

D. H. Green and R. C. Liebermann, Phase equilibria and elastic properties of a pyrolite model for the oceanic upper mantle, Tectonophysics, vol.32, issue.1-2, pp.61-92, 1976.
DOI : 10.1016/0040-1951(76)90086-X

D. H. Green and T. J. Falloon, Pyrolite, p.pp, 1998.
DOI : 10.1007/0-387-30845-8_205

E. C. Green, T. J. Holland, and R. Powell, A thermodynamic model for silicate melt in CaO-MgO-Al2O3-SiO2 to 50???kbar and 1800?????C, Journal of Metamorphic Geology, vol.74, issue.6, pp.579-597, 2012.
DOI : 10.1111/j.1525-1314.2012.00982.x

E. C. Green, T. J. Holland, R. Powell, and R. W. White, Garnet and spinel lherzolite assemblages in MgO-Al2O3-SiO2 and CaO-MgO-Al2O3-SiO2: thermodynamic models and an experimental conflict, Journal of Metamorphic Geology, vol.79, issue.6, pp.561-577, 2012.
DOI : 10.1111/j.1525-1314.2012.00981.x

G. H. Gudfinnsson and D. C. Presnall, Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3-8 GPa, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3?8 GPa, pp.1645-1659, 2005.
DOI : 10.1093/petrology/egi029

B. Guillot and N. Sator, Carbon dioxide in silicate melts: A molecular dynamics simulation study, Geochimica et Cosmochimica Acta, vol.75, issue.7, pp.1829-1857, 2011.
DOI : 10.1016/j.gca.2011.01.004

T. Hammouda, High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle, Earth and Planetary Science Letters, vol.214, issue.1-2, pp.357-368, 2003.
DOI : 10.1016/S0012-821X(03)00361-3

T. Hammouda and S. Keshav, Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites, Chemical Geology, vol.418, 2015.
DOI : 10.1016/j.chemgeo.2015.05.018

URL : https://hal.archives-ouvertes.fr/hal-01277770

K. Hirose and T. Kawamoto, Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas, Earth and Planetary Science Letters, vol.133, issue.3-4, pp.463-473, 1995.
DOI : 10.1016/0012-821X(95)00096-U

K. Hirose and I. Kushiro, Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond, Earth and Planetary Science Letters, vol.114, issue.4, pp.477-489, 1993.
DOI : 10.1016/0012-821X(93)90077-M

M. M. Hirschmann, Thermodynamics of multicomponent olivines and the solution properties of (Ni,Mg,Fe) 2 SiO 4 and (Ca,Mg,Fe) 2 SiO 4 olivines, American Mineralogist, vol.76, pp.1232-1248, 1991.

M. M. Hirschmann, Mantle solidus: Experimental constraints and the effects of peridotite composition, Geochemistry, Geophysics, Geosystems, vol.99, issue.1-2, pp.10-1029, 2000.
DOI : 10.1029/2000GC000070

M. M. Hirschmann, Partial melt in the oceanic low velocity zone, Physics of the Earth and Planetary Interiors, vol.179, issue.1-2, pp.60-71, 2010.
DOI : 10.1016/j.pepi.2009.12.003

M. M. Hirschmann, M. B. Baker, and E. M. Stolper, The Effect of Alkalis on the Silica Content of Mantle-Derived Melts, Geochimica et Cosmochimica Acta, vol.62, issue.5, pp.883-902, 1998.
DOI : 10.1016/S0016-7037(98)00028-3

M. M. Hirschmann, T. Tenner, C. Aubaud, and A. C. Withers, Dehydration melting of nominally anhydrous mantle: The primacy of partitioning, Physics of the Earth and Planetary Interiors, vol.176, issue.1-2, pp.54-68, 2009.
DOI : 10.1016/j.pepi.2009.04.001

T. J. Holland and R. Powell, An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, Journal of Metamorphic Geology, vol.44, issue.Suppl. 1, pp.333-383, 2011.
DOI : 10.1111/j.1525-1314.2010.00923.x

B. K. Holtzman and D. L. Kohlstedt, Stress-driven Melt Segregation and Strain Partitioning in Partially Molten Rocks: Effects of Stress and Strain, Journal of Petrology, vol.48, issue.12, pp.2379-2406, 2007.
DOI : 10.1093/petrology/egm065

S. Jakobsson and J. R. Holloway, Mantle melting in equilibrium with an Iron???W??stite???Graphite buffered COH-fluid, Contributions to Mineralogy and Petrology, vol.99, issue.B9, pp.247-256, 2008.
DOI : 10.1007/s00410-007-0240-6

A. P. Jones, M. Genge, and L. Carmody, Carbonate Melts and Carbonatites, Reviews in Mineralogy and Geochemistry, vol.75, issue.1, pp.289-322, 2013.
DOI : 10.2138/rmg.2013.75.10

R. F. Katz, M. Spiegelman, and C. H. Langmuir, A new parameterization of hydrous mantle melting, Geochemistry, Geophysics, Geosystems, vol.173, issue.47, pp.10-1029, 1073.
DOI : 10.1029/2002GC000433

S. Keshav and G. H. Gudfinnsson, from 1.1 to 2???GPa, Journal of Geophysical Research: Solid Earth, vol.4, issue.7, pp.3341-3353, 2013.
DOI : 10.1002/jgrb.50249

URL : https://hal.archives-ouvertes.fr/hal-00939406

S. Keshav, G. H. Gudfinnsson, and D. C. Presnall, Melting Phase Relations of Simplified Carbonated Peridotite at 12-26 GPa in the Systems CaO-MgO-SiO2-CO2 and CaO-MgO-Al2O3-SiO2-CO2: Highly Calcic Magmas in the Transition Zone of the Earth, Journal of Petrology, vol.52, issue.11, pp.2265-2291, 2011.
DOI : 10.1093/petrology/egr048

URL : https://hal.archives-ouvertes.fr/hal-00669945

E. S. Kiseeva, An Experimental Study of Carbonated Eclogite at 3{middle dot}5-5{middle dot}5 GPa--Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle, Journal of Petrology, vol.53, issue.4, pp.727-759, 2012.
DOI : 10.1093/petrology/egr078

T. Kogiso, M. M. Hirschmann, and M. Pertermann, High-pressure Partial Melting of Mafic Lithologies in the Mantle, Journal of Petrology, vol.45, issue.12, pp.2407-2422, 2004.
DOI : 10.1093/petrology/egh057

W. Lee and P. J. Wyllie, to 2.5 GPa and the Origin of Calciocarbonatite Magmas, Journal of Petrology, vol.37, issue.5, pp.1125-1152, 1996.
DOI : 10.1093/petrology/37.5.1125

URL : https://hal.archives-ouvertes.fr/hal-00290564

C. A. Lee, P. Luffi, and E. J. Chin, Building and Destroying Continental Mantle, Annual Review of Earth and Planetary Sciences, vol.39, issue.1, pp.59-90, 2011.
DOI : 10.1146/annurev-earth-040610-133505

K. Litasov and E. Ohtani, The solidus of carbonated eclogite in the system CaO???Al2O3???MgO???SiO2???Na2O???CO2 to 32GPa and carbonatite liquid in the deep mantle, Earth and Planetary Science Letters, vol.295, issue.1-2, pp.115-126, 2010.
DOI : 10.1016/j.epsl.2010.03.030

K. D. Litasov and E. Ohtani, Solidus and phase relations of carbonated peridotite in the system CaO???Al2O3???MgO???SiO2???Na2O???CO2 to the lower mantle depths, Physics of the Earth and Planetary Interiors, vol.177, issue.1-2, pp.46-58, 2009.
DOI : 10.1016/j.pepi.2009.07.008

X. I. Liu, H. S. Neill, and A. J. Berry, The Effects of Small Amounts of H2O, CO2 and Na2O on the Partial Melting of Spinel Lherzolite in the System CaO-MgO-Al2O3-SiO2 ?? H2O ?? CO2 ?? Na2O at 1{middle dot}1 GPa, and Na2O on the Partial Melting of Spinel Lherzolite in the System CaO?MgO?Al 2 O 3 ? SiO 2 ± H 2 O ± CO 2 ± Na 2 O at 1.1 GPa, pp.409-434, 2006.
DOI : 10.1093/petrology/egi081

R. W. Luth, The activity of silica in kimberlites, revisited. Contributions to Mineralogy and Petrology, pp.283-294, 2009.

A. Mallik and R. Dasgupta, Reactive Infiltration of MORB-Eclogite-Derived Carbonated Silicate Melt into Fertile Peridotite at 3 GPa and Genesis of Alkalic Magmas, Journal of Petrology, vol.54, issue.11, pp.2267-2300, 2013.
DOI : 10.1093/petrology/egt047

A. Mallik and R. Dasgupta, on eclogite-derived andesite and lherzolite reaction at 3 GPa-Implications for mantle source characteristics of alkalic ocean island basalts, Geochemistry, Geophysics, Geosystems, vol.78, issue.1, pp.1533-1557, 2014.
DOI : 10.1002/2014GC005251

L. H. Martin, M. W. Schmidt, H. B. Mattsson, P. Ulmer, K. Hametner et al., Element partitioning between immiscible carbonatite???kamafugite melts with application to the Italian ultrapotassic suite, Chemical Geology, vol.320, issue.321, pp.320-321, 2012.
DOI : 10.1016/j.chemgeo.2012.05.019

L. H. Martin, M. W. Schmidt, H. B. Mattsson, and D. Günther, Element Partitioning between Immiscible Carbonatite and Silicate Melts for Dry and H2O-bearing Systems at 1-3 GPa, Journal of Petrology, vol.54, issue.11, pp.2301-2338, 2013.
DOI : 10.1093/petrology/egt048

Y. Morizet, R. A. Brooker, and S. C. Kohn, CO2 in haplo-phonolite melt: solubility, speciation and carbonate complexation, Geochimica et Cosmochimica Acta, vol.66, issue.10, pp.1809-1820, 2002.
DOI : 10.1016/S0016-7037(01)00893-6

K. R. Moore and B. J. Wood, The Transition from Carbonate to Silicate Melts in the CaO--MgO--SiO2--CO2 System, Journal of Petrology, vol.39, issue.11-12, pp.1943-1951, 1998.
DOI : 10.1093/petroj/39.11-12.1943

B. O. Mysen, Structure and properties of magmatic liquids: from haplobasalt to haploandesite, Geochimica et Cosmochimica Acta, vol.63, issue.1, pp.95-112, 1999.
DOI : 10.1016/S0016-7037(98)00273-7

D. Novella, S. Keshav, G. H. Gudfinnsson, and S. Ghosh, and further indication of possible unmixing between carbonatite and silicate liquids, Journal of Geophysical Research: Solid Earth, vol.4, issue.4, pp.2780-2800, 2014.
DOI : 10.1002/jgrb.50249

URL : https://hal.archives-ouvertes.fr/hal-01053913

M. Olafsson and D. H. Eggler, Phase relations of amphibole, amphibole-carbonate, and phlogopite-carbonate peridotite: petrologic constraints on the asthenosphere, Earth and Planetary Science Letters, vol.64, issue.2, pp.305-315, 1983.
DOI : 10.1016/0012-821X(83)90212-1

D. C. Presnall and G. H. Gudfinnsson, Carbonate-rich melts in the oceanic low-velocity zone and deep mantle, pp.207-216, 2005.
DOI : 10.1130/0-8137-2388-4.207

P. Richet and Y. Bottinga, Heat capacity of aluminum-free liquid silicates, Geochimica et Cosmochimica Acta, vol.49, issue.2, pp.471-486, 1985.
DOI : 10.1016/0016-7037(85)90039-0

J. K. Russell, L. A. Porritt, Y. Lavallée, and D. B. Dingwell, Kimberlite ascent by assimilation-fuelled buoyancy, Nature, vol.131, issue.7381, pp.352-356, 2012.
DOI : 10.1038/nature10740

A. Rohrbach and M. W. Schmidt, Redox freezing and melting in the Earth???s deep mantle resulting from carbon???iron redox coupling, Nature, vol.5, issue.7342, pp.209-212, 2011.
DOI : 10.1038/nature09899

I. D. Ryabchikov, G. P. Brey, L. N. Kogarko, and V. K. Bulatov, Partial melting of carbonated peridotite at 50 kbar, Russian) Geochimia, pp.3-9, 1989.

R. Sack and M. Ghiorso, Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2, Contributions to Mineralogy and Petrology, vol.19, issue.1, pp.41-68, 1989.
DOI : 10.1007/BF01160190

N. Schmerr, The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary, Science, vol.335, issue.6075, pp.1480-1483, 2012.
DOI : 10.1126/science.1215433

D. Sifré, E. Gardés, M. Massuyeau, L. Hashim, S. Hier-majumder et al., Electrical conductivity during incipient melting in the oceanic low-velocity zone, Nature, vol.97, issue.336, pp.81-85, 2014.
DOI : 10.1038/nature13245

V. Stagno and D. J. Frost, Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages, Earth and Planetary Science Letters, vol.300, issue.1-2, pp.72-84, 2010.
DOI : 10.1016/j.epsl.2010.09.038

V. Stagno, D. O. Ojwang, C. A. Mccammon, and D. J. Frost, The oxidation state of the mantle and the extraction of carbon from Earth???s interior, Nature, vol.66, issue.7430, pp.84-88, 2013.
DOI : 10.1038/nature11679

B. E. Schwab and A. D. Johnston, Melting Systematics of Modally Variable, Compositionally Intermediate Peridotites and the Effects of Mineral Fertility, Journal of Petrology, vol.42, issue.10, pp.1789-1811, 2001.
DOI : 10.1093/petrology/42.10.1789

E. Takahashi, Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the Origin of peridotitic upper mantle, Journal of Geophysical Research, vol.61, issue.B9, pp.9367-9382, 1986.
DOI : 10.1029/JB091iB09p09367

W. R. Taylor and D. H. Green, Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle, Nature, vol.332, issue.6162, pp.349-352, 1988.
DOI : 10.1038/332349a0

T. J. Tenner, M. M. Hirschmann, A. C. Withers, and R. L. Hervig, Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5??GPa and applications to hydrous peridotite partial melting, Chemical Geology, vol.262, issue.1-2, pp.42-56, 2009.
DOI : 10.1016/j.chemgeo.2008.12.006

T. J. Tenner, M. M. Hirschmann, and M. Humayun, The effect of H 2 O on partial melting of garnet peridotite at 3.5 GPa, Geochemistry Geophysics Geosystems, vol.13, pp.10-1029, 2012.

Y. Thibault, A. D. Edgar, and F. E. Lloyd, Experimental investigation of melts from a carbonated phlogopite lherzolite: Implications for metasomatism in the continental lithospheric mantle, American Mineralogist, vol.77, pp.784-794, 1992.

K. Tsuno and R. Dasgupta, Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5???3.0??GPa and deep cycling of sedimentary carbon, Contributions to Mineralogy and Petrology, vol.124, issue.3, pp.743-763, 2011.
DOI : 10.1007/s00410-010-0560-9

S. Tumiati, P. Fumagalli, C. Tiraboschi, and S. Poli, An Experimental Study on COH-bearing Peridotite up to 3{middle dot}2 GPa and Implications for Crust-Mantle Recycling, Journal of Petrology, vol.54, issue.3, pp.453-479, 2013.
DOI : 10.1093/petrology/egs074

P. Ulmer and R. Stalder, orthoenstatite-clinoenstatite transitions at high pressures and temperatures determined by Raman-spectroscopy on quenched samples, American Mineralogist, vol.86, issue.10, pp.1267-1274, 2001.
DOI : 10.2138/am-2001-1014

L. E. Wasylenki, M. B. Baker, A. J. Kent, and E. M. Stolper, Near-solidus Melting of the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite, Journal of Petrology, vol.44, issue.7, pp.1163-1191, 2003.
DOI : 10.1093/petrology/44.7.1163

M. E. Wallace and D. H. Green, An experimental determination of primary carbonatite magma composition, Nature, vol.335, issue.6188, pp.343-346, 1988.
DOI : 10.1038/335343a0

P. J. Wyllie and W. L. Huang, Carbonation and melting reactions in the system CaO?MgO?SiO2?CO2 at mantle pressures with geophysical and petrological applications, Contributions to Mineralogy and Petrology, vol.18, issue.2, pp.79-107, 1976.
DOI : 10.1007/BF00372117