Decadal prediction of Sahel rainfall using dynamics-based indices - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Climate Dynamics Année : 2016

Decadal prediction of Sahel rainfall using dynamics-based indices

Résumé

At decadal time scales, the capability of state-of-the-art atmosphere-ocean coupled climate models in predicting the precipitation in Sahel is assessed. A set of 14 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is selected and two experiments are analysed, namely initialized decadal hindcasts and forced historical simulations. Considering the strong linkage of the atmospheric circulation signatures over West Africa with the rainfall variability, this study aims to investigate the potential of using wind fields for decadal predictions. Namely, a West African monsoon index (WAMI) is defined, based on the coherence of low (925 hPa) and high (200 hPa) troposphere wind fields, which accounts for the intensity of the monsoonal circulation. A combined empirical orthogonal functions analysis is applied to explore the wind fields’ covariance modes, and a set of indices is defined on the basis of the identified patterns. The WAMI predictive skill is assessed by comparing WAMI from coupled models with WAMI from reanalysis products and with a standardized precipitation index (SPI) from observations. Results suggest that the predictive skill is highly model dependent and it is strongly related to the WAMI definition. In addition, hindcasts are more skilful than historical simulations in both deterministic and probability forecasts, which suggests an added value of initialization for decadal predictability. Moreover, coupled models are more skilful in predicting the observed SPI than the WAMI obtained from reanalysis. WAMI performance is also compared with decadal predictions from CMIP5 models based on a Sahelian precipitation index, and an improvement in predictive skill is observed in some models when WAMI is used. Therefore, we conclude that dynamics-based indices are potentially more effective for decadal prediction of precipitation in Sahel than precipitation-based indices for those models in which Sahel rainfall variability is not well simulated. We thus recommend a two-fold approach when testing the performance of models in predicting Sahel rainfall, based not only on rainfall but also on the dynamics of the West African monsoon.
Fichier non déposé

Dates et versions

insu-01180391 , version 1 (26-07-2015)

Identifiants

Citer

Noelia Otero, Elsa Mohino, Marco Gaetani. Decadal prediction of Sahel rainfall using dynamics-based indices. Climate Dynamics, 2016, 47 (11), pp.3415-3431. ⟨10.1007/s00382-015-2738-3⟩. ⟨insu-01180391⟩
171 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More