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Abstract. In this paper, we consider the mechanism of
ion acceleration by dipolarization fronts in the Earth’s mag-
netotail. The statistics of dipolarization front observations
by Interball-tail have been collected from 1995 to 1998
(51 events). We demonstrate that near dipolarization fronts
bursts of energetic ions are often observed with an aver-
age energy of about 100–200 keV. We develop the analyti-
cal model of the ion resonance interaction with dipolariza-
tion fronts to describe the observed acceleration. We com-
pare the model and the observations to estimate the width of
fronts along the dawn-dusk direction,Ry. The mean value is
〈Ry〉 ∼ 6RE.

Keywords. Magnetospheric physics (Magnetotail) – Space
plasma physics (Charged particle motion and acceleration;
Wave-particle interactions)

1 Introduction

During the last decade, multispacecraft missions (Cluster
and THEMIS) reveal various mesoscale (a fewRE) transient
structures in the Earth’s magnetotail (see review bySharma
et al., 2008). These structures can be understood as spatially
localized nonlinear current systems. The magnetic field of
mesoscale structures is often comparable or stronger than the
background magnetic field in the magnetotail. Of course,
such mesoscale structures were observed by previous mis-
sions. However, now their inner geometry can be investi-
gated with the multipoint analysis.

One of the mesoscale structures actively studied during the
last years are dipolarization fronts (DFs) (Nakamura et al.,
2009; Runov et al., 2009, 2011; Schmid et al., 2011, and ref-
erences therein) – a sharp increase of theBz component of
the magnetic field in the vicinity of the magnetotail neutral
plane. ThisBz increase is accompanied by a burst of the elec-

tric field with the magnitude of about∼10 mV m−1 (see, e.g.
Nakamura et al., 2009; Runov et al., 2011). DFs often prop-
agate towards the Earth. Based on numerical modelling, DFs
are associated with the spontaneous magnetic reconnection
in the magnetotail (e.g.Sitnov et al., 2009). Geometry and
parameters of DFs change only slightly on the course of their
Earthward motion (Runov et al., 2009). The shape of a DF is
supported by the dawn-dusk ion and electron currents at the
front (seeRunov et al., 2011; Schmid et al., 2011, and ref-
erences therein). Therefore, one could assume the existence
of two particle populations: trapped (or captured) particles
moving with the DF and background plasma.

The role of DFs in particle acceleration is the subject of
active investigations. First of all, the rapid increase ofBz
leads to the betatron (or/and Fremi) acceleration of adiabatic
electrons (see, e.g.Apatenkov et al., 2007; Fu et al., 2011).
Nonadiabatic ions can gain some energy due to the reflection
from the DF (Zhou et al., 2010). Magnetic field fluctuations
near the front can provide the turbulent ion acceleration (Ono
et al., 2009).

DF can be also presented as a moving nonlinear electro-
magnetic wave. Background ions could interact with such a
wave in a resonance manner. It is well known that propagat-
ing a wave in the presence of the background magnetic field
can capture background particles and accelerate them along
the wave front (so called surfactron acceleration, originally
proposed bySagdeev, 1966). This mechanism was consid-
ered before for a shock wave (see, e.g.Zank et al., 1996;
Simnett et al., 2005, and references therein). For harmonic
electromagnetic waves the surfatron mechanism is investi-
gated with the numerical modelling (Takeuchi et al., 1987),
in the laboratory experiment (Yugami et al., 1996) and in the
frame of the analytical theory (Neishtadt et al., 2009; Arte-
myev et al., 2010). The non-harmonic wave is considered by
Takeuchi(2005, 2008), where term ‘magnetic trapping’ was
introduced for the systems with an electromagnetic wave to
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318 A. V. Artemyev et al.: Resonance acceleration by dipolarization fronts

Fig. 1. Panel(a) demonstrates the model magnetic and electric
fields. Panel(b) demonstrates the phase portrait of the Hamiltonian
Hφ , grey colour denotes the oscillation region.

underline the difference with the classical surfatron mecha-
nism proposed initially for an electrostatic wave.

In comparison with other mechanisms of particle acceler-
ation by DF, the considered surfatron mechanism can pro-
duce a small population of ions with energy larger than
100 keV under magnetotail conditions. Betatron (and/or
Fermi) mechanism (Apatenkov et al., 2007; Fu et al., 2011)
can be considered only for adiabatic electrons. Reflection of
nonadiabatic ions provides energy gain of a few keV (Zhou
et al., 2010). Electromagnetic fluctuations lead to change in
the power law of whole energy spectra (Ono et al., 2009).
Therefore, effective acceleration of a small ion population
could correspond only to the resonance particle interaction
with DF.

In this paper, we study high energy particles observed near
DFs. We develop the analytical model of the particle reso-
nance acceleration by a DF and compare the observed data
with the theoretical predictions.

2 Spacecraft data and methods

We collect the statistics of DFs observed by Interball-tail
spacecraft during 1995–1998. Magnetic field data from the
ASPI/MIF-M experiment (Klimov et al., 1997) and low en-
ergy (<24 keV) ion moments from the CORALL experi-
ment (Yermolaev et al., 1997) are analysed to reveal DFs.
High energy particles in the range 20–800 keV are measured
with DOK-2 experiment (Lutsenko et al., 1998). DOK-2 has
record energy resolution∼7–8 keV and is capable of observ-
ing fine structures in energy spectra (see, e.g.Lutsenko and
Kudela, 1999). CORALL could underestimate the ion bulk
flows along Earth-Sun direction due to the specific configura-
tion. Therefore, all CORALL velocities are confirmed with
electron moments, obtained from ELECTRON experiment
(Sauvaud et al., 1997).

Between 1995 to 1998 Interball-tail crossed the magneto-
tail current sheet at the downtail distance of−30RE < x <

−11RE. Due to the orbit, the Interball-tail can be inside
the plasma sheet up to several hours. During such inter-
vals, DOK-2 often observes the relatively narrow maxima in

Table 1. The list of events.

N Date B0z E∗
y W Ry

nT mV m−1 keV RE

1 1 Dec 1995: 15:30–15:45 5 4 79 3.09
2 3 Nov 1996: 14:40–14:50 1 2 30 2.34
3 12 Dec 1996: 13:05–13:25 1 1.6 56 5.47
4 12 Dec 1996: 13:57–13:58 2 7.2 136 2.95
5 12 Dec 1996: 13:59–14:05 2 7.2 93 2.02
6 12 Dec 1996: 14:00–14:10 2 3.2 192 9.38
7 12 Dec 1996: 14:10–14:20 2 4.8 158 5.14
8 12 Dec 1996: 14:15–14:18 3 9.6 192 3.13
9 12 Dec 1996: 14:18–14:19 3 9.6 164 2.67
10 12 Dec 1996: 14:20–14:21 3 9.6 184 2.99
11 12 Dec 1996: 14:21–14:22 3 9.6 152 2.47
12 12 Dec 1996: 15:30–15:50 2 1.6 158 15.4
13 12 Dec 1996: 16:30–16:50 2 1.6 93 9.08
14 12 Dec 1996: 16:55–17:02 2 4 232 9.06
15 12 Dec 1996: 17:03–17:06 2 4 271 10.6
16 12 Dec 1996: 17:06–17:10 2 4 63 2.46
17 12 Dec 1996: 17:25–17:40 2 3.2 112 5.47
18 12 Dec 1996: 17:45–17:50 1.5 3 76 4.00
19 12 Dec 1996: 17:52–17:55 2 1.6 80 7.81
20 12 Dec 1996: 17:55–17:57 2 3.2 207 10.1
21 12 Dec 1996: 17:57–18:00 2 3.2 108 5.27
22 12 Dec 1996: 18:05–18:10 3 7.2 192 4.17
23 12 Dec 1996: 18:10–18:15 3 6 159 4.14
24 12 Dec 1996: 19:15–19:23 3 4.8 100 3.26
25 10 Nov 1997: 00:30–00:50 5 8 121 2.36
26 10 Nov 1997: 04:10–04:22 6 7.2 71 1.54
27 2 Dec 1997: 14:06–14:10 2 4 71 2.77
28 2 Dec 1997: 14:40–14:50 1 5 32 5.00
29 6 Dec 1997: 07:40–07:55 1 2 86 6.72
30 5 Nov 1998: 08:30–08:40 4 6.4 58 1.42
31 5 Nov 1998: 09:40–09:50 4 4.8 52 1.69
32 5 Nov 1998: 10:15–10:25 4 8 85 1.66
33 5 Nov 1998: 11:00–11:10 2 4.8 71 2.31
34 5 Nov 1998: 12:30–12:40 2 2.4 71 4.62
35 9 Nov 1998: 02:20–02:27 2 4.8 86 2.80
36 9 Nov 1998: 02:27–02:32 2 4 121 4.72
37 9 Nov 1998: 02:37–02:45 5 8 112 2.19
38 9 Nov 1998: 04:05–04:20 4 8 158 3.09
39 1 Dec 1998: 12:00–12:10 3 7.2 68 1.48
40 1 Dec 1998: 13:05–13:15 2 4.8 116 3.78
41 1 Dec 1998: 14:40–14:50 2 2.4 93 6.05
42 9 Dec 1998: 07:20–07:40 2 1.6 141 13.8
43 12 Dec 1998: 16:50–17:00 3 1.8 96 8.33
44 12 Dec 1998: 17:05–17:20 3 2.4 131 8.53
45 12 Dec 1998: 18:10–18:25 3 4.8 58 1.89
46 12 Dec 1998: 20:45–21:00 2.5 3 147 7.66
47 12 Dec 1998: 21:35–21:45 2 3.2 185 9.03
48 12 Dec 1998: 21:45–21:50 2 2.4 165 10.7
49 20 Dec 1998: 09:45–10:00 2 2 74 5.74
50 20 Dec 1998: 11:15–11:35 5 3 117 6.10
51 20 Dec 1998: 12:35–12:45 2 4.8 224 7.29

the energy spectra close to∼100–200 keV (Lutsenko et al.,
2008). We collect the dataset of simultaneous observations
of DFs and bursts of energetic ions. All DFs are observed in
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the vicinity of the neutral sheet (Bx is small). For each event,
we estimate the value of the background magnetic fieldB0z
(the value ofBz in the vicinity of the neutral plane before the
DF), the amplitude of the ion bulk velocityVx during the DF,
the corresponding electric fieldE∗

y = −B0zVx/c and the en-
ergyW related to the observed maximum of the high energy
ion flux (see Fig.4). The list of DF observations with the
main parameters is given in Table1. Below, we propose the
resonance mechanism to describe the ion acceleration up to
the energy∼100–300 keV without strong scattering.

3 Theoretical model of particle acceleration

This section is devoted to the description of the resonance
ion acceleration by the DF. We use a simplified model ge-
ometry: the particle motion is described in the approxima-
tion of the neutral plane. Only the single component of
the magnetic fieldBz = B0z + δBz(x,t) is taken into ac-
count. HereδBz(x,t) = −Bδf (φ) corresponds to the DF,
argumentφ = k(x −vφ t) describes the direction of DF prop-
agation, 1/k andvφ are the DF thickness and the earthward
velocity. Background magnetic fieldB0z is assumed to be
a constant. This assumption is reasonable if time of par-
ticle acceleration is much smaller thanLx/vφ , whereLx
is the spatial scale ofB0z variation along the x-axis in the
Earth’s magnetotail. Below, we demonstrate that this condi-
tion is satisfied. The single component of the electric field
is δEy(φ) = −

vφ

c
Bδf (φ) accordingly to the Maxwell equa-

tions (curl(δEey) = −ez
1
c

∂δB
∂t

, div(δEey) = 0). We assume
f (φ) = φexp(−(φ +φ0)

2) and introduce the dimensionless
parameterh = Bδ/Bz0 > 1. Figure1a shows the profiles of
Bz andδEy as functions ofφ.

In previous publications, the analytical model of the surfa-
tron acceleration was proposed for the similar system, but
with f (φ) = sinφ (Takeuchi et al., 1987; Neishtadt et al.,
2009) and withf (φ) = tanhφ (Takeuchi, 2005). Here, we
consider the profile of magnetic fieldδBz close to one de-
scribed byTakeuchi(2008).

The equations of the nonrelativistic ion motion have the
following form (we neglect the motion along z-direction):{

u̇x = (1−hf (φ))uy
u̇y = −uφhf (φ)−(1−hf (φ))ux

(1)

Here, we introduce the dimensionless variables:t → tωn,
u = v/v0, particle coordinatesr → rωn/v0, κ = kv0/ωn,
uφ = vφ/v0, whereωn = qB0z/mc, q is charge andm is
mass,v0 is the particle thermal velocity. Far from the DF
(whenφ � 1 andf (φ) ∼ 0) the particle rotates around the
Larmor circle: u̇x = uy and u̇y = −ux. If this circle in the
velocity space is intersected by the lineux = uφ (the condi-
tion of the Cherenkov resonance), then the particle can in-
teract with the DF in a resonance manner. For such particle

φ̇ = κ(ux −uφ) ∼ 0 and we can rewrite system (1) near the
resonance:{

φ̈ = κuy

(
1−hφe−(φ+φ0)

2
)

u̇y = −uφ

(2)

Here, we assume thatκ � 1 (v0 is large enough) and the vari-
able φ changes faster thanvy. In this case, we can write
the Hamiltonian forφ: Hφ =

1
2φ̇2

+κuy(φ−h9(φ)), where

9(φ) =
1
2e−(φ+φ0)

2
+

√
π

2 φ0erf(φ+φ0). The phase portrait
of the HamiltonianHφ is shown in Fig.1b. There are the so
called oscillation regions (marked by the grey colour) and the
transient regions. A particle captured into the oscillation re-
gion moves with the DF (̇φ oscillates around zero) and abso-
lute value of its velocityuy increases according to the second
equation in Eq. (2). The boundary of the oscillation region is
called a separatrix. If the area bounded by the separatrix,S,
grows with time then particles from the transient region can
be captured inside the oscillation region. The expression for
S can be written as (Neishtadt et al., 2009; Artemyev et al.,
2010):

S =
√

2
∮ √

Hφ −κuy(φ−h9(φ))dφ =√
2κ

∣∣uy
∣∣ φa∫
φ∗

√
|φ∗ −φ−h(9(φ∗)−9(φ))|dφ

(3)

Hereφ∗ is theφ value in the saddle point andφa is shown in
Fig. 1b. The lineux = uφ intersects the Larmor circle in two
points (with positive and negativeuy). However, only ifuy is
negative, the areaS ∼

√
|uy| ∼

√
|u0y− tuφ | grows with time

(hereu0y is a value ofuy just after the capture). Therefore,
particles can be captured only in one point. Modelling of the
capture is demonstrated in Fig.2. We integrate system (1)
numerically. Initially the particle moves along the Larmor
circle far from the DF. Then the DF comes and the particle
is captured. The captured particle moves with the DF and
is accelerated along the frontuy ∼ −tuφ (in the dimensional
form vy ∼ −vφ tωn). During the captured motion particle en-
ergy 1

2(u2
x +u2

y) grows as∼ 1
2(vφ t)2. Particle motion inside

the oscillation region results in periodical oscillations ofuy
andy variables also presented in Fig.2 (see descriptiop of
these oscillations inNeishtadt et al., 2009; Artemyev et al.,
2010)

4 Dipolarization fronts and high energy ions

In this section, we describe four examples of the DF obser-
vations by Interball-tail spacecraft. Magnetic field data are
presented in Fig.3. There is the typical increase of the nor-
mal component of the magnetic fieldBz during the DF. The
zones of DFs are marked by arrows showing also time in-
tervals of observations of high energy ions by DOK-2. The
corresponding energy spectra are shown in Fig.4. The grey
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320 A. V. Artemyev et al.: Resonance acceleration by dipolarization fronts

Fig. 2. The resonance particle trajectory is shown in the velocity and coordinate spaces. Also the particle energy(u2
x +u2

y)/2 as a function
of dimensionless timetωn is shown.

colour highlights the energy range where the increase of par-
ticle flux is observed. For the four observed events, energies
areW ∼ 200, 150, 125 and 75 keV, respectively.

If we consider the observed high energy particles as cap-
tured and accelerated population, we can estimate the “hid-
den” (not measured directly) parameters of DFs. We can de-
rive the expression for the DF width along the dawn-dusk
direction,Ry.

The energy of captured particles is12m(u2
x + u2

y) ∼

1
2mu2

y ∼
1
2u2

φ t2 and in the dimensional form we haveW =

1
2mv2

φ(ωnt)
2. The corresponding spatial scaleRy =

∫
vydt =

1
2vφωnt

2. Therefore, we can write:

Ry =
c
vφ

(
W

/
qB0z

)
= W

/
|qE∗

y |

Thus, one can determine the spatial scaleRy from the esti-
mates ofW andE∗

y = −(vφ/c)B0z. We assume that the DF
velocity, vφ is equal to bursts bulk flow velocity,Vx. For
each event from Table1, we obtain correspondingRy. The
distributions of observedW and estimatedRy are shown in
Fig. 5. For the majority of DFs, the observed energiesW are
distributed in the range 75–200 keV. The mean value of the
DF width is〈Ry〉 ≈ 6RE.

Corresponding time of particle acceleration
∼

√
2Ry/vφωn is much smaller thanLx/vφ if

Lx >
√

2Ryvφ/ωn ∼ 2RE, whereLx is defined above. This
condition is almost satisfied forx ∼ −25RE, where our
observations were made. Thus, we can considerB0z= const.

Here, we should notice that the proposed mechanism of
ion acceleration can describe the formation of the ion pop-
ulation with energy∼100–300 keV in considered the mag-

netic field configuration. However, the width of observed
maxima of particle flux in the energy range could be related
to some other effect (e.g. time-of-flight effect, see for details
Lutsenko et al., 2008).

5 Discussion

In this paper, we propose the mechanism responsible for the
formation of bursts of energetic ions in the Earth magnetotail
based on the resonance interaction of particles with dipolar-
ization fronts. However, we should mention another possible
mechanism considered byLutsenko et al.(2008) for the same
type of data. Namely ions can gain energy due to acceleration
by electrostatic and inductive electric fields in the course of
the so called “current filament disruptions” (local magnetic
reconnection). In this case, the increase ofBz is considered
as a temporal event, but not as a spatially localized mov-
ing structure. In comparison with the mechanism proposed
above, such disruptions correspond to a smaller spatial scale
of the acceleration region and a larger value of the electric
field. We estimate the electric field to be∼5 mV m−1 and the
spatial scale to be∼6RE, while Lutsenko et al.(2008) sug-
gest that the electric field is five times larger and the spatial
scale is five times smaller. The relation between these two
mechanisms can be further investigated in numerical mod-
elling: it is well known that magnetic reconnection (and cor-
responding current filament disruption) leads to the forma-
tion of the dipolarization front (Sitnov et al., 2009).

We develop the analytical model of the charged particles
capture and acceleration by the DF. We assume that DFs
propagate in the background plasma and particles from the

Ann. Geophys., 30, 317–324, 2012 www.ann-geophys.net/30/317/2012/
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background population can be captured. A particle can be
captured if it has the resonance velocity near the DF, but not
every resonance particle is captured. The capture is the prob-
abilistic process and the capture probability5 ∼ uφ/

√
κ (see

Neishtadt et al., 2009; Artemyev et al., 2010, and references
therein). The value of5 is small due to the largeκ and only
a small part of the resonance population is actually captured.

In this paper, we describe the resonance acceleration only
for ions. However, from a theoretical point-of-view electrons
could also be captured. For ions the DF is a relatively fast
and thin (alongx) structure, while for electrons the DF is
a slow (regarding their thermal motion) and thick structure.
Therefore, to describe the electron interaction with the DF,
another approach should be applied (see, e.g.Neishtadt et al.,
2010).

To make all calculations more straightforward, we neglect
the influence ofBx component on the ion motion and also
assume the planar geometry of the DF. The first simplifica-
tion is reasonable, because the investigation of the resonance
wave-ion interaction in a complete model of a current sheet
(with Bx(z) andB0z) reveals the similar effect of capture and
acceleration (Vainchtein et al., 2004). The second simplifi-
cation (neglecting curvature of the DF) could be understood
because the detailed spacecraft observations demonstrate the
positive curvature of the DF. The DF surface in (x,z)-plane
could be approximated by a parabolax ∼ z2 (Runov et al.,
2009). The theoretical model of the wave-particle resonance
interaction shows that the particle acceleration is stable and
particles do not leave the resonance in such a front curvature
(Bulanov and Sakharov, 2000). We also neglect the wave
activity near the DF and its influence on the particle accel-
eration. To support this simplification, we notice that the
presence of an additional high-frequency noise could only
limit the time of acceleration, but cannot stop the resonance
interaction (Artemyev et al., 2010, 2011).

Obtained estimates ofRy in a fortunate case could be ver-
ified with the simultaneous observations of the DF by two
spacecraft with different positions along the dawn-dusk di-
rection. At 20 December 1998 (events 49 and 50 from the
Table1) Interball-tail was at(−24,12,−5) RE and Geotail
was at(−14,8,−3) RE. Both spacecraft observed the DF
with the earthward direction of propagation: Interball-tail
observed DFs first and Geotail a few minutes after because
of the separation along the Earth-Sun direction (these data
are not shown here). Our estimates for these events give
Ry ∼ 6RE and the spacecraft separation along the dawn-dusk
direction was about 4RE. Therefore, our estimates do not
contradict these two-spacecraft observations.

Due to the low time resolution of CORALL measure-
ments, we could underestimate ion bulk velocity during the
DF. Thus, electric fieldE∗

y could also be underestimated,
while Ry ∼ 1/E∗

y could be overestimated. Unfortunately, the
modern spacecraft missions (Cluster, THEMIS) do not have
the high resolution energetic particle instrument. Therefore,
we cannot apply our technique to data collected by these

Fig. 3. Four events of DF observations by Interball-tail (x-axis is in
UT). The date is given at the top of each panel.

www.ann-geophys.net/30/317/2012/ Ann. Geophys., 30, 317–324, 2012
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Fig. 4. Ion high-energy spectra for the events from Fig.3. Bursts of energetic ions are marked by the grey colour.

Fig. 5. The distributions of observed values ofW and estimates ofRy.

missions. However, in the future, we plan to apply our model
to study the resonance acceleration in the solar wind, where
STEREO-A,B spacecraft also observe the bursts of energetic
particles associated with the surfatron acceleration (Klassen
et al., 2009).

6 Conclusions

In this paper, we study the resonance ion acceleration by
DFs with the help of Interball-tail observations and the an-
alytical model. We demonstrate that on the DF the bursts
of energetic ions are observed with an average energy of

Ann. Geophys., 30, 317–324, 2012 www.ann-geophys.net/30/317/2012/
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about 100–200 keV. These high energy populations are de-
scribed by the model of the resonance acceleration (the sur-
fatron mechanism). We estimate the “hidden” (not measured
directly) parameters of the DF by comparison between the
model and observations: the width of DFs along the dawn-
dusk direction is found to be∼6RE. The developed ap-
proach demonstrates that the combination of the analytical
models and the observations of high-energy particle distri-
butions could be a useful instrument for the investigation of
mesoscale structures.
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