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[1] The loss of relativistic electrons from the Earth’s radiation belts can be described in
terms of the quasi-linear pitch angle diffusion by cyclotron-resonant waves, provided
that their frequency spectrum is broad enough. Chorus waves at large wave-normal angles
with respect to the magnetic field are often present in CLUSTER and THEMIS
measurements in the outer belt at moderate to high latitudes. An approximate analytical
formulation of diffusion coefficients has been derived in the low-frequency limit, leading
to a simplified analytical expression of diffusion coefficients and lifetimes for energetic
trapped electrons. Large values of the wave-normal angles between the Gendrin and
resonance angles are shown to induce important increases in diffusion, thereby strongly
reducing the particle lifetimes (by almost two orders of magnitude). The analytical
diffusion coefficients and lifetimes obtained here are found to be in a good agreement with
full numerical calculations based on CLUSTER chorus waves measurements in the outer
belt for electron energies ranging from 100 keV to 2 MeV. Such very oblique chorus waves
could contribute to a predominantly perpendicular anisotropy of the global equatorial
electron population on the dayside and to a relative isotropization at low energy under
disturbed conditions. It is also suggested that they might play a significant role in
pulsating auroras.

Citation: Mourenas, D., A. V. Artemyev, J.-F. Ripoll, O. V. Agapitov, and V. V. Krasnoselskikh (2012), Timescales for electron
quasi-linear diffusion by parallel and oblique lower-band chorus waves, J. Geophys. Res., 117, A06234, doi:10.1029/2012JA017717.

1. Introduction

[2] Understanding the dynamics of the Van Allen radia-
tion belts is of both theoretical and practical importance.
Intense fluxes of relativistic (MeV) electrons occurring
during periods of important geomagnetic disturbances can
damage satellites electronic components, which has spurred
increasing interest in the field of “space weather” forecasting
[e.g., see Barker et al., 2005]. Different competing acceler-
ation and loss mechanisms can be simultaneously at work,
however, making global belt modeling a very challenging
task. Multidimensional codes have been developed to sim-
ulate the dynamics of the radiation belts, some of them with
a special focus on the outer belt where radial diffusion is
believed to be of major importance [Bourdarie et al., 1996;
Barker et al., 2005;Ukhorskiy et al., 2005; Shprits et al., 2008;
Varotsou et al., 2008; Xiao et al., 2009; Fok et al., 2011]. The

outer radiation belt exhibits a very high variability, due to
rapidly evolving natural conditions such as convection and
geomagnetic activity levels in response to solar wind changes
[Meredith et al., 2001; Lyons et al., 2005]. In particular, an
important population of plasma sheet low-energy electrons
(E � 10 � 100 keV) are injected near midnight in the outer
belt during storms or substorms. Drifting from midnight
through dawn to noon, such low-energy electrons are believed
to excite lower-band chorus waves near the equator through
thermal anisotropy or loss cone instability at small pitch
angles, the generated quasi-parallel whistler waves in turn
accelerating some electrons to relativistic energies at large
pitch angles in the night sector and scattering particles into the
loss cone at small pitch angles on the dawnside, finally leading
to precipitations in the atmosphere and pulsating auroras
[Horne et al., 2005; Li et al., 2007; Summers et al., 2007b; Ni
et al., 2008; Nishimura et al., 2011]. The inferred timescales
for precipitation range from hours to days during periods of
storm-enhanced convection [Horne et al., 2005; Li et al.,
2007]. But these previous studies have focused on parallel
or moderately oblique waves dominant near the equator
[Shprits et al., 2007; Summers et al., 2007b; Ni et al., 2008;
Shprits and Ni, 2009], while recent CLUSTER measurements
have demonstrated that very oblique chorus waves become
statistically predominant at moderate to high latitudes >15�,
especially on the dayside where they reach high amplitudes
[Agapitov et al., 2011; Artemyev et al., 2012]. In order to
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properly model the outer belt dynamic evolution, it is therefore
important to take into account the dependence of electron-
chorus wave interaction on latitude and wave-normal angle
[Glauert and Horne, 2005; Shprits and Ni, 2009] and to
understand its impact on timescales as a function of electron
energy, plasma density and L-shell.
[3] Chorus waves are intense whistler mode electromag-

netic waves of time-varying frequencies occurring outside
the plasmapause in two distinct frequency bands [Tsurutani
and Smith, 1977]. Here, we shall focus on the lower-band
chorus waves in the low-frequency limit, i.e. Wci ≪ w < Wc/2
and Wpe

2 ≫ wWc where w is the wave frequency, and Wci, Wc

and Wpe are the local ion gyrofrequency, electron gyrofre-
quency, and plasma frequency, respectively. Occurring
mainly in the dawn sector, they represent the most intense
chorus measured in disturbed conditions and are probably
generated close to the geomagnetic equator by anisotropic
injected electrons [Tsurutani and Smith, 1977; Goldstein and
Tsurutani, 1984; Muto et al., 1987; Hattori et al., 1991;
Trakhtengerts, 1999; Pokhotelov et al., 2008; Santolík et al.,
2009; Agapitov et al., 2010, 2011; Haque et al., 2011].
[4] Pitch angle scattering by resonant interaction with

whistler waves has long been known as one of the main loss
processes of trapped electrons [Andronov and Trakhtengerts,
1964; Kennel and Petschek, 1966]. Quasi-linear theory can
be used to quantify such losses [Lyons et al., 1971, 1972;
Lyons, 1974] in the limits of moderate amplitude broadband
waves or for ensemble averages of narrowband waves of
space-varying frequencies, such that the trapped particles
displacements can be considered stochastic [Summers et al.,
2007a; Tao et al., 2011]. However, multidimensional simu-
lations require a very large number of diffusion coefficient
evaluations. In order to calculate them as quickly as possible,
Summers [2005] and Albert [2007] have proposed different
useful approximations based on the selection of a given wave
normal angle q representative of the average over the whole
distribution. Shprits et al. [2006] showed in particular that for
high-energy electrons (E > 100 keV), the particle lifetimes
can be estimated from the diffusion coefficients calculated
for first cyclotron resonance with parallel-propagating chorus
waves when q < p/4.
[5] In the present paper, analytical expressions for the dif-

fusion coefficients and lifetimes are derived after performing
both an analytical wave-normal averaging and a rough
bounce-average, following a method introduced byMourenas
and Ripoll [2012]. However, the latter work focused on

moderately oblique very low frequency hiss waves, appropri-
ate for the inner radiation belt [Meredith et al., 2009]. Here,
higher-order terms in gw/Wc and w/(Wc cos q) are retained to
allow for the treatment of energetic (�MeV, i.e. relativistic
factor g � 3) electron interaction with very oblique lower-
band chorus emissions. In addition, the distribution in wave-
normal angle g(q) is written as a sum of two parts
corresponding to small and large q, allowing us to account for
the large variance and mean value of the measured distribution
of chorus waves in the outer belt [Haque et al., 2010; Agapitov
et al., 2011; Li et al., 2011]. Approximate scaling laws of
electron lifetimes as a function of energy, ambient density and
L-shell are also derived in section 2, and the importance of
electron diffusion by very oblique chorus waves is stressed.
In section 3, the analytical model is compared to electron loss
timescales [Shprits et al., 2007] obtained from numerical
computations of the diffusion coefficients using Summers
[2005] parallel propagation approximation and to full numer-
ical calculations including a realistic wave-normal distribu-
tion. The analytical estimates are found to be in good
agreement with the full numerical results and help to provide
a better understanding of the important reduction of time-
scales obtained when taking into account very oblique waves.
Some potential physical implications concerning the
dynamics of the outer radiation belt are also outlined.

2. Analytical Estimates of Diffusion Coefficients

[6] Observation of oblique whistler wave propagation
[Haque et al., 2010; Agapitov et al., 2011; Li et al., 2011] can
be taken into account for estimates of diffusion rates by
introducing a double q-distribution g(q). Instead of consider-
ing only a narrow distribution around q = 0, one should treat a
distribution containing a “heavy” tail (see scheme in Figure 1).
This non-Gaussian tail includes q around the resonance angle
and, as a result, can be responsible for the intensification of
high order resonances in the electron interaction with whistler
waves. In this paper we estimate the role of this tail by sepa-
rating the distribution dependence upon the wave-normal
angle q into two parts g(q) = gs(q) + gl(q). The small-q part
gs(q) is such that its maximum occurs at qm

s ≈ 0 with lower and
upper cutoffs at qMin

s ≈ 0 and qMax
s . The large-q part is taken as

a step-function gl(q) equal to a constant between its lower and
upper cutoffs (qMin

l and qMax
l ) being zero otherwise. Below we

show that final estimates do not depend on the actual form of
gl(q). We further assume that qMax

s ≤ qMin
l .

[7] The local pitch angle quasi-linear diffusion coefficient
D of Lyons [1974] has been conveniently rewritten by Albert
[2007] under the form of a weighted-average between
qMin and qMax, so that D � 〈D〉q. Moreover, Albert [2007]
emphasized that this weighted average of relatively con-
stant factors is expected to be rather insensitive to the exact
form of the weighting function. Therefore, the averaged
function may be taken at a “carefully chosen point” using the
Mean Value Approximation (MVA) [Albert, 2007, 2008],
yielding to D � D(q0). The parallel propagation approxi-
mation (PPA) derived earlier [Summers, 2005] essentially
consists in taking q0 = 0.
[8] Although the present approach starts from the above

mentioned weighted-average formulation, it is performed
slightly differently to keep at least some of the variations of
the averaged function with q. As discussed in a previous

Figure 1. Schematic view of g(q) distribution.
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paper [Mourenas and Ripoll, 2012], the diffusion coefficient
for each harmonic can be estimated near the maximum
of each cyclotron resonance n, corresponding to a Bessel
function maximum. However, we shall focus here on life-
times. Albert and Shprits [2009] have demonstrated that
lifetimes are defined by the minima of the total diffusion
coefficient multiplied by tangent of pitch angle a. Thus, for
the small-q part we shall neglect all the resonances except
for the cyclotron ones at small pitch angles and the Landau
resonance at large pitch angles, which should roughly define
the actual lifetimes, since the diffusion coefficient is usually
the smallest either near the loss cone angle aLC or, at large
pitch angles, between the Landau and first cyclotron reso-
nances [Shprits et al., 2006, 2007; Albert and Shprits, 2009;
Mourenas and Ripoll, 2012]. For large-q waves, it is the
moderate to large pitch angles region which will be more
important. Here, the situation is substantially more compli-
cated and many resonances contribute to diffusion.

2.1. Generalities

[9] The local pitch angle quasi-linear diffusion coefficient
D of Lyons [1974] (with dimensions of s�1) has been
rewritten by Albert [2005, 2007] as

D ¼ Daa

p2
¼ Wc

g2
B2
wave

B2

Xþ∞

n¼�∞

X
w

Daa
n

Daa
n ¼

Zqmax

qmin

sin qð ÞdqDnGwGq

ð1Þ

with

Dn ¼ pF2
n

2 cos q∣vk=c∣3
sin2 að Þ þ nWc=gw
�� ��2
1� ∂w=∂kk

� �
q=vk

�� �� ð2Þ

Gw ¼ Wc B2
s wð ÞR wU

wL
B2
s w′ð Þdw′ ; Gq w; qð Þ ¼ g qð Þ

N w; qð Þ ð3Þ

N w; qð Þ ¼
Z qmax

qmin

dq′ sin q′ð ÞGg q′ð Þ

G q′;w qð Þð Þ ¼ m2 mþ w∂m=∂wj j
ð4Þ

where m(w, q) = kc/w is the wave refractive index,B is the local
magnetic field amplitude, Fn

2 accounts for the relationship
between the electric and magnetic field components of the
wave and it is given in equation (9) of Lyons [1974]; it contains
Bessel functions Jn�1 with argument x = (wg/Wc + n) tan a
tan q, which can be approximated by x � n tan a tan q at
low frequency when wg/Wc ≪ 1 ≤ n, where g is the relativistic

factor. B2
s wð Þ ¼ exp � w� wmð Þ2=Dw2

� �
is the wave spec-

tral density, with a half-width Dw < wm/2 and lower and
upper cut-offs at wL� wm/2 and wU� 1.5wm. In equation (1),
Gq(w, q) and Dn

aa are both evaluated at the resonant
frequency w corresponding to a q, a harmonic number n,
and a pitch angle a as determined from the cyclotron reso-
nance condition

wþ nWc=g ¼ kv cos q cos a ð5Þ

where v denotes the electron velocity. There may be several
roots of w, hence the sum over w in equation (1). An impor-
tant point is that for each n, Dn

aa and Gq(w, q) depend only
on q. Cyclotron resonances occur during the bounce motion
of electrons from the equator to their mirror point, and
bounce averaging is described in the classic paper of Lyons
et al. [1972].

2.2. Estimates of Contributing Cyclotron Resonances

[10] In the low-frequency limit w/Wc ≪ min(Wpe
2 /Wc

2, 1),
the dispersion relation is m2 = Wpe

2 /(wmWc∣cos q∣ � wm
2 )

[Helliwell, 1965] where the resonance maximum is hereafter
assumed to always occur at w � wm. The first-order
approximation w � wm introduced in Mourenas and Ripoll
[2012] can be justified by: (1) the nearly constant w up to
q � 60�–70� for low-frequency chorus waves [Albert, 2007,
2008] using the full dispersion relation and (2) the narrow
width Dw < wm/2 assumed for Bs

2(w), implying that signifi-
cant contributions to the diffusion coefficient will mainly
come from frequencies close to wm.
[11] In Appendix A we derive the equation for resonant

value of pitch angle aR (see equation (A1)) and we note in
Appendix B that most significant contributions to diffusion
at low latitudes come from the maximum of the Bessel
functions of argument x. This condition in turn leads to a
relationship between q and a values (see equation (B1) in
Appendix B). Subscript “M” is used throughout the paper to
indicate values taken at the maximum of the Bessel func-
tions. To estimate the input of various resonances we sepa-
rate the domain of q (and a) integration into two subregions:
before and after the maximum of Bessel function. The use of
a � superscript will hereafter differentiate the domains
x ≥ xM and x ≤ xM, respectively. The first part of the integral
corresponds to x ≥ xM, i.e. tan aRtan q > 1 or wave-normal
angles q greater than the value qM at the Bessel function
maximum q > qM = p/2 � aR. The second one concerns the
x < xM (or tan aR tan q ≤ 1) domain (see Appendix B).
[12] In the limit where q � qMax, the maximum number

of contributing resonances is given by equation (A1) with
cos aR � sin qMax. We get

Nr ≈
pɛm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos qMax

p
sin qMax

1� wm
Wc cos qMax

��� ���1=2 þ gwm

Wc
ð6Þ

which is a generalization of equation (22) of Mourenas and
Ripoll [2012]. Here ɛm ¼ Wpe=Wc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wm=Wc

p
and p is electron

momentum normalized on mec (see Appendix A). Note that
equation (6) gives the total number of contributing reso-
nances over the whole range of pitch angles. In the special
cases of small equatorial pitch angles near the loss cone at
small-q and for moderate pitch angles at large-q we can
derive new estimates concerning the number of contributing
resonances.
[13] For the small-q part, we show in Appendix B that

only the first cyclotron resonance n = �1 provides a sig-
nificant contribution to the diffusion coefficient near the loss
cone edge. In such a case, the J0 term is indeed dominant
in F�1

2 . As concerns the n = +1 resonance, it is negligible
at small q < p/4 as compared to the n = �1 one [Mourenas
and Ripoll, 2012], and still small at higher q for typical
distributions such that gs(qg) ≪ gs(0) and/or E ≤ 1 MeV,
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where qg = arccos(2wm/Wc) is Gendrin angle. This contri-
bution is essentially equivalent to the Parallel Propagation
Approximation (PPA) proposed by Summers [2005].
[14] For the large-q part q > max(p/4, qg), full numerical

calculations of the bounce-averaged diffusion coefficients
show that diffusion always increases very strongly toward
small equatorial pitch angles (e.g., see Figure 2). This
increase occurs only at high latitudes, for high values of the
ratio Wc(lR)/Wc0 and close to the resonance cone, where the
full Bessel function expressions must be kept (here, as in
the rest of the paper, the subscript “0” indicates that the
variable value is taken at the equator). Variable lR is the
“resonant” latitude for which the resonance condition (5) is
satisfied for the wave and particle considered. It can be
calculated making use of adiabatic invariance Wc(lR)/
Wc0 = sin2aR/sin

2a0. This means that the upper-bound of the
resonant latitude decreases with increasing a0, so that the
considered increase of diffusion toward small a0 is con-
centrated mainly at sin a0 < 1/3, as in Figure 2.
[15] Now, Albert and Shprits [2009] have demon-

strated that lifetimes are mainly governed by the minima of
〈D〉Btan a0 (where 〈D〉B is the bounce-averaged coefficient)
i.e., the minima of 〈D〉B at small pitch angles. Thus, we can
safely neglect the small-a0 part of the large-q diffusion
coefficients and consider only their portion going from about
p/12 up to about p/2, where resonance occurs at moderate
latitudes l < 40�. There and at the equator, q at lR = 0 from

equation (6) may take any value ranging from the Gendrin
angle qg0 = arccos(2wm/Wc0) up to nearly the resonance
angle qr0 = arccos(wm/Wc0). A rough estimate of the
maximum ∣n∣ for resonance at the equator at (wm, qg0) is
simply

Nr qg0
� �

≈ 2 cos a0pɛm0

ffiffiffiffiffiffiffi
wm

Wc0

r
þ gwm

Wc0
: ð7Þ

[16] In order to have resonance up to nearly qr0
(at cos qR � 1.1cos qr0), equations (7) and (A1) indicate that
w must be diminished by a factor

ffiffiffiffiffiffiffiffi
2=5

p � 2=3. Conse-
quently, the number of resonances at the equator present
over the full q-range from qg0 to qr0 is simply

DNr0 ≈
2Dw
wm

� 1

3

� 	
Nr qg0
� �

: ð8Þ

[17] If DNr0 < 0 at the equator, resonance at q close to qr
for ∣n∣ < Nr(qg0) occurs only at higher latitudes. When the
q-range of resonance decreases, D decreases in proportion
(see equation (D2) in Appendix D). The different contribu-
tions to the total diffusion coefficient are calculated in the
following sections. But it is already clear from equation (6)
that near the loss cone edge at L > 4 (aLC < 5�), the small-q
part’s most important contributions comes from very small
n resonances (mainly n = �1), while equations (7) and (8)
show that for the large-q part, higher-n resonances contrib-
ute. This agrees well with full numerical calculations in
Figure 2.
[18] According to experimental data [see Agapitov et al.,

2011], gs(q) is dominant in the vicinity of the equator,
while gl(q) corresponds mainly to moderate magnetic lati-
tudes l > 15�, where gs(q) has a relatively small amplitude.
For analytical estimates we do not take into account the
dependence of gs(q) on magnetic latitude l and assume that
gl(q) bounds vary with latitude like qr with Wc, in rough
agreement with observations. The validity of this approach
is tested by comparisons of analytical formulas with the
full numerical calculations of the diffusion coefficients in
section 3. In numerical calculations, we use the full g(q)
depending on l. For comparison, we also calculate in
Figure 2 the diffusion coefficient for g(q) = gs(q) without any
dependence on l (such wave normal distributions are often
used for calculation of diffusion coefficients [see Glauert
and Horne, 2005; Horne et al., 2005; Shprits and Ni, 2009]).

2.3. Contribution of Cyclotron Resonances

[19] As the electron leaves the equator and moves toward
its mirror point along a magnetic field line, pitch angle
increases due to adiabatic invariance, allowing the resonance
to be restored over some latitudes. The full diffusion coef-
ficient is obtained by integration over the bounce motion
[Lyons et al., 1972]:

Dh iB a0ð Þ ¼
Zlmax

lmin

D að Þ cos a cos7l
T a0ð Þ cos2a0

dl ð9Þ

where the bounce period is written as T(a0) ≈ 1.38 �
0.64sin3/4a0 [Davidson, 1976].

Figure 2. Bounce-averaged pitch angle diffusion coeffi-
cient as a function of equatorial pitch angle a0 for 100 keV
electrons interacting with lower-band chorus waves such
that wm = 0.35Wc0 and Dw = 0.15Wc0, with a realistic wave
number angular distribution obtained from CLUSTER mea-
surements [Agapitov et al., 2011] at L � 4.5 (Wpe/Wc = 4.5).
The full-numerical solution is plotted (solid black line) with
the solutions for high-frequency waves only (grey line) and
for small-q (< 45�) part of the distribution only (dashed black
line). Also shown are the n = � 1 and n = 0 resonances solu-
tions (blue and red lines). The main characteristic pitch angles
are displayed, as well as the corresponding wave-normal direc-
tions on the lowest axis. Description of calculations can be
found in Appendix E.
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[20] Taking into account the weighted-average reformu-
lation of the diffusion coefficient by Albert [2007], we esti-
mate the bounce-averaged diffusion coefficient coming from
the small-q part in Appendix C:

Daa
�1


 �s
B
aLCð Þ ≈ p3=2erf 1ð ÞB2

wavewmGw0 wmð Þ
4gB2

0 pɛm0ð Þ13=9T aLCð Þ
s

�
DlR 1þ 3 sin2lR

� �7=12
1� wm

Wc

� �
gwm

Wc
� 2gw2

m

W2
c
þ 1

��� ��� 1� gwm

Wc

��� ���4=9 ð10Þ

where lR and DlR are resonance latitude and range of var-
iation of resonance latitudes, respectively (see Appendix C).
In equation (10) Wc/Wc0 ≈ (pɛm0)

2/3 can be used for small
values of wm/Wc0 and small to moderate latitudes. The term
lR + DlR/2 is assumed to be smaller than the upper-bound
in latitude where the considered waves are present.
[21] Let us turn now to the more complicated large-q part

of g(q), such that qMin
l ≥ max(p/4, qg). Important contribu-

tions to diffusion then come from resonant value qR lying
between the Gendrin angle qg and the resonance angle qr
(cf. Appendix B). These contributions can even be more
important than those of the small-q range, since Dn/G in
equation (1) shows a singularity at the resonance angle,
which can be seen in equation (A3) and which is absent at
small q. The large-q contribution to diffusion must therefore
be calculated very carefully, even if it contains a much
smaller amount of wave intensity than the small-q range.
Such oblique chorus waves are commonly observed in the
outer belt [Hayakawa et al., 1990; Santolík et al., 2009;
Tsurutani et al., 2009; Haque et al., 2010; Agapitov et al.,
2011]. At the Gendrin angle, the waves remain guided
along the geomagnetic field line as they propagate. How-
ever, density and magnetic field variations from moderate to
high latitude usually increase the wave-normal angle until it
reaches the resonance cone, potentially leading to reflection
at low altitude and tending to fill the radiation belts with
magnetospherically reflected whistlers [Edgar, 1976;
Helliwell, 1995; Boskova et al., 1990; Shklyar and Jiříček,
2000; Jirícek et al., 2001; Chum and Santolík, 2005]. We
need to separate the interval [qMin

l , qMax
l ] into two sub-

intervals (q < qM and q > qM) taking into account relative
positions of qg, qr (see scheme in Figure 3). Defining
qMax2 = min(qMax

l , qr), qS = min(qM, qMax2), qS2 = max

(qS, qg), and qS1 = min(qS2, qr), the wave-normal angle
integral of diffusion coefficient (see Appendix C) can be
performed by splitting the integral into two parts D+ and D�,
the upper-part going from qS2 to qMax2 and the lower-
part going from qMin

l to qS1. Roughly speaking, the upper
and lower parts correspond, respectively, to the x > xM
and x < xM limits in the Bessel series expansions (see
equation (B2)).
[22] At pitch angles larger than 20�, the upper-bound of

latitude for resonance is less than 40� and the D+ part is
expected to prevail (see Appendix B). The average latitude
range DlR over which resonance exists over the whole
large-q range (from qg to qr) can then be estimated from
equations (6) and (7) where Wc is now allowed to vary with
latitude. For a given ∣n∣ such that Nr(qg0, (4/3)wm � Dw) <
∣n∣ < Nr(qg0, wm + Dw), (Wc/Wc0)

2 can be increased by a
factor (1 + (2/3)(w +Dw)/(w�Dw))/2 on average. Adiabatic
invariance implies that Wc(lR)/Wc0 � 1 + 9lR

2/2 < sin�2a0,
leading to

lmax ≈ min
1

3
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

wm þDw
wm �Dw

� 1

s
;

ffiffiffi
2

p

3 tan a0

 !
ð11Þ

for the average maximum latitude of resonance. At smaller
n-values (closer to 1), equation (7) is satisfied only away
from the equator. There, the range of resonant latitudes DlR
is slightly smaller than lmax, while cos a0 in equation (7)
should actually be replaced by cos aR from equation (A1)
to be more exact away from the equator. From adiabatic
invariance, one finds cos aR � (1 � sin2a0Wc/Wc0)

1/2 �
(cos a0)

m with m ranging from Wc(lmax)/Wc0 at small a0 to
2Wc(lmax)/Wc0 at large a0, yielding m � 2 for a0 = 15� to 70�.
Therefore, it is reasonable to consider that roughly
2Nr(qg0, wm)cos a0 positive and negative resonances exist
over the whole large-q range with DlR � lmax for a0 > 15�.
The details of the derivation of D+ are given in Appendix D.
With q-bounds taken as qg and qr, this leads finally to the
simplified approximate expression for the sum of resonances
coefficients

Dþh ilB ¼
1þ w2

m

W2
c0

� �
B2
wavewmGw0 wmð ÞNrlmax

gB2
0 pɛm0ð Þ2 cos a0 sin a0

ð12Þ

Figure 3. Schematic view of the separation of interval [qMin
l , qMax

l ] into two subintervals corresponding
to D� and D+.
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[23] At pitch angles larger than 65�, 〈D+〉B has other max-
ima of comparable magnitude up to a0

Max given by equation
(B8), coming from the small-q part contribution, and which
are given by equation (30) and equation (34) of Mourenas
and Ripoll [2012] for n > 0 and n = 0, respectively. This
contribution somewhat compensates the reduction of lmax at
pitch angles larger than 60� in equation (11). Moreover, the
high-a0 part of 〈D

+〉B is much less important than the small-
a0 part in the lifetime integral of 1/〈D+〉Btan a0. From
equations (7), (11) and (12), it follows that 〈D+〉B varies
roughly like 1/sina0, which is confirmed by full numerical
calculations in section 3. Comparing equation (10) and
equation (12), it is easy to see that large-q diffusion can be
much stronger than the small-q diffusion, provided that a
significant amount of wave energy lies inside the large-q
range.

2.4. Total Cyclotron Diffusion Coefficient

[24] Actually, the total D is obtained in equation (1) by
integration over w of the weighted sum of expression (10)
and expression for 〈D〉B

l (see Appendix D). The latter
reads as

Dh i ≈
Dh isB

Rtan qsMax

tan qsMin

G yð Þg yð Þydyþ Dh ilB
Rtan qlMax

tan qlMin

G yð Þg yð Þydy

Rtan qlMax

tan qsMin

G yð Þg yð Þydy
ð13Þ

where y = tan q.
[25] Apart from g(y), the weighting function G yð Þg yð Þy ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
yg yð Þ is very rapidly increasing with y for

y = tan q > 1. It means that even if the large-q part of g has
a much smaller value than the small-q part, its relative
weight in equation (13) will tend to be similar due to factorffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
y > 1, so that

D ≈ Dh il þ Dh is
� �

=2 ð14Þ

is a good first-order approximation at moderate to large pitch
angles for a typical proportion of wave intensity in the large-
q range lying between 50% and 10% of the total intensity
[Burton and Holzer, 1974; Haque et al., 2010; Agapitov
et al., 2011].

2.5. Landau Resonance

[26] The calculation of the Landau resonance diffusion
coefficient for low-frequency whistler waves has already
been performed in Mourenas and Ripoll [2012], and it
still applies here, at least for the small-q part (see their
equations (25) and (34)). One finds a maximum near
cos aM0 � ∣1 � wm/Wc0∣1/2gwm/(Wc0pɛm0) at the equator,
in agreement with simulation results, which show that
the small-q diffusion generally dominates (cf. Figure 2). The
bounce-averaging procedure used above applies for the
Landau resonance when sinaR � 1 � sin aM0, provided
that p > gwm/(Wc0ɛm0) from the resonance condition: it cor-
responds to relatively high energy electrons E > 10 keV
typically for chorus waves, in agreement with numerical
results from Shprits and Ni [2009]. However, comparing
Landau and cyclotron diffusion for chorus waves shows

that Landau diffusion is similar to or smaller than cyclotron
diffusion at high energies E > 300 keV. It can, thus, be
neglected to estimate trapped electron timescales for
E > 300 keV [Albert and Shprits, 2009]. At lower energy
and small wm/Wc0, it can be included from the Landau
part in equation (36) of Mourenas and Ripoll [2012]. This
is indeed confirmed by different numerical simulations
[Shprits et al., 2006; Shprits and Ni, 2009].

2.6. Estimates of Trapped Electrons Timescales

[27] Albert and Shprits [2009] have derived a simplified
but very useful estimate of electron lifetime t, which can be
used together with our analytical approximate expressions
for D:

t ≈ s
Zp=2
aLC

cos a0

2 Dh iB sin a0
da0: ð15Þ

[28] The numerical coefficient s � 1/2 in our case allows
to recover precisely numerical simulations where the mini-
mum of 〈D〉B is close to the loss cone, or else when a min-
imum occurs at large pitch angles but remains moderately
deep [Albert and Shprits, 2009]. It suggests that a rough
estimate of lifetimes can be obtained by neglecting the
parameter range wherein 〈D〉B is large, integrating only the
expression for the small-q part 〈D〉B

s over the domain situ-
ated close to the loss cone angle aLC and the large-q
part 〈D〉B

l between about p/12 and p/2. For the small-q part,
T(a0) can be approximated byT(aLC) � 1.3, so that
1/(〈D〉B

s tan a0) ∝ 1/tan a0 can be integrated analytically
from the loss cone angle aLC up to an angle a+ comprised
between aLC and p/2. One can take a+ � 7aLC, as numerical
calculations show that the integral does not increase signif-
icantly at larger a0 for L = 4 to 6.5. Finally, one obtains
respectively for the small-q part alone and for the total g(q)
distribution:

ts ≈ s
ln

sin aþ
sin aLC

� 	
2 Dh isB

; g ¼ gs

ttotal ≈ tlandau þ s

1

2
ln

sin aþ
sin aLC

� 	

Dþh ilB
p
4

� �
þ Dh isB

; g ¼ gs þ gl

ð16Þ

where the Landau part (minimum of D) above a0
Max (n =�1)

is given by Mourenas and Ripoll [2012] with 〈D0〉B/2 and
an additional factor for large wm/Wc0:

tlandau ≈
B2
0∣1� wm=Wc0∣�3=2

2:4gB2
waveGw0 wmð ÞDw

pWpe

Wc0

� 	4 sq

sin3aM0

�
p
2 � aMax

0 � 2
3 sin 2aMax

0

� �� 1
12 sin 4aMax

0

� �
gs qM0ð Þ þ min sqpɛm0ð Þ3

11 ; 1
pɛm0sq

� � ð17Þ

with sq = tan Dq � 1 in the small-q part, where
Dq = qMax

s � qMin
s . Term gs(qM0) � exp(�(tan qM0/sq)

2) is
assumed for the Landau part, where tan qM0 � 1.84/pɛm0
and aM0 is given in section 2.5. A theoretical estimate of the
threshold for increased lifetimes due to a sufficiently deep
minimum of 〈D〉 between the peaks of first cyclotron and

MOURENAS ET AL.: TIMESCALES FOR OBLIQUE CHORUS DIFFUSION A06234A06234

6 of 17



Landau resonances can be obtained from equations (16)
and (17). It reads as

p <
0:65

s2=5
q

W5=2
c0

Wpew
3=2
U

 !
1� wU

Wc0

� 	
ð18Þ

giving E < 100 keV in the case where wm/Wc0 = 0.2 and
Wpe/Wc0 = 4.5, in good agreement with the full numerical
solution (see Figure 7). This minimum of 〈D〉 is deeper
when the pitch angle interval between the maxima of the
Landau and first Cyclotron resonances is wider, for larger
values of cos aM,0 � cos a0

Max(n = �1). It corresponds to
small energy, frequency and density, and large magnetic
field, as already apparent in numerical results shown in
Figure 10 of Lyons et al. [1972].
[29] Considering only small-q diffusion from equation (10)

at L ≥ 4, with electron density Ne ∝ L�4 [as in Sheeley
et al., 2001], and with a ratio wm/Wc0 kept fixed, we find
that in the relevant regime of interaction with small-q-only
chorus waves, electron lifetimes scale roughly as:

t ∝
p3=2gw7=9

m W14=9
pe ln sinaLCð Þ
W12=9

c0

∝
E2

L
ð19Þ

for

pɛm0 > 1:84=sq

gp4=3 >
W17=6

c0
ffiffiffiffiffi
sq

p

12W4=3
pe w3=2

m

:

[30] With the ratio wm/Wc0 fixed, lifetimes should vary
roughly like E2/L at high energies and/or L (as actually
observed in Figure 1 of Shprits et al. [2007]) for 1 MeV
electrons scattered by chorus waves such that q � 0.
[31] This behavior stems from the integrand in (9) being

roughly (Wc0/Wc(lR))
2 � 1/(pɛm0)

3/2 from resonance condi-
tion (A1), corresponding to decreasing 〈D〉 at higher reso-
nant latitudes, i.e. at large energy, frequency and density,

and at smaller magnetic field values, in agreement with
numerical results in Figure 10 of Lyons et al. [1972]. Note
also that lifetimes t in equation (19) do not depend uponDw
and Dq at moderate and large E, only increasing with Dw at
very low energies.
[32] An insensitivity of 〈D�1〉B

s at a0 < 50� to the chorus
wave-normal distribution has already been emphasized from
recent numerical simulations [Shprits and Ni, 2009] per-
formed in the special case of small-q diffusion (<45�). It
leads directly to a similar insensitivity of t. However,
properly taking into account large-q diffusion terms (12)
based on CLUSTER chorus wave observations [Agapitov
et al., 2011] leads to more complicated dependencies upon
the parameters at low energy. Nevertheless, at high energy
where ttotal ≪ ts, one gets

ttotal ∝ gpWpe ∝ E3=2=L2: ð20Þ

[33] Comparing (19) and (20), one can see that
ttotal/ts ∝ E�1/2L�1 so that the reduction of lifetimes is
more important at large L and high energy. A striking new
feature is that the lifetimes are strongly reduced in realistic
cases, by as much as a factor of 10 at high energy. It
is mainly due to the fact that the number of large-q reso-
nances (7) increases with energy and density.
[34] Momentum and energy diffusion coefficients can

easily be obtained from the above D pitch angle diffusion
coefficients [see Lyons, 1974; Glauert and Horne, 2005].
A significant decrease of acceleration timescales is expected
when large-q diffusion by lower-band chorus becomes
important at E > 30 keV on the day-side in the outer belt.
This will be the topic of a future work.

3. Comparisons With Full Numerical Simulations
and Discussion

[35] First, the analytical estimate (16) of electron lifetimes
for small-q diffusion only, calculated with diffusion coeffi-
cient’s expression (10), is compared with the numerical
calculations of Shprits et al. [2007] for interaction of elec-
trons with the low-frequency band of chorus whistler waves
dominant on the day-side in the outer radiation belt, where
wm/Wc0 � 0.2. We use the same initial conditions: 100 pT
storm-time chorus waves and dayside plasma trough density
Ne � 100(3/L)4 cm�3 for L ≥ 3 from Sheeley et al. [2001]. In
order to compare with the small-q PPA approximation used
in Shprits et al. [2007], we take here qMax < p/4. Compar-
isons with equation (3) of Shprits et al. [2007] are restricted
to E ≥ 0.1 MeV because their parameterization is stated to
remain accurate within about 20% for 0.1 MeV ≤ E ≤ 2 MeV
only. Note that equation (3) of Shprits et al., 2007 reads
t = 0.039E2 + 0.047/L + 1.41E2/L, which is consistent with
their Figures 1 and 2. Moreover, chorus waves are assumed
to be present up to l ≈ 35�, peaking between l ≈ 15� and
l ≈ 30�.
[36] The numerical solutions are fairly recovered by the

analytical estimate (10) and (16) in Figure 4. In particular,
one finds that lifetimes vary roughly as � E2/L, especially
for L > 4.5. The discrepancy is most often much smaller than
30%, which is much smaller than the inaccuracies associated
to both the electron density profile and the wave amplitude
models. Figures 5 and 6 display the variation of analytical

Figure 4. Lifetimes of 0.1 MeV, 0.5 MeV, 1 MeV, and
2 MeV (from bottom to top) electrons interacting with
small-q day-side low-frequency chorus waves in the outer
zone of the radiation belts, as a function of L. The numerical
parameterization of equation (3) of Shprits et al. [2007] is
shown (black solid line) as well as analytical estimate (10)
and (16) (blue dashed line).
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and numerical lifetimes for q < p/4 as a function of density
and frequency. The rough scaling (19) deduced from (16)
appears approximately correct, with analytical lifetimes
varying like t ∝ (Newm)

7/9 over a large parameter range.
These variations were not provided by Shprits et al. [2007]
in their parameterization based on a large number of
numerical simulations.
[37] We also compare lifetime estimates with or without

the large-q part (16) with our full numerical calculations
based on the CLUSTER measurements (description of
numerical code can be found in Appendix E). Pitch angle
diffusion coefficients are calculated with g(q) consisting of
gl(q) and gs(q) parts. The comparisons are performed for two
different values of the ratio Wpe/Wc0 corresponding to dif-
ferent L values above L = 4 (or different natural conditions)
and also for two different values of the mean chorus fre-
quency wm/Wc0 = 0.2 and wm/Wc0 = 0.35, with the same other
parameters as before (see Figure 7).
[38] One can see that lifetime estimate (16) for the small-q

part is in fair agreement with the full numerical results for
both wm and Wpe values. The ttotal estimate for the complete
small-q and large-q distribution is also in relatively good
agreement with the full numerical results. The discrepancy
between analytical and numerical lifetimes is often much
smaller than a factor of 2, especially at high energy
E > 400 keV. Considering the simplifications done in the
course of the analytical calculations and the rough average
over the small and large q-parts made in (14), it is a satisfactory
result. The discrepancy between the analytical estimates and
the full numerical results is actually much smaller than the
uncertainties stemming from outer-belt density modeling and
intrinsic variability [e.g., see Sheeley et al., 2001; Denton
et al., 2002] as well as from chorus waves intensity models
[Meredith et al., 2001; Horne et al., 2005; Shprits et al., 2007;
Li et al., 2011] which show a large spread of measured
intensities in relation to the highly variable geomagnetic
activity. Since the analytical lifetimes lie well within the
uncertainty range surrounding the full numerical results, they
could prove useful (albeit approximate) substitutes inside

global radiation belt codes relying on similar density and wave
intensity models for more quickly evaluating energetic elec-
tron fluxes (at least in the parameter range studied here). On
the other hand, full numerical solutions should obviously be
preferred for any simulation aiming at accurately reproducing
specific storm-related events when the different plasma/wave
parameters can be determined more precisely from satellite
measurements.
[39] Lifetimes in Figure 7 are one order of magnitude

smaller with large-q waves included (red crosses and solid
blue line) than with small-q waves only (diamonds and
dashed blue line). At large energy E > 400 keV, we observe
a significant input of higher-order cyclotron resonances, as
expected from equation (7). This strong reduction of time-
scales suggests that the storm-time mechanism of energy
transfer from low-energy injected electrons to high-energy
ones through chorus excitation by loss cone instability [e.g.,
see Horne et al., 2005] could become even more efficient at
moderate to high latitudes in the presence of highly oblique
waves. This is left as the topic of a further work. Comparing
lifetimes ttotal of electrons to their azimuthal drift period
tdrift [Hamlin et al., 1961], one finds that ttotal/tdrift < 1/4 at
E � 15 keV to 200 keV for 100 pT dayside storm-time
chorus waves such that wm/Wc0 � 0.35 (below 15 keV, the
Landau term (17) leads to a rapidly increasing ttotal). Such
electrons should generally be lost during their first drift from
dawn to noon. The actual large-q lifetimes of low-energy
electrons are therefore such as plotted in Figure 7 and given
by (16), while large-q lifetimes of higher-energy electrons
and small-q-only lifetimes must be multiplied by a factor
�4 to account for the 25% occurrence rate of the waves
over a full drift period [Shprits et al., 2007]. Let us consider
moderate-latitude chorus of about 140 pT at L = 4.5 and
100 pT at L = 6.5. The corresponding large-q lifetimes
ttotal(s) � (gp/L2)(104/Bw[pT])

2 are 1 minute at 15 keV and
3 min at 100 keV. Numerical results in Figure 7 imply nearly
3 times smaller lifetimes at E < 100 keV. It is worth noting
that the resulting minimum timescales of 20 s to 60 s for
15 keV to 100 keV electrons are similar to the observed

Figure 5. Lifetime variation as a function of the central
chorus frequency wm at L = 4.5 for E = 1 MeV, with the
same other parameters as in Figure 4. The analytical estimate
(10) and (16) is plotted (black circles) as well as the scaling
wm
7/9 from equation (19) (dashed line) and the full numerical

results (red diamonds).

Figure 6. Lifetime variation given by (10) and (16) as
a function of the electron density Ne at L = 4.5 for
E = 1 MeV, with the same other parameters as in Figure 4,
and the scaling Ne

7/9 from equation (19) (dashed line) and
the full numerical results (red diamonds).
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periods of pulsating auroras, which were recently shown to be
highly correlated with lower-band chorus [Nishimura et al.,
2011]. These timescales are also similar to, or lower than
strong diffusion timescales of isotropization tsd � 1.8LREg/
(pcaLC

2 ), where RE is the Earth’s radius [Lyons, 1973; Schulz,
1974]. Quasi-linear scattering of substorm-injected electrons
in the loss cone by very oblique chorus waves, leading suc-
cessively to enhanced wave growth [Horne et al., 2005], loss
cone filling, and instability quenching on similar timescales

[Davidson, 1986], might therefore account for the pulsation
periods of some dawnside auroras, lending further credibility
to models of chorus-generated pulsating aurora [see
Nishimura et al., 2011, and references therein]. On a more
global scale, the dayside large-q diffusion rates plotted in
Figure 8 are much stronger at small pitch angles a0 < p/4 than
at larger values. As a result, the outer belt eastward-drifting
energetic electron population could exhibit a predominantly
perpendicular anisotropy on the dayside at times of low dis-
turbances, while showing some isotropization in the strong
diffusion regime at low energy during very active periods.
Similar anisotropy variations have actually been observed,
although drift shell-splitting is also believed to produce a
perpendicular dayside anisotropy at large L [see Gu et al.,
2011; Borovsky and Denton, 2011, and references therein].
[40] In Figure 8, bounce-averaged diffusion coefficients

obtained with the full wave-normal angle distribution and
with the small-q part only, are displayed for different ener-
gies, for the same parameters as before (L � 4.5 and 100 pT
chorus). It is worth pointing out in Figure 8 the deep mini-
mum in total diffusion rate between the Landau and first
cyclotron resonances at a0 � 75� for small mean frequency
wm/Wc0 = 0.2 and at low energy E < 200 keV. Such a deep
minimum increases lifetimes [Albert and Shprits, 2009]. At
E = 100 keV, this minimum being slightly wider when large-
q waves are included, it leads to a total lifetime (including
small and large q-parts and plotted in Figure 7 as red crosses)
climbing slightly above the small-q lifetime (diamonds
symbols in Figure 7), contrary to what happens in all the
other examples shown. This is in good agreement with
equation (18), which gives a threshold E � 100 keV for this
effect, although the shape and values of the lifetimes are not
precisely recovered by equations (16) and (17).
[41] For wm/Wc0 = 0.35, the actual minimum of 〈D〉tan a0

in the numerical simulations does occur at a0 ≥ 20� as
assumed in the analytical developments. For wm/Wc0 = 0.2,
however, improperly neglecting high-order resonances
∣n∣ > 5 leads to a clear minimum at smaller pitch angles,
which increases significantly the numerical lifetimes (for
instance at 100–300 keV in Figure 7). These high-n reso-
nances occur at high latitudes for q � qr near the loss cone.
High-order resonances must therefore always be taken into
account, even at low energy.
[42] To assess the impact of high-n resonances we plot

diffusion coefficients obtained numerically with ∣n∣ ≤ 5,
∣n∣ ≤ 10 and ∣n∣ ≤ 20 in Figure 9. High-n resonances are
involved into diffusion only for particle with small to mod-
erate pitch angles a0 < 60�. These particles can reach high-
latitudes where mean value of g(q) distribution is
situated relatively close to qr, i.e. qm + Dql > qr, where
Dql ≈ qMax

l � qMin
l . In this case the number of resonances

increases rapidly as seen from equation (7). Note also that
the analytical estimate 〈D〉 agrees well with the numerical
solution for a0 > 15� in Figure 9. The ratio P of diffusion
coefficients calculated for ∣n∣ ≤ 20 and ∣n∣ ≤ 5 is also
plotted in Figure 9, as well as our corresponding analytical
estimate � 2Nrcos a0(qg0, wm)/5 (see Appendix D). It
demonstrates that the related increase of diffusion is
more important at a0 < 45�, as expected from equation (7).
This increase of diffusion is rather well reproduced by the
analytical estimate. From equation (7), one also finds

Figure 7. Lifetime variations given by (16) with large-q
part (solid blue curve), without large-q part (dashed blue
curve) are compared with those obtained by numerical
scheme (filled circles show results obtained with large-q part
and ∣n∣ ≤ 5, black crosses correspond to ∣n∣ ≤ 10, red crosses
correspond to ∣n∣ ≤ 20, and diamonds show results obtained
without large-q for ∣n∣ ≤ 5; t is calculated for a+ = p/2).
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Nr ≤ 10 for a0 � 45� in our test-cases at E < 2 MeV, except
for wm/Wc0 = 0.35 and Wpe/Wc0 = 7.5 where Nr ≤ 14.

4. Conclusions

[43] In this paper, analytical estimates of energetic elec-
tron lifetimes in the radiation belts have been derived, based
on the use of the Lyons et al. [1972] quasi-linear model with
the weighted-average reformulation of Albert [2007], on the
approximation of the Bessel functions by their envelop
maximum, and on the assumption of a resonance maximum
occurring at the mean frequency wm (for Dw ≤ wm/2). We
consider low-frequency (Wci ≪ w < Wc/2, wWc ≪ Wpe

2 )
oblique chorus whistler waves, such as observed in the outer
belt by CLUSTER [Agapitov et al., 2011]. The analytical
model captures quite well many features of the full-numer-
ical solution, and provides new lifetime scaling laws as a
function of energy, L-shell, density and wave frequency,
bringing a better understanding of the simulations results. In
particular, numerical as well as analytical calculations pre-
sented here demonstrate that timescales can be strongly
reduced when the waves reach large wave-normal angles,
between the Gendrin and resonance angles. Such very
oblique chorus waves are often present at low to moderate
latitudes, where they represent from 10% to 50% of the
occurrences [Hayakawa et al., 1990; Santolík et al., 2009;
Verkhoglyadova and Tsurutani, 2008; Agapitov et al., 2011;
Haque et al., 2010, 2011]. Chorus waves can be directly
generated with high wave-normal angles inside the source
region [Santolík et al., 2009; Haque et al., 2011] or experi-
ence an increase of their wave-normal angle as they propa-
gate along a geomagnetic field line away from the source
region, believed to be located close to the equator [Lauben

et al., 2002; Chum and Santolík, 2005; Bortnik et al.,
2011]. Scattering of moderate pitch angle electrons into the
loss cone appears to be much more efficient for such very
oblique chorus waves, potentially reaching the strong dif-
fusion limit, which might explain some features of pulsating

Figure 8. Numerical bounce-averaged diffusion coefficients as a function of equatorial pitch angle for
∣n∣ ≤ 5. The full solution with g(q) = gs(q) + gl(q) is plotted (solid line) as well as the full solution with
latitudes bounded at 30� (grey line), and the n = 0 and n = �1 resonances alone (solid red and dashed blue
lines). The solution with g = gs(q) is also shown for q < p/4 (dashed black line).

Figure 9. (top) Numerical bounce-averaged diffusion coef-
ficients for q distribution g(q) = gs(q) + gl(q) and (bottom)
ratio of ∣n∣ ≤ 20 over ∣n∣ ≤ 5 diffusion coefficients as a func-
tion of equatorial pitch angle for 1 MeV electrons. The ana-
lytical estimates of 〈D〉 and 2Nrcos a0/5 are also plotted
(dashed black lines).
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auroras as well as translate into a predominantly perpendic-
ular anisotropy of relativistic outer belt electrons on the
dayside. Further work will be needed to examine in details
all the consequences of this increased scattering, concerning
in particular the energization of relativistic electrons [Horne
et al., 2005; Li et al., 2007; Summers et al., 2007b].
[44] Energy diffusion, radial transport, and finite burst

durations must also be taken into account in the highly
variable environment of the outer belt, requiring the use of
global multidimensional codes [Shprits et al., 2008;
Varotsou et al., 2008; Fok et al., 2011]. In this growing field
of space weather forecasting for satellite warning, the pro-
posed analytical estimates might prove useful for quickly
evaluating the sensitivity of particle fluxes calculated by
global radiation belt codes to often insufficiently known
wave and plasma parameters. Nevertheless, one should bear
in mind that the proposed model has only been partially
validated against numerical simulations in a restricted
parameter range. Analytical estimates cannot be expected to
replace full numerical calculations, which are becoming
more and more rapid with the advent of massively parallel
supercomputers and will always remain the gold standard of
radiation belts physics.
[45] Further tests of the accuracy of our analytical esti-

mates are planned in the future. Still, magnetosonic, EMIC
and high-frequency chorus waves are also important above
L � 4 [Summers et al., 2007a, 2007b; Li et al., 2007] and
have not been treated here. The full numerical resolution of
the Fokker-Planck diffusion equation is required in the highly
variable environment of the outer radiation belt to take into
account pitch angle diffusion by all these waves as well as
energy diffusion, radial transport and finite burst durations.

Appendix A: Derivation of Dn/G

[46] Here we derive an expression for the resonant value
of pitch angle aR. Combining the simplified dispersion
relation with the resonance condition leads to the relation

cos aR ¼
nj j 1þ gwm

nWc

��� ��� 1� wm
Wc cos q

��� ���1=2
pɛm

ffiffiffiffiffiffiffiffiffiffiffi
cos q

p

with ɛm lð Þ ¼ Wpe=Wc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wm=Wc

p
, where l is the geomag-

netic latitude, p = vg/(mec) is the electron momentum, me the
electron mass, c the speed of light. Considering adiabatic
motion along the bounce trajectory, one can rewrite the
above equation as

cos aR

sin3aR
¼

nj j 1þ gwm

nWc

��� ��� 1� wm
Wc cos q

��� ���1=2
pɛm0

ffiffiffiffiffiffiffiffiffiffiffi
cos q

p
sin3a0

ðA1Þ

where ɛm0 is the value of ɛm at the equator and a0 is the equa-
torial pitch angle (we use the relation sin2a = sin2a0(Wc/Wc0)
where Wc0 is the equatorial value of Wc). We assume in
equation (A1) that the density remains roughly constant
along a geomagnetic field line up to a maximum latitude of
interaction of about 35� [Denton et al., 2002; Horne et al.,
2005]. We use subscript “0” for equatorial values of variables.
[47] In a previous paper [Mourenas and Ripoll, 2012], we

simplified the different relations and the diffusion coeffi-
cients expressions by taking the limits gwm/Wc ≪ 1 and

cos q � 1. While these are reasonable and convenient
approximations for moderately oblique plasmaspheric hiss
waves such that wm/Wc0 < 0.06 and E < 3 MeV, it is not
anymore always correct for outer zone chorus waves inter-
acting with energetic particles, where higher-order terms
must be kept.
[48] Keeping terms �gwm/Wc, we can rewrite the term at

the denominator of equation (2) as

1� ∂w=∂kk
� �

r

v cos a

�����
����� ≈ 1� 2

1� wm
Wc cos q

1þ nWc
gwm

�����
�����

where (∂w/∂kk)r is the parallel component of the group velocity at
resonance. We have also G ¼ 1

2 ∣m∣
3∣Wc cos q= Wc cos q� wmð Þ∣.

Using the resonance condition, it can be rewritten

G ¼
1þ nWc

gwm

��� ���3
2 1� wm

Wc cos q

��� ��� vk cos q=c�� ��3
and it can be further simplified at small q. Simplified
expressions of Fn

2 valid at small and large values of q can be
derived from the exact formula given in equations (9), (11),
and (12) of Lyons [1974]. To this aim, let us first recall that q
is necessarily smaller than the (maximum) resonance angle
qr = arccos(wm/Wc), so that Wccos q/wm > 1. Assuming further
that (wm/Wc)

2 ≪ 1 and Wc/wm ≫ cos q at large q, such that
q ≥ qg, with qg = arccos(2wm/Wc) the Gendrin angle at which
the waves group velocity in the magnetic field direction
reaches its maximum, the waves being guided along the field
line [Gendrin, 1961]. It yields the desired expressions

F2
n ≈

1þ cos q� wm

Wc

� 	
Jnþ1 þ 1� cos qþ wm

Wc

� 	
Jn�1

� 	2

8 cos2 q 1� wm

Wc cos q

� 	2 ;

q ≥ max qg;
1

4
p

� 	
1þ cos qð ÞJnþ1 þ 1� cos qð ÞJn�1ð Þ2

8 cos2q
;

q < max qg;
1

4
p

� 	

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ðA2Þ
[49] The ratioDn/G is readily obtained from equation (A2)

and equation (2) in the limit sin2a < ∣n∣Wc/(gwm):

Dn

G
≈

p 1þ cos q� wm

Wc

� 	
Jnþ1 þ 1� cos qþ wm

Wc

� 	
Jn�1

� 	2

8 1� wm

Wc cos q

����
���� 1� 2wm

Wc cos q
� nWc

gwm

����
���� 1þ gwm

nWc

� 	2 ;

q ≥ max qg;
1

4
p

� 	

p 1þ cos qð ÞJnþ1 þ 1� cos qð ÞJn�1ð Þ2 1� wm

Wc cos q

����
����

8 1� 2wm

Wc cos q
� nWc

gwm

����
���� 1þ gwm

nWc

� 	2 ;

q < max qg;
1

4
p

� 	

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ðA3Þ
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[50] We recover Dn/G � (p/2)J0
2gwm/Wc for n = � 1 in the

limits Wc/(gwm) ≫ 1 and q � 0, as in Mourenas and Ripoll
[2012]. From equation (A3), it is easy to see that the most
important contributions to diffusion come from the maxima
of the Bessel functions. Examining the denominator of
equation (A3), one can see that three different singularities
may occur, which will be investigated in this paper. It is
already clear from equation (A3), however, that in the large-
q range, Dn/G can experience a large increase near the res-
onance angle as compared to the small-q case.

Appendix B: Resonance Domains

[51] It has already been shown in Mourenas and Ripoll
[2012] that the resonant wave-normal angle is linked to the
harmonic number and the pitch angle at the Bessel function’s
maximum, where the contribution to Dn

aa is dominant at
moderate latitudes. Indeed, the first maximum of the Bessel
functions occurs at x = xM(n) ≈ ∣n∣ + 0.81∣n∣1/3 ≈ ∣n∣ + 1,
except when n = 0 [Abramowitz and Stegun, 1972]. The error
in the xM(n) ≈ n + 1 approximation is less than 1/n at large n,
which is small. Taking Fn

2 ∝ J∣n∣�1
2 and resonance relation

one obtains tan a tan q � 1 at the Bessel maxima, except for
J0, in which case tan a tan q < 1. This gives

aR;M ≈
1

2
p� qR; nj j > 1

aR;M ≤
1

2
p� qR; nj j ¼ 1

8><
>: ðB1Þ

[52] Neglecting the phase terms, classic asymptotic
expansions of Bessel functions for large arguments x > n and
ascending series at small x ≪ n can be used. Since the first
maximum of the Jn(x) functions occurs at x = xM(n)� ∣n∣ + 1
(except when n = 0), the Bessel functions can be rewritten as

J2∣n∣�1 ≈
2

p∣n∣
xM
x
; x > xM ∣n∣� 1ð Þ

J2∣n∣�1 ≈
2

p∣n∣
x

xM

� 	2∣n∣�2

; x < xM ∣n∣� 1ð Þ; ∣n∣ ≠ 1
ðB2Þ

[53] Also we have J0
2 = 1.

[54] Let us first consider the domain q <min(qMax
s , qg, p/4).

For
ffiffiffiffiffiffiffiffiffiffi
cosq

p � 1 and at small equatorial pitch angles close to
loss cone value a0 � aLC such that sin a0(pɛm0/∣n + gwm/
Wc∣)1/3 ≤ 1, one finds B(l)/B0 � (sin aR/sin a0)

2 � (pɛm0/
∣n + gwm/Wc∣)2/3 from equation (A1), with B(l) and B0 the
local and equatorial magnetic field amplitudes. We have then
roughly sin aR/sin a0 < (pɛm0)

1/3 at resonance for n ≠ �1.
aLC is smaller than 5� for L > 4 in the outer belt and
pɛm0 < 100 for E ≤ 3 MeV and L < 7 for typical density
profiles [Sheeley et al., 2001]. Moreover, wm/Wc0 ≤ 0.35
typically for lower-band chorus [Agapitov et al., 2011;
Shprits et al., 2007;Horne et al., 2005], so that for E ≤ 3MeV
at least, one obtains sin aR < (pɛm0)

1/3sin aLC < 0.5. Conse-
quently, the resonant value of q at the Bessel function maxi-
mum, given by qR,M = p/2� aR, is larger than p/3 for n ≠�1.
This means that only the first cyclotron resonance n = �1
provides significant pitch angle diffusion near the loss cone
edge. In such a case, the J0 term is indeed dominant in F� 1

2 .
As concerns the n = +1 resonance, it is negligible at
small q < p/3 as compared to the n = �1 one [Mourenas and
Ripoll, 2012]. Since J0(x) has a maximum J0(x)� 1 for x < 1,

most of the contribution then comes from x < xM, i.e.
from q < p/2 � aR and thus from D�.
[55] In the intermediate domain p/3 < q < qg(l), some

other resonances might contribute for cos qg < cos qR <
(pɛm0)

1/3sin aLC. For typical lower-band chorus frequen-
cies w ≥ 0.2Wc0 [Agapitov et al., 2011], it requires p >
2(w/wc0)

1/2Wc0/(wpesin aLC) > 2.4, corresponding to high
energies E > 1 MeV only. And even at such high energies,
equations (A3)-(B2) imply that Dn/G decreases like 1/n2.
This leads to additional contributions smaller than for n =�1
in general, especially for gs(qg) ≪ gs(0) at low to moderate
latitudes.
[56] Let us turn now to the complementary domain

q > qMin
l ≥ max(qg, p/4). We shall consider only moderate

latitudes <40� corresponding to equatorial pitch angles larger
than 15�–20�. Then, the main contributions to diffusion
mainly come from the first maximum of the Bessel functions
so that equation (B1) applies. From equation (6), it looks like
Nr might go to +∞ at the resonance angle. However, we shall
see below that q actually never reaches qr, so that the actual
number of the contributing resonances depends on how fast
the Dn

aa coefficients decrease with n. To derive analytical
expressions for these coefficients, bounds of integration are
needed. These bounds for resonance can be obtained from
equation (A1) rewritten as a function of q only:

cos qR ¼ h�1 1� wm

Wc cos qR

� 	

h ¼ pɛm cos aR= nþ gwm

Wc

����
����

� 	2 ðB3Þ

which is a second-order equation in cos qR. Real solutions
exist only for positive discriminant, which is equivalent to
h ≤Wc/(4wm). The solution cos qR smaller than cos qg reads as

cos qR ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 wmh

Wc

q
2h

≈
wm

Wc
1þ wmh

Wc
þ 2

wmh
Wc

� 	2
 !

ðB4Þ

from which it can be shown that the resonant angle qR is
comprised between the Gendrin angle qg and the resonance
angle qr, being always strictly smaller than the latter since h is
finite for finite frequency at a finite distance from mirror
points. Actually keeping the ion terms in the dispersion
relation would lead to a minimum frequency equal to the
lower-hybrid frequency [Smith and Brice, 1964]. It follows
immediately that

0 < 1� wm

Wc cos qR
≈

h wm
Wc

þ 2 h wm
Wc

� �2
1þ h wm

Wc
þ 2 h wm

Wc

� �2 ≤
1

2
ðB5Þ

where the value 1/2 is obtained for qR = qg. The estimate
equation (B5) stands as a good approximation, since it always
remains within less than 45% of the exact value. Now, since
qR < qr, significant diffusion occurs only for aR > p/2 � qr
(except for ∣n∣ = 1) and aR ≤ p/2 � qg. It follows from
equation (B1) at the Bessel function’s maximum that diffu-
sion is important at low to moderate latitudes only for

wm

Wc
< sin aR;M ≤

2wm

Wc
; for ∣n∣ > 1 ðB6Þ
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[57] Rewriting equation (B6) with (sin aR,M/sin a0)
2 =

Wc/Wc0 from adiabatic invariance, one gets

wm

Wc0 sin a0

� 	2=3

<
Wc

Wc0
≤

2wm

Wc0 sin a0

� 	2=3

; for ∣n∣ > 1 ðB7Þ

[58] Equations (B7), (A3), and (B1) imply that for
sin a0 > sin a0,M(qg) = 2wm/Wc0, one has aR ≥ a0 >
aR,M(qg) > aR,M(q), equivalent to x > xM. From equation (B2),
Dn should therefore decrease like xM/x = tan aR,M/tan aR

at larger equatorial pitch angles. The largest contribution to
diffusion corresponds to the largest q-integration range,
going from qg to qr. Since qR > qg, taking qR � qg therefore
defines a point of maximum contribution. The location of
the maximum of each Dn

aa may then be estimated as the
value of a0,R for the nth resonance, with equation (A1) taken
for qg at the equator. It is valid for a0, R > a0,M(qr). For
a0 larger than both a0,R and a0,M(qg), the peak diffusion
value must decrease at least like 1/tan aR as the q-integration
range decreases (qR > qg then tends toward qr to fulfil
equation (A1), with h going down). Actually, bounce-
integration only broadens the maxima reached at the equator
when x > xM, as already noticed in Mourenas and Ripoll
[2012]. This gives an upper-bound on equatorial pitch
angle, above which diffusion coefficient D � D+ decreases:

sin aMax
0 ≈ Max

2wm

Wc0
; sinaP

� 

ðB8Þ

where

cosaP ¼
ffiffiffiffiffiffiffiffiffi
Wc0

4wU

s
max 0; ∣n∣� gwU

Wc0

� �
pɛU0

������
������:

[59] At equatorial pitch angles larger than the limit given
by equation (B8),Dn

aa actually decreases faster than 1/tan a0,
because aR ≥ a0.
[60] On the other hand, qg < qr defines the upper-bound of

resonant aR. Therefore, if aR(qg) given by the resonance
condition (A1) becomes smaller than aR,M(qr) given by the
first inequality in equation(B7), then for ∣n∣ > 1 one gets
x < xM and D+ should decrease very quickly as equatorial
pitch angle decreases. This happens for

max 1;
4wm

Wc0

� 	1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos aR qg

� �
pɛm0

nþ gwm

Wc0

��� ���
vuut

2
64

3
75 < max 1;

wm

Wc0 sin a0

� 	2=3
" #

ðB9Þ

which for ∣n∣ ≥ 2 and not too high energy (such that gwm/
∣n∣Wc ≪ 1) leads to

sin a0 < sin aMin
0 ¼ min

wm

Wc0
;

wm

Wc0

� 	5=8 ∣n∣
2pɛm0

� 	3=4
" #

: ðB10Þ

[61] In the domain defined by (B10), it is the D� part of D
which becomes dominant. It is evaluated in Appendix C in
the small-q range where 〈D〉B tan a0 is small at small a0 and
therefore of major importance for lifetime estimates [Albert

and Shprits, 2009]. Conversely, it is neglected in lifetime
calculations when the large-q part of g(q) is included,
because (〈D〉Btan a0)

�1 is then always small in the full
numerical calculations for the considered parameter range
Wpe/Wc0 > 3, L > 4, and E > 100 keV (see Figure 7).

Appendix C: Small-q Part gs(q) Contribution
of Cyclotron Resonances

[62] Making use of the very convenient weighted-average
re-formulation of the diffusion coefficient by Albert [2007],
one has

Daa
n ≈

Rqmax

qmin

sin qg qð ÞDnGwdq

Rqmax

qmin

sin qg qð ÞGdq
¼ DnGw

G

� �
q

ðC1Þ

with a weighting function Gsin qg(q). Let us treat here the
small-q part of g(q), such that qMax

s < min(p/4, qg), allowing
us to take cos q � 1 in general. Such small-q waves are
actually predominant at low latitudes [Burton and Holzer,
1974; Agapitov et al., 2011; Li et al., 2011]. Then, G ∝ 1/
(wmcos q)3, and we have Gsin qdq � Gq=0tan q/cos2 qdq =
Gq=0 ydy with the new variable y = tan q. As discussed in
Appendix B, for small to moderate equatorial pitch angles
(a0 ≤ p/2 � qMax

s � 45� to 60�, where D+ is also small
[Mourenas and Ripoll, 2012]), we just need to evaluate
the n = �1 resonance’s contribution. Moreover, taking
J0 1þ cos qð Þ þ J�2 1� cos qð Þð Þ2 � 2J0ð Þ2 is then a reli-
able first-order approximation. Neglecting the phase terms,
it is reasonable to assume that the Bessel function is nearly
constant (J0(x) � 1) for x � tan aR tan q � 0 to 1, for
q < qMax

s ≤ p/3 and aR lying between 3� and 25�, not too
far from the loss cone. As shown in Appendix B, only the
x < xM part is actually contributing. This allows us to write

D�1Gw

G
≈

p
2 1� wm

Wc

��� ���Gw

1� 2wm
Wc cos q

þ Wc
gwm

��� ��� 1� gwm

Wc

� �2 ðC2Þ

which is nearly a constant as a function of q (it is justified for
q < p/3 and Dw < wm/2: see the discussion at the start of
section 2.2 and Mourenas and Ripoll [2012]). The term
D�1G1/G can therefore be taken outside of the integral
in equation (C1). One obtains the remarkable result that
the q-integrals at the numerator and denominator of
equation (C1) cancel each other. This means that the precise
shape of g(q) is unimportant there. One may use a Gaussian
or a step-function, the final result will be the same,
essentially equivalent to taking q � 0 as in the PPA
scheme [Summers, 2005].
[63] This leads to the following expression at the equator

for the principal cyclotron harmonic diffusion coefficient
near the loss cone edge:

D�1 ≈
WcB2

wave

g2B2

� 	 p3=2erf 1ð ÞGw wmð Þ 1� wm
Wc

��� ���
4 1� 2wm

Wc
þ Wc

gwm

��� ��� 1� gwm

Wc

� �2 : ðC3Þ
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[64] One singularity might occur in (C3) for gwm/Wc = 1.
Nevertheless, the constraint of the resonance relation (A1)
must be taken into account to find the latitude at which
resonance eventually occurs, which is equivalent to finding
Wc0/Wc. Numerically solving (iteratively) for the solution in
a dipolar geomagnetic field with a typical trough density on
the dayside [Sheeley et al., 2001] for L > 4, E < 8 MeV, and
q < p/3, it appears that gwm /Wc < 1/3 for wm/Wc0 < 1/3.
It remains true for other resonances n < 1. Thus, the term
1/(1 + gwm/nWc) does not lead to a singularity.
[65] In equation (C3) we take Gw wmð Þ ¼

WcB2
s wmð Þ=R wU

wL
B2
s w′ð Þdw′ ≈Wc=

ffiffiffi
p

p
Dwerf 1ð Þð Þ and 〈Gw〉w �

(p1/2/2)erf(1)Gw(wm). Taking directly q = 0 gives in this case
essentially the same result as the weighted-average over
q = 0 toDq as already noticed by Shprits et al. [2006], Albert
[2007], and Mourenas and Ripoll [2012]. One can check
also that equation (20) from Mourenas and Ripoll [2012]
is recovered from equation (C3) in the limit (pɛm0)2/3Wc0/
(gwm) ≫ 1 � 2wm/Wc.
[66] Provided that pɛm0 is not too small, as it is usually

the case, the contribution to the bounce averaged integral (9)
is negligible except over only a small l-domain around
resonant latitude lR. The bounce-integral can therefore be
approximated by 〈D〉B ≈ D(lR)(lmax � lmin)cos aRcos

7lR/
(T(a0)cos

2a0). The domain (lmax � lmin) is approximated
by lmax,min ≈ lR � dlR. Using equation (A1), the resonant
latitude lR is given by coslR/(1 + 3sin2lR)

1/12 � (sina0/
sin aR)

1/3 � (∣1 � gwm/Wc∣/pɛm0cos aR)
1/9. dlR is obtained

from the same expression evaluated at wm + Dw. Series
expansions near the first cyclotron resonance assuming small l,
small Dw/wm, and moderate aR, finally give lmax � lmin ≈

2dlR ≈DlR ≈ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
Rþ2Dw= 27wmð Þ= pɛm0ð Þ1=9

q
�lRÞ

�
where

we have lR ≈ 2=31=2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ∣1� gwm=Wc∣=pɛm0ð Þ1=9
q

. It
leads to a first-order estimate of the diffusion coefficient near
the loss cone edge:

Daa
�1


 �s
B
aLCð Þ ≈ p3=2erf 1ð ÞB2

wavewmGw wmð Þ
4gB2

0 pɛm0ð Þ13=9T aLCð Þ
�

�
DlR 1þ 3 sin2lR

� �7=12
1� wm

Wc

� �
gwm

Wc
� 2gw2

m

W2
c
þ 1

��� ��� 1� gwm

Wc

��� ���4=9
where Wc /Wc0 ≈ (pɛm0)

2/3 is generally a good approximation.

Appendix D: Large-q Part gl(q) Contribution
of Cyclotron Resonances

[67] Since G∝ (wm cos q)�3∣1� wm/(Wc cos q)∣�1 we have
Gsin qdq ≈ Gq=0 tan q/(cos

2 q∣1� wm/(Wccos q)∣)dq = Gq=0ydy/
(1 � wm /(Wc cos q)∣ with the new variable y = tan q. Using
equation (A1) to replace the term ∣1 � wm/(Wc cos q)∣ by
a term proportional to cos q = (1 + y2)�1/2, D�n

aa can then
be analytically integrated with respect to y, provided the
Bessel function is conveniently approximated.
[68] Now, we integrate from qS2 to qMax2 (see scheme in

Figure 3). Let us examine first the singularity in equation (A3)
occurring at 1 � wm/(Wc cos q) = 0. The latter expression
must actually be taken at its value for (qR, wR(qR)) satisfying
the resonance condition (A1). This additional constraint

allows substituting the value of 1� wm/(Wccos q) by its finite
expression given by equation (A1). Now, the Fn term can be
approximated using ((..)J�n+1 + (..)J�n�1)

2 ≈ (�1 � wm/
Wc)

2J∣n∣�1
2 at its maximum value for q � qg, since the largest

Bessel function is that of the smallest index. Further using
equation (B2), the integration of DnGw with respect to q
in equation (C1) can then be carried out with the assump-
tion that the term ∣1 � 2wm/(Wc cos q) � nWc /(gwm)∣ is only
weakly dependent on q, actually taking it at qg since qg ≤ qR.
With the variable y = tan q, it is equivalent to integrating
1 + y2 in the numerator of equation (C1) with respect to y.
This leads to

Dþ
�n


 �qMax2

qS2
≈

ffiffiffi
p

p
erf 1ð ÞB2

waveWcGw wmð Þ∣n∣ 1∓ wm
Wc

� �2
8B2 nWc

gwm

��� ��� gpɛm cos að Þ2 tan a
�

� tan qMax2 3þ tan2 qMax2ð Þ � tan qS2 3þ tan2 qS2ð Þ
1þ tan2 qlMax

� �3=2 � 1þ tan2 qlMin

� �3=2
ðD1Þ

[69] The diffusion coefficient (D1) can be large at mod-
erate to large pitch angles given by equation (8), since the
n-resonances levels in equation (D1) are nearly independent
of n, so that many resonances can contribute. Nevertheless,
pitch angle aR is limited by condition (A1) with cos
aR < sinqr, showing that qR(lR) can take any value smaller
than qr(lR) only if ∣n∣ < Nr(qg0) given in equation (7). At
larger n-values, qR(lR) tends toward qr(lR) so that the inte-
gration range cos qR(lR) � cos qr(lR) ≈ h ∝ 1/n2 from
equation (B3), leading in equation (D1) to Dn

aa ∝ 1/n2 at
large n, shrinking quickly at higher ∣n∣ and/or Wc (or higher
latitudes). Consequently, the D+ diffusion coefficient may
be rewritten as

X
Dn ≈ 2Nr qg0

� �
Dþ1 þ D�1ð Þ:

[70] Aside from the q-bounds, the integrand in equation (9)
with equation (D1) is proportional to Wc

3/2cos7l � Wc
1/2,

meaning it is only slowly varying with latitude. As con-
cerns the q-bounds, it is reasonable to expect mean value
qm
l ≈ (qMin

l + qMax
l )/2 to increase as the waves propagate

away from the equator, varying roughly like (or slightly
more than) the Gendrin angle, leading to 1/tan qm

l ∝ cos qg ∝
wm/Wc. Dayside chorus waves observations seem to confirm
this, showing in addition that variance �qMax

l � qMin
l also

increases in a similar fashion with latitude [Agapitov et al.,
2011; Burton and Holzer, 1974; Artemyev et al., 2012].
Assuming for simplicity that the bounds of integration
qMax2 � qr and qS2 ∝ qg vary similarly too, the total variation
of the integrand is weaker than Wc

1/2. Since lmax is small, the
bounce-integral (9) can then be approximated by the value of
its integrant at lR � 0 multiplied by the domain lmax � lmin.
It leads to a first-order estimate:

Dþ
�n


 �l
B
a0ð Þ ≈

ffiffiffi
p

p
erf 1ð ÞB2

wwmGw wmð Þlmax 1þ w2
m

W2
c0

� �
8gB2

0T a0ð Þ cos2 a0 sin a0 pɛm0ð Þ2 �

� tanqMax2 3þ tan2 qMax2ð Þ� tanqS2 3þ tan2 qS2ð Þ
1þ tan2 qlMax

� �3=2 � 1þ tan2 qlMin

� �3=2
ðD2Þ
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[71] In equation (D2), the q-bounds are evaluated at
lR = 0. The magnitude of large-q D� n

+ is almost independent
of n in equation (D2), so that the contributions of many
resonances can lead to large increase in diffusion in the
domain of moderate to large equatorial pitch angles
a0 > a0

Min, with a0
Min given by equation (B10). This is

indeed confirmed by full numerical calculations of the dif-
fusion coefficients (see Figures 2 and 8 and Artemyev et al.
[2012]). The lower-part of integration from qMin

l to qS1, has
yet to be evaluated. But the latter term, which leads to inte-
gration of J∣n∣�1

2 (y)y(1 + y2) in the numerator of equation
(C1), is negligible by construction as compared to D+ at
moderate to large pitch angles. The small-q part of D+,
which becomes important above 60� has already been esti-
mated in equations (30) and (34) of Mourenas and Ripoll
[2012], which remain approximately valid here when
(pɛm0)

2/3Wc0/(gwm) ≫ ∣1 � 2wm/Wc∣.

Appendix E: Numerical Calculation of the Diffusion
Coefficients and Lifetimes

[72] In this paper we use the scheme of calculation of the
diffusion coefficients (1) described by Glauert and Horne
[2005]. However, we also take into account significant
improvements for distribution g(q) based on CLUSTER
statistics of whistler wave propagations [Agapitov et al.,
2011]. We use a Gaussian function g(q) = exp(�(tan q �
tan qm)

2/tan2Dq) with tan qm and tan Dq depending on the
magnetic latitude l. These dependencies are obtained from
CLUSTER statistics and approximated by polynomials of l
[see details in Artemyev et al., 2012]. The calculation of local
pitch angle diffusion coefficient Dn

aa for given l, electron
energy and pitch angle a consists in the following steps:
[73] 1. For each value of q ∈ [qmin, qmax] we solve the

system consisting of the resonance condition (5) and dis-
persion relation w = Wc cos q/(1 + Wpe

2 /(kc)2) to obtain reso-
nant frequency wi,n and corresponding wave number ki,n.
Here n is the order of cyclotron harmonic resonance and i is
the index of the resonant root.
[74] 2. For all obtained sets {wi,n, ki,n} we calculate

the corresponding power density Gw(wi,n, ki,n) according to
equation (3).
[75] 3. Then we integrate over q with function Gq, where

g(q) = exp(�(tan q � tan qm)
2/tan2Dq) is obtained for a

given l.
[76] As a result, we obtain Dn

aa depending on l, a and
electron energy. Then we sum all cyclotron harmonics and
integrate over bounce oscillations according to equation (9),
recalculating pitch angle by using conservation of the mag-
netic moment:

sin2a ¼ sin2aeqb lð Þ

where b lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2l

p
= cos6l. We average over bounce

oscillations up to l ¼ min lmirror; 40�ð Þ , where lmirror cor-
responds to mirror points, i.e. sin2aeqb(lmirror) = 1. This
gives the final diffusion coefficients 〈D〉. We also use these
pitch angle diffusion coefficients 〈D〉 to calculate lifetimes
according to Albert and Shprits [2009].
[77] In some cases, we also calculate diffusion coeffi-

cients with constant parameters tan qm = 0, tan Dq = 0.577

with qMax = 45�. These parameters are the same as used by
Glauert and Horne [2005] and Horne et al. [2005]. Results
obtained for these parameters are named in the paper as
calculation without large-q part.
[78] According to CLUSTER observations the mean value

tan qm as well as the variance tan Dq grow with magnetic
latitude [Agapitov et al., 2011]. As a result, for moderate to
large values of l one has significantly oblique direction of
wave propagation (tan qm ≫ 1) and distribution g(q) is more
dispersive (i.e. tan Dq ≫ 1). This effect leads to the inten-
sification of higher order cyclotron harmonics [see, e.g.,
Shklyar and Matsumoto, 2009] and results in an increase
of pitch angle diffusion [Shprits and Ni, 2009; Artemyev
et al., 2012].
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