A. Balogh, The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Annales Geophysicae, vol.19, issue.10/12, pp.1207-121710, 1207.
DOI : 10.5194/angeo-19-1207-2001

URL : https://hal.archives-ouvertes.fr/hal-00316910

A. A. Bespalov and A. G. Demekhov, A linear theory of the backward-wave-oscillator regime in the magnetospheric cyclotron ELF/VLF maser, Radiophysics and Quantum Electronics, vol.103, issue.9, pp.761-773, 2009.
DOI : 10.1007/s11141-010-9186-z

J. Bortnik, R. M. Thorne, and N. P. Meredith, The unexpected origin of plasmaspheric hiss from discrete chorus emissions, Nature, vol.29, issue.7183, pp.62-6610, 2008.
DOI : 10.1038/nature06741

C. M. Cully, V. Angelopoulos, U. Auster, J. Bonnell, and O. L. Contel, Observational evidence of the generation mechanism for rising-tone chorus, Geophysical Research Letters, vol.79, issue.1, pp.10-1029, 2011.
DOI : 10.1029/2010GL045793

P. M. Décréau, Early results from the Whisper instrument on Cluster: An overview, Ann. Geophys, vol.195194, pp.1241-125810, 1241.

A. G. Demekhov and V. Y. Trakhtengerts, Dynamics of the Magnetospheric Cyclotron ELF/VLF Maser in the Backward-Wave-Oscillator Regime. I. Basic Equations and Results in the Case of a Uniform Magnetic Field, Radiophysics and Quantum Electronics, vol.6, issue.1, pp.639-64910, 2005.
DOI : 10.1007/s11141-005-0109-3

A. G. Demekhov and V. Y. Trakhtengerts, Dynamics of the magnetospheric cyclotron ELF/VLF maser in the backward-wave-oscillator regime. II. The influence of the magnetic-field inhomogeneity, Radiophysics and Quantum Electronics, vol.23, issue.12, pp.880-88910, 2008.
DOI : 10.1007/s11141-009-9093-3

A. G. Demekhov, V. Y. Trakhtengerts, M. M. Mogilevsky, and L. M. Zelenyi, Current problems in studies of magnetospheric cyclotron masers and new space project ???resonance???, Advances in Space Research, vol.32, issue.3, pp.355-37410, 2003.
DOI : 10.1016/S0273-1177(03)90274-2

A. G. Demekhov, V. Y. Trakhtengerts, M. J. Rycroft, and D. Nunn, Efficiency of electron acceleration in the Earth???s magnetosphere by whistler mode waves, Geomagnetism and Aeronomy, vol.49, issue.1, pp.24-2910, 2009.
DOI : 10.1134/S0016793209010034

N. S. Ginzburg and S. P. Kuznetsov, Periodic and stochastic regimes in electron generators with distributed interaction, Relativistic HF Electronics, pp.101-104, 1981.

D. A. Gurnett, First results from the Cluster wideband plasma wave investigation, Annales Geophysicae, vol.19, issue.10/12, pp.1259-1272, 1259.
DOI : 10.5194/angeo-19-1259-2001

URL : https://hal.archives-ouvertes.fr/hal-00329186

N. Haque, M. Spasojevic, O. Santolík, and U. S. Inan, Wave normal angles of magnetospheric chorus emissions observed on the Polar spacecraft, Journal of Geophysical Research: Space Physics, vol.100, issue.A10, pp.10-1029, 2010.
DOI : 10.1029/2004JA010882

R. A. Helliwell, A theory of discrete VLF emissions from the magnetosphere, Journal of Geophysical Research, vol.72, issue.5A, pp.4773-479010, 1967.
DOI : 10.1029/JZ072i019p04773

M. Hikishima, S. Yagitani, Y. Omura, and I. Nagano, Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere, Journal of Geophysical Research: Space Physics, vol.82, issue.32, pp.10-1029, 2009.
DOI : 10.1029/2007GL032226

R. B. Horne and R. M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms, Geophysical Research Letters, vol.230, issue.10, pp.3011-301410, 1998.
DOI : 10.1029/98GL01002

C. Kennel, Low-Frequency Whistler Mode, Physics of Fluids, vol.9, issue.11, pp.2190-2202, 1966.
DOI : 10.1063/1.1761588

B. V. Kozelov, E. E. Titova, A. A. Lyubchich, V. Y. Trakhtengerts, and Y. Manninen, On-off intermittency as a possible mechanism of formation of ELF-VLF chorus series, Geomagn. Aeron, vol.43, issue.5, pp.593-601, 2003.

B. V. Kozelov, A. G. Demekhov, E. E. Titova, V. Y. Trakhtengerts, O. Santolik et al., Variations in the chorus source location deduced from fluctuations of the ambient magnetic field: Comparison of Cluster data and the backward wave oscillator model, Journal of Geophysical Research: Space Physics, vol.6, issue.1, p.621610, 1029.
DOI : 10.1029/2004JA010798

D. S. Lauben, U. S. Inan, T. F. Bell, and D. A. Gurnett, Source characteristics of ELF/VLF chorus, Journal of Geophysical Research: Space Physics, vol.87, issue.A12, pp.142910-1029, 2002.
DOI : 10.1029/2000JA003019

E. Macú?ová, Observations of the relationship between frequency sweep rates of chorus wave packets and plasma density, J. Geophys. Res, pp.10-1029, 2010.

N. P. Meredith, M. Cain, R. B. Horne, R. M. Thorne, D. Summers et al., Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods, Journal of Geophysical Research, vol.29, issue.24, p.124810, 1029.
DOI : 10.1029/2002JA009764

Y. Omura, Y. Katoh, and D. Summers, Theory and simulation of the generation of whistler-mode chorus, Journal of Geophysical Research: Space Physics, vol.22, issue.3, pp.10-1029, 2008.
DOI : 10.1029/2005GL023282

M. Parrot, O. Santolík, D. Gurnett, J. Pickett, and N. Cornilleau-wehrlin, Characteristics of magnetospherically reflected chorus waves observed by CLUSTER, Annales Geophysicae, vol.22, issue.7, pp.2597-260610, 2004.
DOI : 10.5194/angeo-22-2597-2004

URL : https://hal.archives-ouvertes.fr/hal-00153166

O. Santolík, D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-wehrlin, Spatio-temporal structure of storm-time chorus, Journal of Geophysical Research, vol.17, issue.1, pp.127810-1029, 2003.
DOI : 10.1029/2002JA009791

O. Santolík, D. A. Gurnett, J. S. Pickett, M. Parrot, and N. , A microscopic and nanoscopic view of storm?time chorus on 31, Cornilleau? Wehrlin Geophys. Res. Lett, pp.10-1029, 2001.

O. Santolík, J. Chum, M. Parrot, D. A. Gurnett, J. S. Pickett et al., Propagation of whistler mode chorus to low altitudes: Spacecraft observations of structured ELF hiss, Journal of Geophysical Research, vol.17, issue.1, pp.1020810-1029, 2006.
DOI : 10.1029/2005JA011462

D. Summers and C. Ma, A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions, Journal of Geophysical Research: Space Physics, vol.100, issue.44, pp.2625-263910, 2000.
DOI : 10.1029/1999JA900444

X. Tao, W. Li, J. Bortnik, R. M. Thorne, and V. Angelopoulos, Comparison between theory and observation of the frequency sweep rates of equatorial rising tone chorus, Geophysical Research Letters, vol.37, issue.1, pp.10-1029, 2012.
DOI : 10.1016/0032-0633(89)90066-4

E. E. Titova, B. V. Kozelov, F. Jiricek, J. Smilauer, A. G. Demekhov et al., Verification of the backward wave oscillator model of VLF chorus generation using data from MAGION 5 satellite, Annales Geophysicae, vol.21, issue.5, pp.1073-108110, 1073.
DOI : 10.5194/angeo-21-1073-2003

URL : https://hal.archives-ouvertes.fr/hal-00317056

V. Y. Trakhtengerts, Magnetosphere cyclotron maser: Backward wave oscillator generation regime, Journal of Geophysical Research, vol.37, issue.A9, pp.205-1710, 1995.
DOI : 10.1029/95JA00843

V. Y. Trakhtengerts, A generation mechanism for chorus emission, pp.95-100, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00316502

V. Y. Trakhtengerts, M. J. Rycroft, and A. G. Demekhov, Interrelation of noise-like and discrete ELF/VLF emissions generated by cyclotron interactions, Journal of Geophysical Research: Space Physics, vol.26, issue.1, pp.293-306, 1996.
DOI : 10.1029/95JA03515

V. Y. Trakhtengerts, A. G. Demekhov, E. E. Titova, B. V. Kozelov, O. Santolik et al., Interpretation of Cluster data on chorus emissions using the backward wave oscillator model, Interpretation of cluster data on chorus emissions using the backward wave oscillator model, pp.1345-1351, 2004.
DOI : 10.1063/1.1667495

B. T. Tsurutani and E. J. Smith, Two types of magnetospheric ELF chorus and their substorm dependences, Journal of Geophysical Research, vol.68, issue.32, pp.5112-512810, 1977.
DOI : 10.1029/JA082i032p05112